JPH02265165A - Nickel electrode for alkaline storage battery - Google Patents

Nickel electrode for alkaline storage battery

Info

Publication number
JPH02265165A
JPH02265165A JP1086299A JP8629989A JPH02265165A JP H02265165 A JPH02265165 A JP H02265165A JP 1086299 A JP1086299 A JP 1086299A JP 8629989 A JP8629989 A JP 8629989A JP H02265165 A JPH02265165 A JP H02265165A
Authority
JP
Japan
Prior art keywords
current collector
active material
layer
nickel
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1086299A
Other languages
Japanese (ja)
Inventor
Masuhiro Onishi
益弘 大西
Masaharu Watada
正治 綿田
Masahiko Oshitani
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP1086299A priority Critical patent/JPH02265165A/en
Publication of JPH02265165A publication Critical patent/JPH02265165A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent direct contact of an active material with a current collector to obtain a nickel electrode having high capacity, high productivity, and thin size by forming a conductive, electrochemically irreversible layer between the current collector and the first layer of active material layers. CONSTITUTION:A conductive, electrochemically irreversible layer is formed between a current collector and the first layer of active material layers. This layer consists mainly of cobalt oxyhydroxide, and is used in the nickel electrode of an alkaline storage battery. Direct contact between the current collector and the active material is prevented, and the thin battery having high performance, high capacity, and high productivity is obtained at low cost.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ蓄電池用ニッケlv電極に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a nickel lv electrode for alkaline storage batteries.

従来技術とその問題点 ニッケルーカドミウム蓄電池用ニッケμ!極には、ニッ
ケル粉末を穿孔銅板に焼結した微孔基板(多孔度80%
)にニッケμ塩を減圧含浸させた後、アルカリ水溶液中
で水酸化ニッケ〃に変換することによって活物質である
水酸化ニッケルを充填させたシンター式と称するものと
、芯金を持たない高多孔質(多孔度90〜98%)耐ア
ルカリ性金r4繊維焼結体に水酸化ニッケル粉末をスラ
リー状にして直接充填させたペースト式と称するものが
ある。
Conventional technology and its problems Nickeμ for nickel-cadmium storage batteries! The poles are made of a microporous substrate (80% porosity) made by sintering nickel powder onto a perforated copper plate.
) is impregnated with nickel μ salt under reduced pressure, and then converted to nickel hydroxide in an alkaline aqueous solution to fill it with nickel hydroxide, an active material. There is a so-called paste type in which nickel hydroxide powder is made into a slurry and directly filled into a sintered body of alkali-resistant gold R4 fibers (porosity: 90-98%).

周知のごとく前者のエネルギー密度は、基板多孔度が低
いことに起因し400mAH/Cc稈度が限界である。
As is well known, the energy density of the former is limited to 400 mAH/Cc culmness due to the low porosity of the substrate.

そのため、現在急速に進歩しつつあるポータプルエレク
トロニクス機器の軽量化に伴う市場ニーズ(6001*
Ah /cc程度を要求)に対応することが困難な状況
にある。更に、シンター式は製造法が煩雑な充填工程を
必要とするため、コスト高になるなどの欠点も併せ持っ
ていた。ペースト式はこれらの欠点を改良するべく開発
されたものであり、集電体・活物質・添加剤などの広い
観点からの改良・開発により、エネμギー密度的にはほ
ぼ現在の市場ニーズに対応できる高密度化が達成されて
いる。しかしながら、集電体である耐アルカリ性高多孔
度金属歇紋焼結体が高価なため材料価格の点で問題が残
されている。また、電池への多様化する市場ニーズには
、薄型ニッケル電極の要求も出現しつつある。
Therefore, the market needs (6001*
It is now difficult to meet the demand (Ah/cc). Furthermore, the sintering method requires a complicated filling process, so it also has the drawback of high costs. The paste type was developed to improve these drawbacks, and by improving and developing the current collector, active material, additives, etc. from a wide range of perspectives, it has almost met the current market needs in terms of energy density. The corresponding high density has been achieved. However, since the alkali-resistant highly porous metal sintered sintered body that serves as the current collector is expensive, there remains a problem in terms of material cost. In addition, a demand for thin nickel electrodes is emerging to meet diversifying market needs for batteries.

