JP2925578B2 - Method for manufacturing electrode plate for storage battery - Google Patents

Method for manufacturing electrode plate for storage battery

Info

Publication number
JP2925578B2
JP2925578B2 JP1126268A JP12626889A JP2925578B2 JP 2925578 B2 JP2925578 B2 JP 2925578B2 JP 1126268 A JP1126268 A JP 1126268A JP 12626889 A JP12626889 A JP 12626889A JP 2925578 B2 JP2925578 B2 JP 2925578B2
Authority
JP
Japan
Prior art keywords
metal salt
battery
nickel
solution
salt solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1126268A
Other languages
Japanese (ja)
Other versions
JPH02304867A (en
Inventor
真介 中堀
浩三 大槻
寛行 磯岡
憲俊 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP1126268A priority Critical patent/JP2925578B2/en
Publication of JPH02304867A publication Critical patent/JPH02304867A/en
Application granted granted Critical
Publication of JP2925578B2 publication Critical patent/JP2925578B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • H01M4/28Precipitating active material on the carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は蓄電池用極板の製造方法に関し、特にアルカ
リ蓄電池用のニッケル正極の製造方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electrode plate for a storage battery, and more particularly to a method for manufacturing a nickel positive electrode for an alkaline storage battery.

従来の技術 上記アルカリ蓄電池用ニッケル正極の活物質充填方法
としては、ニッケル焼結基板等の多孔体を硝酸ニッケル
等の含浸液に浸漬して多孔体中にニッケル塩を含浸した
後、この塩にアルカリを作用させて水酸化ニッケルを生
成させる操作を繰り返す化学含浸法が広く採用されてい
る。この化学含浸法において、電極性能を向上させるた
めに、前記ニッケル塩に予め所定量のコバルト塩、及び
/又はカドミウム塩等の異種金属塩を添加しておき、ア
ルカリ中で共折させて固溶体を形成させる方法が提案さ
れている〔文献:2次電池,第4集(1962年)山下P28,池
田P39、特公昭42−21115号公報、特公昭59−10538号公
報、特公昭60−12742号公報、特開昭62−86661号公報、
特開昭63−211563号公報等参照〕。
2. Description of the Related Art As a method for filling an active material of a nickel positive electrode for an alkaline storage battery, a porous body such as a nickel sintered substrate is immersed in an impregnating liquid such as nickel nitrate to impregnate the porous body with a nickel salt, A chemical impregnation method which repeats an operation of producing an alkali hydroxide by producing nickel hydroxide has been widely adopted. In this chemical impregnation method, in order to improve electrode performance, a predetermined amount of a different metal salt such as a cobalt salt and / or a cadmium salt is added to the nickel salt in advance, and the solid solution is co-folded in an alkali to form a solid solution. A method for forming the battery has been proposed [Reference: Secondary Battery, 4th Collection (1962) Yamashita P28, Ikeda P39, JP-B-42-21115, JP-B-59-10538, JP-B-60-12742. JP, JP-A-62-86661,
See JP-A-63-211563, etc.].

ところで、上記異種金属塩を添加する際、その添加量
によって電池性能の向上効果が異なる。例えば、異種金
属水酸化物がコバルト塩である場合には、添加量が少な
ければ高容量電池が、多ければ高温特性の優れた電池が
得られる。したがって、電池の使用用途に応じて異種金
属塩の最適添加量を調整する必要がある。しかしなが
ら、ニッケル極の使用用途は多種多様に広がっているた
めに、用途別に最適量を添加しようとすれば、非常に多
種の組成を有する含浸液を予め設けておく必要がある。
この結果、製造工程が複雑になるという課題を有してい
た。
By the way, when the above-mentioned different metal salt is added, the effect of improving the battery performance differs depending on the amount of addition. For example, when the foreign metal hydroxide is a cobalt salt, a small amount of the added metal can provide a high capacity battery, and a large amount thereof can provide a battery excellent in high temperature characteristics. Therefore, it is necessary to adjust the optimal addition amount of the different metal salt according to the intended use of the battery. However, since the use of nickel electrodes is widespread, the impregnating liquid having a very wide variety of compositions needs to be provided in advance in order to add the optimum amount for each use.
As a result, there is a problem that the manufacturing process becomes complicated.

