JPH0410181B2 - - Google Patents

Info

Publication number
JPH0410181B2
JPH0410181B2 JP61258941A JP25894186A JPH0410181B2 JP H0410181 B2 JPH0410181 B2 JP H0410181B2 JP 61258941 A JP61258941 A JP 61258941A JP 25894186 A JP25894186 A JP 25894186A JP H0410181 B2 JPH0410181 B2 JP H0410181B2
Authority
JP
Japan
Prior art keywords
nickel
cobalt
electrode
layer
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61258941A
Other languages
Japanese (ja)
Other versions
JPS63114061A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP61258941A priority Critical patent/JPS63114061A/en
Publication of JPS63114061A publication Critical patent/JPS63114061A/en
Publication of JPH0410181B2 publication Critical patent/JPH0410181B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • H01M4/28Precipitating active material on the carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明はニツケル−カドミウム電池、ニツケル
−亜鉛電池などの陽極として用いられるアルカリ
蓄電池用焼結式ニツケル極の製法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for producing a sintered nickel electrode for alkaline storage batteries, which is used as an anode for nickel-cadmium batteries, nickel-zinc batteries, and the like.

(ロ) 従来の技術 従来アルカリ蓄電池に用いられるニツケル極は
カーボニルニツケル粉末と高分子糊料とよりなる
スラリーを芯体にコーテイングし、これを還元性
雰囲気下で焼結して得た多孔性ニツケル基板を硝
酸ニツケルを主成分とした含浸液を浸漬し、次い
でアルカリ処理を行い、基板の孔中に水酸化ニツ
ケル活物質を充填するという一連の工程を数回繰
り返すという方法によつて製造されており、この
ニツケル極を用いたアルカリ蓄電池の電池特性を
向上させるために種々の研究がなされている。
(b) Conventional technology Nickel electrodes conventionally used in alkaline storage batteries are porous nickel electrodes obtained by coating a core with a slurry made of carbonyl nickel powder and polymer paste, and sintering this in a reducing atmosphere. It is manufactured by repeating a series of steps several times, including immersing the substrate in an impregnating solution containing nickel nitrate as its main component, then treating it with alkali, and filling the pores of the substrate with nickel hydroxide active material. Various studies have been conducted to improve the battery characteristics of alkaline storage batteries using nickel electrodes.

この電池特性の向上、特に電池の容量アツプを
行なうためには単位体積あたりのエネルギー密度
の大きなニツケル極を開発する必要があり、その
ための基本的方法として活物質の利用率を向上さ
せ高いエネルギー密度を得ることが種々提案され
ており、たとえば特公昭60−12742号公報に記載
されているように硝酸塩溶液から水酸化物として
ニツケルとコバルトとを同時に折出させたものを
用いる方法や、特公昭57−5018号公報に記載され
たように活物質の含浸中和工程においてコバルト
含有量がニツケル含有量よりも多い含浸液を用い
てコバルト単独層を設ける方法が提案されてい
る。しかしながら、上記方法ではコバルトの添加
効果がまだまだ不十分でありサイクル進行と共に
極板強度が低下し、サイクル性能の低下を招くの
で、本出願人は先の特願昭61−184705号に、多孔
性ニツケル基板とニツケル活物質層との間にコバ
ルト化合物あるいは金属コバルトが単独で存在す
る層を設けると共に、前記ニツケル活物質層と電
解液層との間にコバルト化合物あるいは金属コバ
ルトが単独で存在する層を設けることにより前記
ニツケル活物質層をコバルト化合物あるいは金属
コバルトで被覆したアルカリ蓄電池用焼結式ニツ
ケル極を提案している。これによればニツケル極
の利用率を向上させることが可能である。
In order to improve battery characteristics, especially increase battery capacity, it is necessary to develop nickel electrodes with high energy density per unit volume.The basic method for this is to improve the utilization rate of active materials and achieve high energy density. Various methods have been proposed for obtaining nickel and cobalt. As described in Japanese Patent Application No. 57-5018, a method has been proposed in which a single cobalt layer is provided using an impregnating liquid in which the cobalt content is higher than the nickel content in the impregnating and neutralizing step of the active material. However, in the above method, the effect of adding cobalt is still insufficient, and as the cycle progresses, the strength of the electrode plate decreases, leading to a decrease in cycle performance. A layer in which a cobalt compound or metallic cobalt exists solely between the nickel substrate and the nickel active material layer, and a layer in which a cobalt compound or metallic cobalt exists solely between the nickel active material layer and the electrolyte layer. proposed a sintered nickel electrode for alkaline storage batteries in which the nickel active material layer is coated with a cobalt compound or metallic cobalt. According to this, it is possible to improve the utilization rate of nickel poles.