そこで、ペースト式電極において、活物質に添加されて
いる二価コバルト化合物によって形成されるオキシ水酸
化コバルトの導電性ネットワークの有効距断を考慮する
ことで、ニッケル箔およびニッケルメツシュな集電体と
する安価な薄型のニッケル電極を得る方法が検討されて
いる。二価コバルト化合物添加剤による導電性ネットワ
ーク形成法には、活物質全体に−様なオキシ水酸化コバ
ルトの導電性ネットワークを得るには有効であるが、ニ
ッケル箔およびニッケルメツシュのような活物質と集電
体との距離が離れているものを使用する場合には十分と
は言えない。特に最も導電性が必要とされる集電体と活
物質の境界部分においてはこのことが顕著に現われ、高
エネルギー密度化を達成するうえで障害となっている。
Therefore, in paste-type electrodes, by considering the effective distance of the conductive network of cobalt oxyhydroxide formed by the divalent cobalt compound added to the active material, it is possible to use nickel foil and nickel mesh current collectors. Methods of obtaining thin, inexpensive nickel electrodes are being considered. The method of forming a conductive network using divalent cobalt compound additives is effective in obtaining a conductive network of cobalt oxyhydroxide throughout the active material, but it is effective to form a conductive network of cobalt oxyhydroxide throughout the active material. This is not sufficient when using a device in which the current collector is far away from the current collector. This is particularly noticeable at the boundary between the current collector and the active material, where electrical conductivity is most required, and is an obstacle to achieving high energy density.

その他にも、集電体と活物質との直接的な接触は集電体
である金属ニッケル表面が腐食を受けやすく、腐食生成
物に起因するγ−NiOOEの生成しやすさおよびこれ
に伴うサイクル寿命低下等の見地からも、この境界部分
におけるオキシ水酸化コバルトの堅固な層の形成を必要
としている。
In addition, direct contact between the current collector and the active material makes the metal nickel surface of the current collector susceptible to corrosion, which increases the ease of formation of γ-NiOOE due to corrosion products and the associated cycle cycle. Also from the viewpoint of reducing lifespan, it is necessary to form a firm layer of cobalt oxyhydroxide at this boundary portion.

発明の目的 本発明は、集電体と活物質との直接接触な防止した、高
性能で高容量かつ生産性の高い安価な薄形のアルカリ蓄
電池用ニッケμ電極を提供することを目的とする。
OBJECTS OF THE INVENTION An object of the present invention is to provide a low-cost, thin nickel μ electrode for alkaline storage batteries with high performance, high capacity, and high productivity, which prevents direct contact between a current collector and an active material. .

発明の構成 本発明は上記目的を達成するべく、集電体とそれに接す
る活物質層の第一層との境界部に導電性を有する電気化
学的に不可逆な層を形成したことを特徴とするアμカリ
蓄電池用ニッケρ電極である。
Structure of the Invention In order to achieve the above object, the present invention is characterized in that a conductive and electrochemically irreversible layer is formed at the boundary between the current collector and the first layer of the active material layer in contact with the current collector. This is a nickel ρ electrode for an alkali storage battery.

また、上記の集電体と活物質層との境界部に形成させる
導電性を有する電気化学的に不可逆な層がオキシ水酸化
コバルトを主体とする層であるアルカリ蓄電池用二、・
・ケ〃電極である。
In addition, for an alkaline storage battery, the conductive electrochemically irreversible layer formed at the boundary between the current collector and the active material layer is a layer mainly composed of cobalt oxyhydroxide.
・It is an electrode.