そこで上記の不都合を解消すべく、水酸化ニッケルを
充填した後に、添加する異種金属塩の単独溶液に浸漬し
アルカリ処理操作を必要な回数行なう方法が提案されて
いる(特開昭51−121742号公報、特公昭57−5018号公
報、特開昭62−37874号公報、特開昭57−205968号公報
等参照)。
In order to solve the above-mentioned inconvenience, there has been proposed a method in which, after filling with nickel hydroxide, immersing in a single solution of a different metal salt to be added and performing an alkali treatment operation as many times as necessary (Japanese Patent Laid-Open No. 51-121742) Gazette, JP-B-57-5018, JP-A-62-37874, JP-A-57-205968, etc.).

発明が解決しようとする課題 しかしながら、上記の方法では、水酸化ニッケル充填
操作と異種金属塩のアルカリ処理操作とが別個に行われ
ていたため、水酸化ニッケルと異種金属塩との固溶体が
形成されない。この結果、異種金属塩が単独で存在し、
目的とする電池性能の向上を図ることができないという
課題を有していた。
Problems to be Solved by the Invention However, in the above-mentioned method, since a nickel hydroxide filling operation and an alkali treatment of a foreign metal salt are performed separately, a solid solution of nickel hydroxide and a foreign metal salt is not formed. As a result, the foreign metal salt exists alone,
There was a problem that the intended battery performance could not be improved.

本発明はかかる現状に鑑みてなされたものであり、上
記諸欠点を解消できることになる蓄電池用極板の製造方
法を提供することを目的とする。
The present invention has been made in view of such a situation, and an object of the present invention is to provide a method of manufacturing an electrode plate for a storage battery, which can solve the above-described disadvantages.

課題を解決するための手段 本発明は上記目的を達成するために、多孔性基体中に
第1の金属塩溶液を含浸させる第1ステップと、上記第
1の金属塩溶液を乾燥させることなしに、上記多孔性基
体を上記第1の金属塩溶液とは異なる組成の第2の金属
塩溶液中に浸漬する第2ステップと、上記多孔性基体を
乾燥して、上記第1及び第2の金属塩の混晶を生成させ
る第3ステップと、上記多孔性基体をアルカリ溶液に浸
漬して、上記混晶を活物質化させる第4ステップとを有
することを特徴とする。
Means for Solving the Problems In order to achieve the above object, the present invention provides a first step of impregnating a porous substrate with a first metal salt solution, and without drying the first metal salt solution. A second step of immersing the porous substrate in a second metal salt solution having a composition different from that of the first metal salt solution; and drying the porous substrate to form the first and second metals. The method is characterized by comprising a third step of forming a mixed crystal of a salt and a fourth step of immersing the porous substrate in an alkaline solution to convert the mixed crystal into an active material.

作用 多孔性基体に、第1の金属塩溶液として、主活物質と
なる金属塩溶液を含浸し、次いで第1の金属塩溶液とは
組成の異なる第2の金属塩溶液として、前記主活物質と
なる金属塩とは異なる異種金属塩の溶液を含浸し、これ
を乾燥させることにより、前記異種金属塩と主活物質と
なる金属塩との混晶を形成し、これをアルカリ溶液中で
活物質化させると、異種金属水酸化物と主活物質となる
金属水酸化物との固溶体が形成される。したがって、第
2の金属塩溶液の異種金属塩の種類により、活物質の反
応性が向上したり、活物質の膨張を抑制すること等が可
能となるため、電池性能を向上させることができる。具
体的に、アルカリ蓄電池用ニッケル正極の製造方法に本
発明を適用した場合において、異種金属塩がコバルト塩
であれば高温での充電性能が向上し、異種金属塩がカド
ミウム塩であればサイクル寿命が向上する。
A porous base material is impregnated with a metal salt solution serving as a main active material as a first metal salt solution, and then as a second metal salt solution having a composition different from that of the first metal salt solution. By impregnating with a solution of a different metal salt different from the metal salt to be formed and drying it, a mixed crystal of the different metal salt and the metal salt serving as the main active material is formed, and this is activated in an alkaline solution. When materialized, a solid solution of the different metal hydroxide and the metal hydroxide serving as the main active material is formed. Therefore, depending on the type of the different metal salt in the second metal salt solution, the reactivity of the active material can be improved, the expansion of the active material can be suppressed, and the battery performance can be improved. Specifically, when the present invention is applied to a method for producing a nickel positive electrode for an alkaline storage battery, the charging performance at a high temperature is improved if the foreign metal salt is a cobalt salt, and the cycle life is improved if the foreign metal salt is a cadmium salt. Is improved.