(ハ) 発明が解決しようとする問題点 しかしながら提案した前記ニツケル極において
も問題点がないというわけではない。このニツケ
ル極を用いてアルカリ蓄電池を作製し、充放電試
験を行うと、充放電初期における電極の活性度が
低く、充放電効率が悪く、サイクル初期において
高い電池容量が得られないという問題点がある。
そこで本発明は前記ニツケル極の、特にサイクル
初期における利用率を向上させることによつて電
極容量を大きくするものであり、長期サイクルに
亘つて高容量を維持できるアルカリ蓄電池用焼結
式ニツケル極の製法を提供するものである。
(c) Problems to be solved by the invention However, the proposed nickel pole is not without problems. When an alkaline storage battery was made using this nickel electrode and a charge/discharge test was performed, the problem was that the activity of the electrode was low at the beginning of charging and discharging, the charging and discharging efficiency was poor, and high battery capacity could not be obtained at the beginning of the cycle. be.
Therefore, the present invention aims to increase the electrode capacity by improving the utilization rate of the nickel electrode, especially at the initial stage of the cycle, and provides a sintered nickel electrode for alkaline storage batteries that can maintain high capacity over long cycles. It provides a manufacturing method.

(ニ) 問題点を解決するための手段 本発明は、多孔性ニツケル基板とニツケル活物
質層との間にコバルト化合物あるいは金属コバル
トが単独で存在する層を設けると共に、前記ニツ
ケル活物質層と電解液層との間にコバルト化合物
あるいは金属コバルトが単独で存在する層を設け
ることにより前記ニツケル活物質層をコバルト化
合物あるいは金属コバルトで被覆した電極を、ア
ルカリ溶液中において少くとも2回充放電処理す
ることを特徴とするアルカリ蓄電池用焼結式ニツ
ケル極の製法にある。尚、コバルト化合物もしく
は金属コバルトが単独で存在する層を形成する方
法として、化学含浸法によるもの、熱分解法によ
るもの、電着によるものなどいずれの方法であつ
ても良い。またコバルト化合物は水酸化物もしく
は酸化物が好ましい。また充放電を行う特におい
て、放電は過放電とならないように制御するのが
良い。
(d) Means for Solving the Problems The present invention provides a layer in which a cobalt compound or metallic cobalt exists alone between a porous nickel substrate and a nickel active material layer, and also provides an electrolytic bond between the nickel active material layer and the nickel active material layer. An electrode in which the nickel active material layer is coated with a cobalt compound or metal cobalt by providing a layer in which a cobalt compound or metal cobalt exists alone between the liquid layer and the liquid layer is charged and discharged at least twice in an alkaline solution. The present invention provides a method for manufacturing sintered nickel electrodes for alkaline storage batteries, which is characterized by the following. The layer in which the cobalt compound or metal cobalt exists alone may be formed by any method such as chemical impregnation, thermal decomposition, or electrodeposition. Further, the cobalt compound is preferably a hydroxide or an oxide. Furthermore, when charging and discharging, it is preferable to control the discharge so as not to cause overdischarge.