なお、オキシ水酸化コバルトを主体とする層が、集電体
表面にメッキされた金属コバルトあるいは電解析出され
たコバルト化合物より形成されたアルカリ蓄電池用ニッ
ケ/L’電極である。
Note that the layer mainly composed of cobalt oxyhydroxide is a nickel/L' electrode for an alkaline storage battery formed from metallic cobalt plated on the surface of the current collector or a cobalt compound electrolytically deposited.

これらオキシ水酸化コバルトを主体とする層が集電体表
面にメッキされた金属コバルトより形成される場合、そ
の集電体表面のコバルトのメッキ厚みが2〜5pmの範
囲にあるア〃カリ蓄電池用ニッケル電極である。
When the layer mainly composed of cobalt oxyhydroxide is formed from metal cobalt plated on the surface of the current collector, the thickness of the cobalt plating on the surface of the current collector is in the range of 2 to 5 pm. It is a nickel electrode.

更に、集電体がニッケルメツシュ1ニツケル箔、金属繊
維焼結体、発泡メタ〃より選ばれたものであるアルカリ
蓄電池用ニッケ!電極である0 実施例 以下、本発明の一実施例について詳述する◇水酸化ニッ
ケ〃粉末単独からなる活物質ムと水酸化ニッケμ粉末9
0wt%と一酸化コパμト10wt%を混合した活物質
Bのそれぞれに、力μボキシメチ〃セμロースを増粘剤
とする水溶液を加えて2種類のスラリー状活物質とする
Furthermore, nickel for alkaline storage batteries where the current collector is selected from nickel mesh, nickel foil, sintered metal fiber, and foamed metal! 0 Example, which is an electrode An example of the present invention will be described in detail below. ◇ An active material consisting of nickel hydroxide powder alone and nickel hydroxide μ powder 9
An aqueous solution containing 0wt% of copper monoxide and 10wt% of copper monoxide as a thickener is added to each of the active materials B to prepare two types of slurry-like active materials.

集電体には、厚さ10/J#!のニッケル箔およびその
表面に片側1〜8μmの厚さでコバルトメッキをほどこ
したものを使用した。第1図に充放電試験前のニッケル
箔のX線チャート図を示す。
The current collector has a thickness of 10/J#! A nickel foil whose surface was plated with cobalt to a thickness of 1 to 8 μm on one side was used. FIG. 1 shows an X-ray chart of the nickel foil before the charge/discharge test.

図中の値はニッケ〃の(200)面と(100)面との
強度比である。
The values in the figure are the intensity ratios of the (200) and (100) planes of nickel.

この集電体に、上記の2種類の活物質スラリ−を片側1
00μmの厚さで塗着・乾燥し、薄形のニッケ/L’電
極を得た。
One side of the current collector was coated with the above two types of active material slurry.
The coating was applied to a thickness of 00 μm and dried to obtain a thin nickel/L' electrode.

このニッケル電極と対極としてペースト式カドミウム[
mを組み合わせて、Ii −1,26KOHを注液し、
液ダブ式の電池を得た。この電池を24時間放置後、湿
度20uにおいて充電0.1OA115時間、放!0.
2OA(終止電圧1. OOV )を10サイクμ繰り
返し試験した。集電体表面のコバルトメッキの厚さと活
物質利用率の関係を調べた結果を第2図に示した。活物
質Aについて、集電体表面にほどこしたコバルトメッキ
単独の効果を検討すると、コバルトのメッキ厚さが4μ
mまではメッキ厚さの増加に伴い活物質利用率が向上し
ている。これは集電体表面にほどこしたコバルトメッキ
によって集電体と活物質との境界部分にオキシ水酸化コ
バルトの強力な導電性ネットワーク層が形成されたため
である。
This nickel electrode and the counter electrode are paste-type cadmium [
m, inject Ii-1,26KOH,
A liquid-dub type battery was obtained. After leaving this battery for 24 hours, it was charged at 0.1OA for 115 hours at a humidity of 20U, and then released! 0.
The test was repeated at 2OA (end voltage 1.0V) for 10 cycles μ. Figure 2 shows the results of investigating the relationship between the thickness of the cobalt plating on the surface of the current collector and the utilization rate of the active material. Regarding active material A, when examining the effect of cobalt plating alone on the surface of the current collector, it is found that the cobalt plating thickness is 4 μm.
Up to m, the active material utilization rate improves as the plating thickness increases. This is because a strong conductive network layer of cobalt oxyhydroxide was formed at the boundary between the current collector and the active material by the cobalt plating applied to the surface of the current collector.