また、第2の金属塩溶液中の金属塩から形成される金
属水酸化物の活物質中の添加量は、第2ステップにおけ
る第2の金属塩溶液に浸漬する時間、或いは回数により
調整できるため、第1の金属塩溶液と第2の金属塩溶液
とを備えておくだけ、即ち、含浸液の槽を2つ用意して
おくだけで、第2の金属塩溶液中の金属塩から形成され
る金属水酸化物の活物質中の添加量を調整することがで
きる。したがって、簡単な設備で用途に応じた多種多様
の組成を有する活物質を得ることができる。
Further, the amount of the metal hydroxide formed from the metal salt in the second metal salt solution in the active material can be adjusted by the time or the number of times of immersion in the second metal salt solution in the second step. By simply providing the first metal salt solution and the second metal salt solution, that is, by simply preparing two baths of the impregnating liquid, the first metal salt solution is formed from the metal salt in the second metal salt solution. The amount of metal hydroxide added to the active material can be adjusted. Therefore, it is possible to obtain active materials having various compositions according to applications with simple equipment.

実施例 本発明の実施例を、第1図及び第2図に基づいて、以
下に説明する。
Embodiment An embodiment of the present invention will be described below with reference to FIG. 1 and FIG.

〔実施例I〕[Example I]

第1図は本発明の製造工程を示す工程図であり、先ず
多孔度約80%のニッケル焼結基板を硝酸ニッケル溶液に
浸漬して、ニッケル焼結基板に比重約1.7の硝酸ニッケ
ルを含浸させる(S1)。次に、硝酸ニッケルを約30%含
む硝酸コバルト溶液に、上記ニッケル焼結基板を5秒浸
漬し(S2)、硝酸ニッケルの一部を比重約1.5の硝酸コ
バルトに置換させる。尚、硝酸ニッケルを予め添加して
おくのは、S1で含浸された硝酸ニッケルの持ち込みによ
る溶液の組成が著しく変化するのを抑制するためであ
る。次いで、上記ニッケル焼結基板を乾燥させ(S3)、
硝酸ニッケルと硝酸コバルトとの混晶を生成させる。こ
の後、ニッケル焼結基板を水酸化ナトリウム溶液に浸漬
してアルカリ処理を行い(S4)、上記混晶の活物質化さ
せる。しかる後、ニッケル焼結基板の水洗(S5)と乾燥
(S6)とを行う。このような活物質充填操作を5回繰り
返してニッケル電極を作製した。そして、この極板に通
常の化成を施し、十分の容量の大きいカドミウム負極と
組み合わせてニッケル−カドミウム電池を作製した。
FIG. 1 is a process diagram showing the manufacturing process of the present invention. First, a nickel sintered substrate having a porosity of about 80% is immersed in a nickel nitrate solution to impregnate the nickel sintered substrate with nickel nitrate having a specific gravity of about 1.7. (S1). Next, the nickel sintered substrate is immersed in a cobalt nitrate solution containing about 30% of nickel nitrate for 5 seconds (S2), and part of the nickel nitrate is replaced with cobalt nitrate having a specific gravity of about 1.5. The reason why nickel nitrate is added in advance is to prevent the composition of the solution from being significantly changed due to the introduction of nickel nitrate impregnated with S1. Next, the nickel sintered substrate is dried (S3),
A mixed crystal of nickel nitrate and cobalt nitrate is formed. Thereafter, the nickel sintered substrate is immersed in a sodium hydroxide solution to perform an alkali treatment (S4), thereby converting the mixed crystal into an active material. Thereafter, the nickel sintered substrate is washed with water (S5) and dried (S6). Such an active material filling operation was repeated five times to produce a nickel electrode. Then, the electrode plate was subjected to ordinary chemical conversion, and a nickel-cadmium battery was produced by combining the electrode plate with a cadmium negative electrode having a sufficient capacity.

このようにして作製した電池を、以下(A1)電池と称
する。
The battery fabricated in this manner is hereinafter referred to as (A 1 ) battery.

〔実施例II,III,IV〕(Examples II, III, IV)

硝酸コバルト溶液に、ニッケル焼結基板をそれぞれ10
秒、30秒、60秒浸漬する他は上記実施例Iと同様にして
電池を作製した。
10 pieces of nickel sintered substrate each in cobalt nitrate solution
A battery was fabricated in the same manner as in Example I except that the battery was immersed for 30 seconds, 30 seconds, and 60 seconds.