(ホ) 作用 焼結式多孔性ニツケル基板と水酸化ニツケルを
主成分とする陽極活物質層との間にコバルト化合
物あるいは金属コバルトが単独で存在する層を設
けることで、充電時における酸素過電圧が下がり
充電反応が進行しやすくなる。更に前記コバルト
層と、陽極活物質層と電解液層との間にコバルト
化合物あるいは金属コバルトが単独で存在する層
を設けニツケル活物質層を被覆することによつ
て、これら2ケ所のコバルト層の相乗効果に基づ
き、不活性であるγ−NiOOHの抑制効果がより
一層向上し、γ−NiOOHの生成がほとんどなく
なり、活性であるβ−NiooHだけが生成する。
そしてこのようなニツケル極をアルカリ溶液中で
化成を行うと NiOOH+H2O+e-Ni(OH)2+OH- という反応が進行し、電子の授受が活発化して活
物質の活性度が向上し、利用率が向上する。次に
この活性度の高い状態に保たれたニツケル極を電
池内に組み込むことで高容量である電池が提供で
きる。またこのニツケル極を用いて、アルカリ溶
液中にて充放電処理を2回以上行なうと、活性度
が大幅に向上し、電気化学的反応に対して極めて
効果が発揮される。
(e) Effect By providing a layer in which a cobalt compound or metal cobalt exists alone between the sintered porous nickel substrate and the anode active material layer mainly composed of nickel hydroxide, oxygen overvoltage during charging can be reduced. As the temperature decreases, the charging reaction progresses more easily. Furthermore, by providing a layer in which a cobalt compound or metallic cobalt exists alone between the cobalt layer, the anode active material layer, and the electrolyte layer and covering the nickel active material layer, the cobalt layer at these two locations is Based on the synergistic effect, the suppressive effect of inactive γ-NiOOH is further improved, and γ-NiOOH is hardly produced, and only active β-NiOOH is produced.
When such a nickel electrode is chemically formed in an alkaline solution, the reaction NiOOH + H 2 O + e - Ni(OH) 2 + OH - progresses, the exchange of electrons becomes active, the activity of the active material improves, and the utilization rate increases. will improve. Next, by incorporating this highly active nickel electrode into a battery, a battery with high capacity can be provided. Furthermore, when this nickel electrode is subjected to charging and discharging treatment in an alkaline solution two or more times, the activity is greatly improved, and it is extremely effective for electrochemical reactions.

更に本発明の多孔性のニツケル基板の表面がコ
バルト化合物あるいは金属コバルトが単独で存在
する層で覆われているので、ニツケル活物質含浸
時のニツケルアタツクによる腐食が防止でき基板
強度が向上し、サイクル特性が良好となる。
Furthermore, since the surface of the porous nickel substrate of the present invention is covered with a layer containing a cobalt compound or metallic cobalt alone, corrosion due to nickel attack during impregnation with a nickel active material can be prevented, the strength of the substrate is improved, and cycle characteristics are improved. becomes good.

(ヘ) 実施例 実施例 1 本発明の実施例を第1図を用い以下に詳述す
る。多孔度80%焼結式多孔性ニツケル基板3を比
重1.38の硝酸コバルト水溶液に浸漬後、空気中80
℃で乾燥後、空気中210℃で熱処理することによ
つて基板の表面及び孔内表面に第1のコバルト酸
化物質1を形成させる。ついでこの基板に硝酸ニ
ツケル水溶液を含浸させアルカリ処理してニツケ
ル活物質を充填するという工程を6回繰り返して
所定量の活物質層2を形成した後、比重1.38の硝
酸コバルト水溶液に再浸漬し、空気中80℃で乾燥
後80℃の水酸化ナトリウム水溶液でアルカリ処理
し、ニツケル活物質を覆う第2の水酸化コバルト
層5を形成させたものを、ニツケル板を対極と
し、比重1.23の水酸化カリウム溶液中で120mA
で16時間充電した後、放電電流1200mAで終止電
圧を−0.8Vとする充放電サイクルを2回繰り返
し本発明電極aを得、公知のカドミウム極と組み
合わせて公称容量1.2AHのニツケル−カドミウム
蓄電池を作成し、本発明電池Aとした。
(f) Examples Example 1 An example of the present invention will be described in detail below with reference to FIG. After immersing a sintered porous nickel substrate 3 with a porosity of 80% in a cobalt nitrate aqueous solution with a specific gravity of 1.38,
After drying at .degree. C., a first cobalt oxide substance 1 is formed on the surface of the substrate and the inner surface of the pores by heat treatment at 210.degree. C. in air. Next, the process of impregnating this substrate with an aqueous solution of nickel nitrate, treating it with alkali, and filling it with a nickel active material was repeated six times to form a predetermined amount of active material layer 2, and then it was re-immersed in an aqueous solution of cobalt nitrate with a specific gravity of 1.38. After drying in air at 80°C, alkali treatment was performed with an aqueous sodium hydroxide solution at 80°C to form a second cobalt hydroxide layer 5 covering the nickel active material. 120mA in potassium solution
After charging for 16 hours, the charge/discharge cycle was repeated twice with a discharge current of 1200 mA and a final voltage of -0.8 V to obtain electrode a of the present invention, which was combined with a known cadmium electrode to form a nickel-cadmium storage battery with a nominal capacity of 1.2 AH. This battery was prepared and designated as Invention Battery A.

比較例 1 実施例1において示した充放電サイクルを1回
とした他は、実施例1に準じた比較電極bを得、
実施例1と同様にして組み立て比較電池Bを得
た。
Comparative Example 1 Comparative electrode b according to Example 1 was obtained, except that the charge/discharge cycle shown in Example 1 was changed to one time,
Comparative battery B was assembled in the same manner as in Example 1.

比較例 2 実施例で用いたのと同じ基板を比重1.38の硝酸
コバルト水溶液に浸漬し、空気中210℃で熱処理
することによつてコバルト酸化物層を形成させた
ものに実施例と同様に所定量のニツケル活物質を
充填させた後、前記硝酸コバルト水溶液に再浸漬
し、空気中80℃で乾燥後、80℃の水酸化ナトリウ
ム水溶液でアルカリ処理し、水酸化コバルト層を
形成させたニツケル極を比較電極cとし、実施例
1と同様にして組み立て比較電池cを得た。
Comparative Example 2 The same substrate used in Example was immersed in a cobalt nitrate aqueous solution with a specific gravity of 1.38, and heat treated in air at 210°C to form a cobalt oxide layer. After filling a certain amount of nickel active material, the nickel electrode was immersed again in the cobalt nitrate aqueous solution, dried in air at 80°C, and then treated with alkali with an 80°C sodium hydroxide aqueous solution to form a cobalt hydroxide layer. was used as a comparative electrode c, and assembled in the same manner as in Example 1 to obtain a comparative battery c.

比較例 3 実施例1で用いたのと同じ基板を比重1.38の硝
酸コバルト水溶液に浸漬後、空気中80℃で乾燥
後、空気中210℃で熱処理することによつてコバ
ルト酸化物層を形成させたものに実施例1と同様
にニツケル活物質を充填したのみのニツケル極を
比較電極dとし、実施例1と同様にして組み立て
比較電池Dを得た。
Comparative Example 3 The same substrate used in Example 1 was immersed in a cobalt nitrate aqueous solution with a specific gravity of 1.38, dried in air at 80°C, and then heat-treated in air at 210°C to form a cobalt oxide layer. A comparison electrode d was a nickel electrode in which a nickel active material was filled in the same manner as in Example 1, and a comparative battery D was assembled in the same manner as in Example 1.

比較例 4 実施例1で用いた同じ基板に直接、実施例1と
同様にニツケル活物質を充填し、ついで比重1.38
の硝酸コバルト水溶液に浸漬し、空気中80℃で乾
燥後、80℃の水酸化ナトリウム水溶液でアルカリ
処理し、水酸化コバルト層を形成させたニツケル
極を比較電極eとし、実施例1と同様にして組み
立て比較電池Eを得た。
Comparative Example 4 The same substrate used in Example 1 was directly filled with nickel active material in the same manner as in Example 1, and then the specific gravity was 1.38.
A nickel electrode was immersed in a cobalt nitrate aqueous solution, dried at 80°C in the air, and then treated with an alkali solution in an 80°C sodium hydroxide aqueous solution to form a cobalt hydroxide layer.The nickel electrode was used as a reference electrode e, and the same procedure as in Example 1 was carried out. A comparison battery E was obtained.

比較例 5 実施例1で用いた同じ基板に直接、実施例1と
同様にニツケル活物質を充填し、コバルト層を一
切形成しないニツケル極を比較電極fとし、実施
例1と同様にして組み立て比較電池Fを得た。
Comparative Example 5 The same substrate used in Example 1 was directly filled with nickel active material in the same manner as in Example 1, and a nickel electrode without any cobalt layer was used as the comparison electrode f, and assembled in the same manner as in Example 1 for comparison. Battery F was obtained.

第2図はニツケル極a,b,c,d,e,fの
サイクル数進行に伴う活物質利用率の変化を比較
した図であり、サイクル条件は対極をニツケル板
として電解液比重1.23のKOH溶液を用い充電電
流120mAで16時間充電した後、放電電流1200m
Aで終止電圧を−1.0Vとしたものである。これ
により本発明電極aはサイクル初期から活物質の
利用率が高く、極板の活性度が高いものであるこ
とがわかる。一方、充放電処理を全く行つていな
い比較電極cはサイクル初期の利用率が低く、さ
らにサイクル数が進行しても、本発明電極aほど
高利用率とはならない。この原因は明らかではな
いが、比較電極c中の不純物の残存が影響し利用
率を低下させるのではないかと考えられる。更
に、本発明電極aと比較電極bとを比較するに、
充放電サイクルを2回行つた本発明電極aは初期
利用率が安定し利用率が高いという点において、
その効果が顕著であることが理解される。第3図
は、電池A,B,C,D,E,Fの放電特性比較
図であり、充電電流120mAで16時間充電した後、
放電電流1200mAで終止電圧を1.0Vとする充放
電サイクルを10回行つた時のものである。これよ
り本発明電池Aは高容量であり、しかも放電特性
の平坦性に優れるものであることが理解される。
Figure 2 is a diagram comparing the change in active material utilization rate as the number of cycles progresses for nickel electrodes a, b, c, d, e, and f.The cycle conditions are KOH with a nickel plate as the counter electrode and an electrolyte with a specific gravity of 1.23. After charging with a solution for 16 hours at a charging current of 120mA, the discharge current is 1200mA.
A with a final voltage of -1.0V. This shows that the electrode a of the present invention has a high utilization rate of active material from the early stage of the cycle and a high activity of the electrode plate. On the other hand, the comparative electrode c, which has not been subjected to any charging/discharging treatment, has a low utilization rate at the beginning of the cycle, and even as the number of cycles further progresses, the utilization rate does not become as high as that of the electrode a of the present invention. The cause of this is not clear, but it is thought that the remaining impurities in the comparison electrode c have an effect and reduce the utilization rate. Furthermore, when comparing electrode a of the present invention and comparison electrode b,
Electrode a of the present invention, which has been subjected to two charge/discharge cycles, has a stable initial utilization rate and a high utilization rate.
It is understood that the effect is significant. Figure 3 is a comparison diagram of the discharge characteristics of batteries A, B, C, D, E, and F. After being charged for 16 hours at a charging current of 120 mA,
This is the result of 10 charge/discharge cycles with a discharge current of 1200 mA and a final voltage of 1.0 V. From this, it is understood that the battery A of the present invention has a high capacity and excellent flatness of discharge characteristics.

尚、実施例において基板表面に形成するコバル
ト層を酸化物の形態として構成しているが、水酸
化コバルト層でも本発明の要旨とする結果におい
て劣るものではない。ただし、活物質含浸時のニ
ツケルアタツクを防止する効果においては酸化物
層の方が水酸化物層よりも強力であつて、優れる
ものである。
In the examples, the cobalt layer formed on the substrate surface is in the form of an oxide, but even a cobalt hydroxide layer is not inferior in terms of the results that are the gist of the present invention. However, the oxide layer is stronger and superior to the hydroxide layer in terms of the effect of preventing nickel attack during impregnation with the active material.

(ト) 発明の効果 本発明によればγ−NiOOHの生成をきわめて
効果的に抑制でき、更に高利用率であつて特に初
期の利用率の安定したニツケル極が提供できその
工業的価値はきわめて大きい。
(G) Effects of the Invention According to the present invention, the production of γ-NiOOH can be extremely effectively suppressed, and a nickel electrode with a high utilization rate and particularly a stable initial utilization rate can be provided, and its industrial value is extremely high. big.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いたニツケル極の要部拡大
断面図、第2図はニツケル電極のサイクル数と利
用率の関係を示す図、第3図は電池の放電特性比
較図である。 1,5……コバルト層、2……ニツケル活物質
層、3……焼結式多孔性ニツケル基板、4……電
解液層、A……本発明電池、B,C,D,E,F
……比較電池。
FIG. 1 is an enlarged cross-sectional view of the main part of the nickel electrode used in the present invention, FIG. 2 is a diagram showing the relationship between the number of cycles of the nickel electrode and the utilization rate, and FIG. 3 is a comparison diagram of the discharge characteristics of the battery. 1, 5... Cobalt layer, 2... Nickel active material layer, 3... Sintered porous nickel substrate, 4... Electrolyte layer, A... Battery of the present invention, B, C, D, E, F
...Comparison battery.

Claims (1)

【特許請求の範囲】[Claims] 1 多孔性ニツケル基板とニツケル活物質層との
間にコバルト化合物あるいは金属コバルトが単独
で存在する層を設けると共に、前記ニツケル活物
質層と電解液層との間にコバルト化合物あるいは
金属コバルトが単独で存在する層を設けることに
より前記ニツケル活物質層をコバルト化合物ある
いは金属コバルトで被覆した電極を、アルカリ溶
液中において少なくとも2回充放電処理すること
を特徴とするアルカリ蓄電池用焼結式ニツケル極
の製法。
1. A layer in which a cobalt compound or metallic cobalt exists alone is provided between the porous nickel substrate and the nickel active material layer, and a cobalt compound or metallic cobalt exists solely between the nickel active material layer and the electrolyte layer. A method for producing a sintered nickel electrode for an alkaline storage battery, comprising charging and discharging an electrode in which the nickel active material layer is coated with a cobalt compound or metal cobalt at least twice in an alkaline solution. .
JP61258941A 1986-10-30 1986-10-30 Manufacture of sintered nickel electrode for alkaline storage battery Granted JPS63114061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61258941A JPS63114061A (en) 1986-10-30 1986-10-30 Manufacture of sintered nickel electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61258941A JPS63114061A (en) 1986-10-30 1986-10-30 Manufacture of sintered nickel electrode for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS63114061A JPS63114061A (en) 1988-05-18
JPH0410181B2 true JPH0410181B2 (en) 1992-02-24

Family

ID=17327164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61258941A Granted JPS63114061A (en) 1986-10-30 1986-10-30 Manufacture of sintered nickel electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS63114061A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02265165A (en) * 1989-04-04 1990-10-29 Yuasa Battery Co Ltd Nickel electrode for alkaline storage battery
US5248510A (en) * 1992-02-18 1993-09-28 Hughes Aircraft Company Cobalt oxide passivation of nickel battery electrode substrates
CA2290655A1 (en) * 1998-11-30 2000-05-30 Sanyo Electric Co., Ltd. Nickel electrodes for alkaline secondary battery and alkaline secondary batteries

Also Published As

Publication number Publication date
JPS63114061A (en) 1988-05-18

Similar Documents

Publication Publication Date Title
JPH06215765A (en) Alkaline storage battery and manufacture thereof
JPH0410181B2 (en)
JPH11307116A (en) Cadmium negative electrode for alkaline storage battery
JPH09274916A (en) Alkaline storage battery
JP3188000B2 (en) Non-sintered nickel positive electrode
JP3744677B2 (en) Method for producing sintered cadmium negative electrode
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JP2000173606A (en) Sintered-type nickel hydroxide positive electrode, alkaline storage battery using the positive electrode, and manufacture of sintered type nickel hydroxide positive electrode
JP2558759B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JPS58198856A (en) Manufacture of negative cadmium plate for alkaline storage battery
JP3619703B2 (en) Method for producing nickel electrode for alkaline storage battery
JP2639916B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JP3540557B2 (en) Nickel electrode for alkaline storage battery and method for producing the same
JP4301778B2 (en) Method for producing sintered nickel positive electrode for alkaline secondary battery
JP2529308B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP2638055B2 (en) Manufacturing method of paste-type cadmium negative electrode for alkaline storage battery
US6613107B2 (en) Method of producing nickel electrode for alkaline storage batteries
US20030104278A1 (en) Nickel electrode for alkaline storage battery, process for the production thereof, alkaline storage battery comprising same and process for the production thereof
JPS6340255A (en) Sintered nickel electrode for alkaline storage battery
JP2932286B2 (en) Method for producing anode plate for alkaline storage battery
JP2810460B2 (en) Positive plate for alkaline storage battery
JPH0773876A (en) Nickel electrode for secondary battery and manufacture thereof
JP2639915B2 (en) Method for producing nickel positive electrode for alkaline storage battery
JPS60216449A (en) Manufacture of paste type cadmium negative plate
JPS63158750A (en) Zink electrode for alkaline storage battery