しかし、メッキ厚さが5μmを越えると逆にメッキ厚さ
の増加と共に活物質層m率は低下している。これはメッ
キされたコバルトが全てオキシ水酸化コバルトに変化で
きず、非導電性の一酸化コバルトに起因する不WIJW
JA化した状態でニッケル表面に残存するためである。
However, when the plating thickness exceeds 5 μm, the m ratio of the active material layer decreases as the plating thickness increases. This is because all of the plated cobalt cannot be converted into cobalt oxyhydroxide, resulting in nonconductive cobalt monoxide.
This is because it remains on the nickel surface in a JA state.

活物質Bについては活物質Aと比較して更に活物質利用
率が向上していることがわかる。これは、集電体表面の
コバルトメッキによって集電体と活物質の境界部に形成
される強力な導電性ネットワーク層と活物質に添加した
一酸化コバ〃トによって活物質粒子間に一様1こ形成、
される導電性ネットワークの相乗効果によるものである
。しかし、活物質Bの場合にも活物質Aと同様に活物質
利用率の向上に有効なコバルトのメッキ厚みは4μmま
でであって、それ以上のメッキ厚みでは逆に活物質利用
率の低下を招く。活物質Aに比べ活物質Bの方が活物質
利用率の低下の度合いが大きい。これは活物質に添加さ
れている一酸化コバルトが24時間放置により溶解し集
電体表面に再析出したためにコバルトメッキの効果に付
加されることによるものと推定される。
It can be seen that the active material utilization rate of active material B is further improved compared to active material A. This is due to the strong conductive network layer formed at the boundary between the current collector and the active material by cobalt plating on the surface of the current collector, and the cobalt monoxide added to the active material to create a uniform layer between the active material particles. This formation,
This is due to the synergistic effect of the conductive network. However, in the case of active material B, as with active material A, the effective cobalt plating thickness for improving the active material utilization rate is up to 4 μm, and a plating thickness greater than that will conversely reduce the active material utilization rate. invite Compared to active material A, active material B has a greater degree of decrease in active material utilization. This is presumed to be because the cobalt monoxide added to the active material was dissolved by standing for 24 hours and redeposited on the surface of the current collector, which added to the effect of cobalt plating.

第1表にそれぞれのニッケル箔集電体の充放電後のニッ
ケルの(200)面と(100)面との強度比を示す。
Table 1 shows the strength ratio between the (200) plane and the (100) plane of nickel after charging and discharging each nickel foil current collector.

メッキ厚さの小さいものほど強度比の変化が大きくなっ
ており、ニッケル箔集電体の腐食が激しいことを示して
いる。この結果から集電体表面に形成されるオキシ水酸
化コバルト層が集電体の防食に効果的であることがわか
るO 第  1  表 以上の結果から添加剤との相乗効果を考慮して、集電体
表面のコバ/L’)メッキの厚みは2〜5μmの範囲に
あるものが最も適切である。
The smaller the plating thickness, the greater the change in the strength ratio, indicating that the nickel foil current collector is more severely corroded. This result shows that the cobalt oxyhydroxide layer formed on the surface of the current collector is effective in preventing corrosion of the current collector. The most appropriate thickness of the edge/L') plating on the surface of the electric body is in the range of 2 to 5 μm.

尚、上記実施例において、集電体とそれに接する活物質
層の第一層との境界部に導電性を有する電気化学的に不
可逆な層を形成する方法として、集電体表面にコバルト
メッキを行なったが、集電体表面にコバρト化合物を電
解析出させても同様の結果が得られた。また、活物質に
加える添加剤として一酸化コパA/)を用いた実施例を
示したが、a −00(OH)2 、β−00(OH)
2を用いても同様の結果を示した。
In the above example, cobalt plating was applied to the surface of the current collector as a method of forming an electrochemically irreversible layer having conductivity at the boundary between the current collector and the first layer of the active material layer in contact with the current collector. However, similar results were obtained when a cobalt compound was electrolytically deposited on the surface of the current collector. In addition, an example was shown in which copa monoxide A/) was used as an additive added to the active material, but a-00(OH)2, β-00(OH)
2 showed similar results.

上述した如く、集電体とそれに接する活物質層の第一層
との境界部に導電性を有する電気化学的に不可逆な層を
形成することにより集電体と活物質との直接接触を防止
することで、高利用率で各種特性の優れた安価な薄型ニ
ッケル電極を得ることができる。特に境界部に形成する
導電性を有する電気化学的に不可逆な層がオキシ水酸化
コバρトであり、その層形成が集電体表面にほどこされ
たコバルトメッキを出発物質とする場合、メッキ厚が2
〜5μmの範囲が効果の点で非常に大である。
As mentioned above, direct contact between the current collector and the active material is prevented by forming a conductive electrochemically irreversible layer at the boundary between the current collector and the first layer of the active material layer in contact with it. By doing so, it is possible to obtain an inexpensive thin nickel electrode with a high utilization rate and excellent various properties. In particular, when the conductive, electrochemically irreversible layer formed at the boundary is cobalt oxyhydroxide, and the layer is formed using cobalt plating applied to the surface of the current collector as a starting material, the plating thickness is 2
The range of ~5 μm is very effective.

発明の効果 本発明は、集電体と活物質との両液接触を防1n− 止した、高性能で高容量かつ生産性の高い安価な薄形ニ
ッケル電極を提供することができるので、その工業的価
値は極めて大である。
Effects of the Invention The present invention can provide a high-performance, high-capacity, highly productive, and inexpensive thin nickel electrode that prevents liquid contact between the current collector and the active material. The industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は充放電試験前のニッケμ箔のX線チャート図を
、第2図は集電体表面のコバルトのメッキ厚ざと活物質
利用率の関係を示した図である。
FIG. 1 is an X-ray chart of the nickel μ foil before the charge/discharge test, and FIG. 2 is a diagram showing the relationship between the cobalt plating thickness on the current collector surface and the active material utilization rate.

Claims (5)

【特許請求の範囲】[Claims] (1)集電体とそれに接する活物質層の第一層との境界
部に導電性を有する電気化学的に不可逆な層を形成した
ことを特徴とするアルカリ蓄電池用ニッケル電極。
(1) A nickel electrode for an alkaline storage battery, characterized in that a conductive, electrochemically irreversible layer is formed at the boundary between a current collector and a first active material layer in contact with the current collector.
(2)不可逆な層がオキシ水酸化コバルトを主体とする
層である請求項1記載のアルカリ蓄電池用ニッケル電極
(2) The nickel electrode for an alkaline storage battery according to claim 1, wherein the irreversible layer is a layer mainly composed of cobalt oxyhydroxide.
(3)オキシ水酸化コバルトを主体とする層が、集電体
表面にメッキされた金属コバルトあるいは電解析出され
たコバルト化合物より形成された請求項2記載のアルカ
リ蓄電池用ニッケル電極。
(3) The nickel electrode for an alkaline storage battery according to claim 2, wherein the layer mainly composed of cobalt oxyhydroxide is formed of metal cobalt plated on the surface of the current collector or a cobalt compound electrolytically deposited.
(4)コバルトのメッキ厚みが2〜5μmの範囲にある
請求項3記載のアルカリ蓄電池用ニッケル電極。
(4) The nickel electrode for an alkaline storage battery according to claim 3, wherein the cobalt plating thickness is in the range of 2 to 5 μm.
(5)集電体がニッケルメッシュ、ニッケル箔、金属繊
維焼結体、発泡メタルより選ばれたものである請求項1
記載のアルカリ蓄電池用ニッケル電極。
(5) Claim 1, wherein the current collector is selected from nickel mesh, nickel foil, metal fiber sintered body, and foam metal.
The described nickel electrode for alkaline storage batteries.
JP1086299A 1989-04-04 1989-04-04 Nickel electrode for alkaline storage battery Pending JPH02265165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1086299A JPH02265165A (en) 1989-04-04 1989-04-04 Nickel electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1086299A JPH02265165A (en) 1989-04-04 1989-04-04 Nickel electrode for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH02265165A true JPH02265165A (en) 1990-10-29