このようにして作製した電池を、それぞれ以下(A2
電池、(A3)電池、(A4)電池と称する。
The batteries fabricated in this manner are referred to below as (A 2 )
The batteries are referred to as batteries, (A 3 ) batteries, and (A 4 ) batteries.

〔比較例〕(Comparative example)

硝酸コバルト溶液に、ニッケル焼結基板を浸漬しない
他は上記実施例Iと同様にして電池を作製した。
A battery was fabricated in the same manner as in Example I except that the nickel sintered substrate was not immersed in the cobalt nitrate solution.

このようにして作製した電池を、以下(X)電池と称
する。
The battery fabricated in this manner is hereinafter referred to as (X) battery.

〔実験〕[Experiment]

上記本発明の(A1)電池〜(A4)電池と比較例の
(X)電池とを充電電流0.1Cレートで16時間充電した
後、放電電流1Cで1.0Vまで放電させ、放電時間を測定し
たので、その結果を第2図に示す。尚、充放電温度は20
℃と45℃という2つの条件で測定した。
After charging the (A 1 ) battery of the present invention to the (A 4 ) battery and the (X) battery of the comparative example at a charging current rate of 0.1 C for 16 hours, the battery was discharged to 1.0 V at a discharging current of 1 C, and the discharging time was reduced. FIG. 2 shows the measurement results. The charge / discharge temperature is 20
The measurement was performed under two conditions of ° C and 45 ° C.

第2図に示すように、浸漬時間t1によって種々の特性
が得られることが認められる。具体的には、浸漬時間t1
が0<t1≦10秒の電池〔例えば(A1)電池、(A2)電
池〕では、いずれの充放電温度においても比較例の
(X)電池よりも高容量の電池が得られる一方、30<t1
≦60秒の電池〔例えば(A4)電池〕では充放電温度が45
℃の場合に優れた〔即ち高温特性に優れた〕電池を得る
ことができる。また、浸漬時間t1がこれらの中間の10<
t1≦30の電池〔例えば(A3)電池〕では、高温特性と放
電容量とのバランスがとれた電池を得ることができる。
As shown in FIG. 2, various characteristics by dipping time t 1 is found to be obtained. Specifically, the immersion time t 1
Is 0 <t 1 ≦ 10 seconds (for example, (A 1 ) battery and (A 2 ) battery), a battery having a higher capacity than the (X) battery of the comparative example can be obtained at any charging and discharging temperature. , 30 <t 1
For batteries with ≤60 seconds (eg, (A 4 ) batteries), the charge / discharge temperature is 45
A battery excellent in the case of ° C (ie, excellent in high-temperature characteristics) can be obtained. In addition, the immersion time t 1 is between 10 <
In the case of a battery with t 1 ≦ 30 (eg, (A 3 ) battery), a battery having a good balance between high-temperature characteristics and discharge capacity can be obtained.

尚、上記実施例においてはニッケル電極を例にとって
説明したが、本発明はこれ以外の電極(例えばカドミウ
ム極)等にも応用することができる。但し、添加物の添
加効果は上記ニッケル極の場合に最大に発揮される。
In the above embodiment, a nickel electrode has been described as an example, but the present invention can be applied to other electrodes (for example, cadmium electrode). However, the effect of the additive is maximized in the case of the nickel electrode.

また、上記実施例では異種金属塩としてコバルト塩を
用いたが、これに限定するものではなく、例えばカドミ
ウム塩やコバルトとカドミウムとの混合塩を用いること
も可能である。
Further, in the above embodiment, the cobalt salt is used as the heterometal salt, but the present invention is not limited to this. For example, a cadmium salt or a mixed salt of cobalt and cadmium can be used.

発明の効果 以上説明したように本発明によれば、第1の金属塩溶
液と、第1の金属塩溶液とは異なる組成の第2の金属塩
溶液とを備えておくだけ(即ち、含浸液の槽を2つ用意
しておくだけ)で、用途に応じた多種多様の組成を有す
る固溶状態の活物質を形成することができるので、簡単
な設備で電池性能を向上させることができるという効果
を奏する。
Effect of the Invention As described above, according to the present invention, only the first metal salt solution and the second metal salt solution having a composition different from that of the first metal salt solution are provided (that is, the impregnating solution is used). Only two tanks are prepared), it is possible to form a solid-solution active material having a variety of compositions according to the application, so that the battery performance can be improved with simple equipment. It works.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の方法によりアルカリ蓄電池用ニッケル
正極を製造する場合の工程図、第2図は本発明の製造方
法により作製した(A1)電池〜(A4)電池、及び比較例
の製造方法により作製した(X)電池を20℃及び45℃で
放電した際の浸漬時間と放電時間との関係を示すグラフ
である。
FIG. 1 is a process chart in the case of producing a nickel positive electrode for an alkaline storage battery by the method of the present invention, and FIG. 2 is a graph of (A 1 ) to (A 4 ) batteries produced by the method of the present invention and comparative examples. It is a graph which shows the relationship between the immersion time and discharge time when the (X) battery produced by the manufacturing method is discharged at 20 degreeC and 45 degreeC.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池田 憲俊 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (58)調査した分野(Int.Cl.6,DB名) H01M 4/26 - 4/32 H01M 10/24 - 10/30 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Noritoshi Ikeda 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (58) Field surveyed (Int. Cl. 6 , DB name) H01M 4 / 26-4/32 H01M 10/24-10/30