Family

ID=13882956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1086299A Pending JPH02265165A (en) 1989-04-04 1989-04-04 Nickel electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH02265165A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5984982A (en) * 1997-09-05 1999-11-16 Duracell Inc. Electrochemical synthesis of cobalt oxyhydroxide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263047A (en) * 1985-05-16 1986-11-21 Yuasa Battery Co Ltd Nickel electrode for alkaline battery
JPS6258566A (en) * 1985-09-06 1987-03-14 Sanyo Electric Co Ltd Manufacture of nickel hydroxide electrode for alkaline storage battery
JPS63114061A (en) * 1986-10-30 1988-05-18 Sanyo Electric Co Ltd Manufacture of sintered nickel electrode for alkaline storage battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263047A (en) * 1985-05-16 1986-11-21 Yuasa Battery Co Ltd Nickel electrode for alkaline battery
JPS6258566A (en) * 1985-09-06 1987-03-14 Sanyo Electric Co Ltd Manufacture of nickel hydroxide electrode for alkaline storage battery
JPS63114061A (en) * 1986-10-30 1988-05-18 Sanyo Electric Co Ltd Manufacture of sintered nickel electrode for alkaline storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5984982A (en) * 1997-09-05 1999-11-16 Duracell Inc. Electrochemical synthesis of cobalt oxyhydroxide

Similar Documents

Publication Publication Date Title
US5489314A (en) Manufacturing method of nickel plate and manufacturing method of alkaline battery
US4022953A (en) Zinc electrodes for secondary batteries
JP3387158B2 (en) Zinc plate
JP2889669B2 (en) Non-sintered nickel positive electrode plate for alkaline storage batteries
JPH02265165A (en) Nickel electrode for alkaline storage battery
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
EP0403052B1 (en) Nickel electrode and alkaline battery using the same
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP2646136B2 (en) Nickel electrode for alkaline storage battery
JP2663644B2 (en) Nickel electrode for alkaline storage battery
JP3003218B2 (en) Method for producing nickel electrode plate and method for producing alkaline storage battery
JP2942637B2 (en) Method for producing paste-type nickel electrode
JPH0377271A (en) Nickel electrode for alkaline storage battery
JPH044560A (en) Alkaline storage battery ni electrode and its manufacture
JP3191830B2 (en) Method for producing nickel electrode for alkaline storage battery
JP2734149B2 (en) Manufacturing method of paste-type cadmium negative electrode
JPH02253559A (en) Nickel electrode and alkaline storage battery using it
JP3555473B2 (en) Method for producing positive electrode for alkaline secondary battery
JPH06283166A (en) Secondary battery
JPH04344B2 (en)
JPH044558A (en) Manufacture of positive electrode plate for alkaline storage battery
JPS62229763A (en) Nonsintered nickel positive electrode
JPH0680586B2 (en) Alkaline secondary battery
JPH0513075A (en) Hydrogen storage alloy electrode and manufacture thereof
JPS601759A (en) Alkaline storage battery