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】多孔性基体中に第1の金属塩溶液を含浸さ
せる第1ステップと、 上記第1の金属塩溶液を乾燥させることなしに、上記多
孔性基体を上記第1の金属塩溶液とは異なる組成の第2
の金属塩溶液中に浸漬する第2ステップと、 上記多孔性基体を乾燥して、上記第1及び第2の金属塩
の混晶を生成させる第3ステップと、 上記多孔性基体をアルカリ溶液に浸漬して、上記混晶を
活物質化させる第4ステップと、 を有することを特徴とする蓄電池用極板の製造方法。
A first step of impregnating a porous substrate with a first metal salt solution; and a step of drying the first metal salt solution without drying the first metal salt solution. Second composition different from
A second step of immersing the porous substrate in a metal salt solution, and a third step of drying the porous substrate to form a mixed crystal of the first and second metal salts. A fourth step of immersing the mixed crystal to make the mixed crystal an active material.
JP1126268A 1989-05-18 1989-05-18 Method for manufacturing electrode plate for storage battery Expired - Fee Related JP2925578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1126268A JP2925578B2 (en) 1989-05-18 1989-05-18 Method for manufacturing electrode plate for storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1126268A JP2925578B2 (en) 1989-05-18 1989-05-18 Method for manufacturing electrode plate for storage battery

Publications (2)

Publication Number Publication Date
JPH02304867A JPH02304867A (en) 1990-12-18
JP2925578B2 true JP2925578B2 (en) 1999-07-28

Family

ID=14930983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1126268A Expired - Fee Related JP2925578B2 (en) 1989-05-18 1989-05-18 Method for manufacturing electrode plate for storage battery

Country Status (1)

Country Link
JP (1) JP2925578B2 (en)

Also Published As

Publication number Publication date
JPH02304867A (en) 1990-12-18

Similar Documents

Publication Publication Date Title
EP0607806A2 (en) Alkaline storage battery and method for producing the same
JP2925578B2 (en) Method for manufacturing electrode plate for storage battery
JP3644427B2 (en) Cadmium negative electrode and nickel cadmium storage battery containing the same
JP4061048B2 (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPS62285360A (en) Negative electrode for alkaline storage battery
JP3094618B2 (en) Manufacturing method of hydrogen storage alloy electrode for alkaline storage battery
JP2932286B2 (en) Method for producing anode plate for alkaline storage battery
JP3498727B2 (en) Method for producing nickel hydroxide positive plate for alkaline battery, nickel hydroxide positive plate for alkaline battery, and alkaline battery
JP4531874B2 (en) Nickel metal hydride battery
JP4356119B2 (en) Sintered nickel electrode for alkaline storage battery
JP2932711B2 (en) Manufacturing method of hydrogen storage alloy electrode for alkaline battery
JP2589750B2 (en) Nickel cadmium storage battery
JP2966497B2 (en) Method for producing cadmium negative electrode plate for alkaline storage battery
JPH0410181B2 (en)
JPS5933758A (en) Sealed nickel cadmium battery
JP2638055B2 (en) Manufacturing method of paste-type cadmium negative electrode for alkaline storage battery
JP2529308B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP2001076717A (en) Nickel positive electrode for alkaline storage battery and its manufacture
JP3136688B2 (en) Nickel-hydrogen storage battery
JPH11273669A (en) Manufacture of sintered cadmium negative electrode
JPS62252072A (en) Manufacture of negative electrode for alkaline storage battery
JPH0560222B2 (en)
JPS612268A (en) Manufacture of sealed nickel-cadmium battery
JPH01146253A (en) Manufacture of cadmium electrode for battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees