JPS61263047A - Nickel electrode for alkaline battery - Google Patents

Nickel electrode for alkaline battery

Info

Publication number
JPS61263047A
JPS61263047A JP60104394A JP10439485A JPS61263047A JP S61263047 A JPS61263047 A JP S61263047A JP 60104394 A JP60104394 A JP 60104394A JP 10439485 A JP10439485 A JP 10439485A JP S61263047 A JPS61263047 A JP S61263047A
Authority
JP
Japan
Prior art keywords
nickel
active material
cobalt
plated
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60104394A
Other languages
Japanese (ja)
Other versions
JPH0582027B2 (en
Inventor
Masahiko Oshitani
政彦 押谷
Kenji Takeshima
竹島 健次
Hiroshi Uramoto
浦本 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP60104394A priority Critical patent/JPS61263047A/en
Publication of JPS61263047A publication Critical patent/JPS61263047A/en
Publication of JPH0582027B2 publication Critical patent/JPH0582027B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase utilization of active material by forming a nickel electrode for a alkaline battery by bonding active material layers mainly comprising nickel hydroxide and cobalt oxide on both sides of a cobalt plated nickel foil. CONSTITUTION:A nickel electrode for alkaline battery is formed in such a way that a nickel foil is plated with cobalt in a cobalt plating bath comprising ammonium cobalt sulfate, and a sheet-like active material 2 obtained by kneading nickel hydroxide and cobalt oxide with a solution containing Teflon is pressed on both sides of the cobalt plated sheet 1. Nickel hydroxide particles having poor conductivity is coated with CoOOH produced from cobalt oxide to improve conductivity and bonding with the nickel foil. Thereby, utilization of the active material is increased and the thin nickel electrode having high performance and good productivity can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はアルカリ電池用ニッケル極に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to nickel electrodes for alkaline batteries.

従来技術とその間願意 従来、小形アルカリ電池に用いられるニッケル極は、2
つのタイプに分類される。
Conventional technology and wishes Conventionally, the nickel electrodes used in small alkaline batteries are
classified into two types.

その1つはシンタ一式と呼ばれているものであり、2〜
3μの微細なニッケル粉末を穿孔鋼板に焼結させた十数
ミク四ンの微孔性焼結基板に硝酸ニッケル溶液を含浸さ
せる。その後アルカリ溶液中で水酸化ニッケルに変化さ
せることによって、活物質を充填させる所謂、溶液含浸
法を用いるものである。このものは、微孔性焼結基板細
孔に活物質が保持されるため、活物質と集電体の接触が
良好である。しかしながら、公知の如く活物質を充填す
るには、煩雑な工程を必要とするために、非常に高価な
極板となる。
One of them is what is called a sinter set, and there are 2~
A nickel nitrate solution is impregnated into a microporous sintered substrate, which is made by sintering fine 3μ nickel powder onto a perforated steel plate. The so-called solution impregnation method is then used to fill the active material by changing it into nickel hydroxide in an alkaline solution. In this case, since the active material is held in the pores of the microporous sintered substrate, there is good contact between the active material and the current collector. However, as is known, filling the active material requires a complicated process, resulting in a very expensive electrode plate.

他の1つは〜水酸化ニッケル活物質に水、及び増粘剤を
加えることによってペースト状となし、数十〜数百ミク
ロンの細孔からなるニッケル繊維焼結体に、直接充填す
る所謂、ペースト式と称されるものである。
The other method is to make a paste by adding water and a thickener to a nickel hydroxide active material, and directly fill it into a nickel fiber sintered body consisting of pores of several tens to hundreds of microns. This is called a paste type.

シンタ一式に比べて1水酸化ニッケル活物質そのものか
ら出発するために製造工程が大巾に簡略化される。しか
しシンター基板に比べてより大きな細孔から成り立って
いるので、集電性が非常に悪い。しかし近年、水酸化ニ
ッケルに酸化コバルトを添加することによってシンタ一
式に近似した性能が得られるようになってきた。
Compared to a sinter set, the manufacturing process is greatly simplified since it starts from the nickel monohydroxide active material itself. However, since it consists of larger pores than a sintered substrate, its current collecting properties are very poor. However, in recent years, it has become possible to obtain performance similar to that of a complete sinter set by adding cobalt oxide to nickel hydroxide.

これよりもさらに簡略化された製法は、二ッケルメッキ
穿孔鋼板やニアケル箔等に直接水酸化ニッケル活物質を
コーティングする方法である。しかしながらこの製法に
より作成された極板は、上記のものよりもさらに活物質
と集電体との接触が悪いために、充分な性能が得られず
実用化出来なかった。
A manufacturing method that is even simpler than this is to directly coat a Nickel-plated perforated steel plate, Nickel foil, or the like with a nickel hydroxide active material. However, since the contact between the active material and the current collector was even worse than that of the above-mentioned electrode plate produced by this manufacturing method, sufficient performance could not be obtained and it could not be put to practical use.

発明の目的 本発明は、活物質利用率を向上した、高性能で且つ生産
性の優れた超薄形のアルカリ電池用ニッケル極を提供す
ることを目的とする。
OBJECTS OF THE INVENTION An object of the present invention is to provide an ultra-thin nickel electrode for alkaline batteries with improved active material utilization, high performance, and excellent productivity.

発明の構成 即ち、本発明は上記の目的を達成するためにコバルトメ
ッキしたニッケル箔に水酸化ニッケル及び酸化コバルト
を主体とする活物質層を該箔の両面に付着したものであ
る。
DESCRIPTION OF THE INVENTION In order to achieve the above-mentioned object, the present invention comprises a cobalt-plated nickel foil, and active material layers mainly composed of nickel hydroxide and cobalt oxide are attached to both sides of the foil.

実施例 以下本発明の一実施例について詳述する。Example An embodiment of the present invention will be described in detail below.

厚さが20〜50μのニッケル箔に硫酸コバルトアンモ
ニウム、酢酸アンモニウム、酢酸、ホルマリン、硫酸カ
ドミウム等からなるコバルトメッキ浴を用いて、厚み1
〜3μのコバルトメッキをした。
Using a cobalt plating bath consisting of cobalt ammonium sulfate, ammonium acetate, acetic acid, formalin, cadmium sulfate, etc., a nickel foil with a thickness of 20 to 50 μm was coated to a thickness of 1 μm.
~3μ cobalt plating was applied.

活物質は、水酸化ニッケル90%に酸化コバルト10%
を加えてよく混合した後、2%のテフロンを含有する水
溶液を少量加えてよく練合させ、ローラープレスによっ
て約40μのシート状とした。
The active material is 90% nickel hydroxide and 10% cobalt oxide.
After adding and mixing well, a small amount of an aqueous solution containing 2% Teflon was added and kneaded well, and a sheet of about 40 μm was formed using a roller press.

第1図はコバルトメッキしたニッケル箔シート1の両面
にローラーにより活物質層2を圧着している状態を示し
たものである。得られたニッケル正極板4はコバルトメ
ッキニッケル箔シートを芯金として両側に活物質層をも
つ厚味が0.08〜0.11 IIgのものである。こ
のニッケル正極板を2 eta X 4 cm+に切断
し、この正極板と正極よりも容量が大きい2枚のカドミ
ウム負極板を七パレータを介してサンドインチ構造とし
た。これを比重1.26の苛性カリウム水溶液中で充放
電させ正極板の活物質利用率を測定した。
FIG. 1 shows a state in which an active material layer 2 is pressed onto both sides of a cobalt-plated nickel foil sheet 1 by a roller. The obtained nickel positive electrode plate 4 has a cobalt-plated nickel foil sheet as a core metal, has active material layers on both sides, and has a thickness of 0.08 to 0.11 IIg. This nickel positive electrode plate was cut into pieces of 2 eta x 4 cm+, and a sandwich structure was formed between this positive electrode plate and two cadmium negative electrode plates having a larger capacity than the positive electrode via seven pallets. This was charged and discharged in a caustic potassium aqueous solution with a specific gravity of 1.26, and the active material utilization rate of the positive electrode plate was measured.

尚比較のために、同一寸法の同一組成で同一活物質量で
ニッケル箔にコバルトメッキ処理を施していない正極板
、水酸化ニッケルのみで酸化コバルトを含まない活物質
組成であり、コバルトメッキ処理を施していないニッケ
ル箔を用いた正極板1さらに;パルトメツキ処理したニ
ッケル箔に、水酸化ニッケルのみで酸化コバルトを含ま
ない正極板も併せて試験した。第2図はこれらの試験結
果を示したものである。0.10電流で15時間充電し
た後、0.20電流テ0vvs、H9/H90マチ放電
した時の正極板の活物質利用率を比較した。
For comparison, a positive electrode plate with the same dimensions and composition and the same amount of active material without cobalt plating on nickel foil, and a positive electrode plate with active material composition of only nickel hydroxide and no cobalt oxide, but with cobalt plating treatment. Positive electrode plate 1 using unplated nickel foil: In addition, a positive electrode plate containing only nickel hydroxide and no cobalt oxide was also tested using nickel foil that had been subjected to part plating treatment. Figure 2 shows the results of these tests. After charging at 0.10 current for 15 hours, the active material utilization rate of the positive electrode plate was compared when discharging at 0.20 current, 0vvs, H9/H90.

第2図のlは本発明品であり、Iは水酸化ニッケルに酸
化コバルトを含む活物質をニッケル箔に圧着したもの、
■は水酸化ニッケル活物質をニッケル箔に圧着したもの
、■は水酸化ニッケル活物質をコバルトメッキしたニッ
ケル箔に圧着したものである。第2図より明らかな如く
、活物質に酸化コバルトを含有すると水酸化ニッケルの
みよりも利用率は向上するが、ニッケル箔にコバルトメ
ッキを施すとさらに向上する。ニッケル箔にコバルトメ
ッキを施していないと、活物質中に酸化コバルトを含有
していても活物質利用率は劣り、且つサイクルの進行に
伴なって容量の低下が著しい0尚、この理由は以下に示
した如く解析される。
In Fig. 2, l is a product of the present invention, I is a product in which an active material containing nickel hydroxide and cobalt oxide is bonded to a nickel foil;
(2) is a nickel hydroxide active material crimped onto a nickel foil, and (2) is a nickel hydroxide active material crimped onto a cobalt-plated nickel foil. As is clear from FIG. 2, when the active material contains cobalt oxide, the utilization rate is improved more than when using only nickel hydroxide, but it is further improved when the nickel foil is plated with cobalt. If the nickel foil is not plated with cobalt, the active material utilization rate will be poor even if the active material contains cobalt oxide, and the capacity will decrease significantly as the cycle progresses.The reason for this is as follows. It is analyzed as shown in .

水に溶解しないが、アルカリ電解液には可溶な酸化フバ
ル) (OoO)はアルカリ液中でブルー色のHOOO
2−イオンを生成する。このイオンは正極充放電前位で
Co0OHとなり、格子欠陥を持つ良電導性物質に変化
し、電導性の乏しい水酸化ニッケル粒子をコーティング
する形で沈澱している。この0oOOHのフーティング
により、水酸化ニッケル粒子間は、電導性が改良され、
活物質の隅汝まで電子が行き渡る。この0oOOHのコ
ーティングされた水酸化ニッケルは、それらよりもはる
かに表面積の少ないニッケル箔集電体と接触する。
(OoO), which is insoluble in water but soluble in alkaline electrolyte, is a blue HOOO in alkaline solution.
2- produce ions. These ions turn into Co0OH before charging and discharging the positive electrode, change into a highly conductive substance with lattice defects, and precipitate in a form that coats the nickel hydroxide particles, which have poor conductivity. This 0oOOH footing improves the conductivity between the nickel hydroxide particles,
Electrons reach every corner of the active material. This 0oOOH coated nickel hydroxide contacts the nickel foil current collectors, which have much less surface area than they do.

一方、ニッケル箔表面も活物質中に添加された酸化コバ
ルトから生成するHOOO2−によ・マて0o00H層
が形成されるが、それは不均一なものであり、多少ニッ
ケル箔と活物質粒子の接触を良好にしているが、これは
不充分な状態である。ニッケル箔にコバルトメッキを施
したものは、コバルトの溶解によるHOOO2−イオン
がニアケル箔と活物質粒子の接触界面に有効に供給され
る。このため電導性の良好な(3o00Hによる完全な
結合状態が形成される。ただしメッキされたコバルトは
金属であるために、酸化コバルトよりもアルカリ電解液
に溶解する速度が運く、電解液に浸漬後約15〜20時
間放置する必要があった。又、lの電極のサイクルの進
行に伴なう容量低下は、Co0OHによる活物質粒子と
集電体との接触が不充分なために、充放電による活物質
の膨張、収縮によって切断されていくためと考えられる
On the other hand, a 0o00H layer is formed on the surface of the nickel foil due to HOOO2- generated from the cobalt oxide added to the active material, but it is uneven and there is some contact between the nickel foil and the active material particles. However, this is still insufficient. When the nickel foil is plated with cobalt, HOOO2- ions due to dissolution of cobalt are effectively supplied to the contact interface between the Niacel foil and the active material particles. Therefore, a perfect bonding state with good conductivity (3o00H) is formed. However, since plated cobalt is a metal, it dissolves faster in an alkaline electrolyte than cobalt oxide, and when immersed in an electrolyte, it dissolves faster than cobalt oxide. It was necessary to leave the electrode for about 15 to 20 hours.Also, the capacity decrease with the progress of the cycle of electrode 1 was due to insufficient contact between the active material particles and the current collector due to Co0OH. This is thought to be due to the fact that the active material is cut due to expansion and contraction due to discharge.

上記実施例において用いたニッケル箔に、微細孔を設け
たものは、活物質層の付着が容易であり生産効率が高く
、集電体としてもより優れている。
The nickel foil used in the above examples provided with micropores allows easy attachment of the active material layer, has high production efficiency, and is also better as a current collector.

発明の効果 上記の如く、本発明は活物質の利用率を向上した、高性
能で且つ生産性の優れた超薄形のアルカリ電池用ニッケ
ル極を提供することが出来るので、その工業的価値は極
めて大である。
Effects of the Invention As described above, the present invention can provide an ultra-thin nickel electrode for alkaline batteries with improved active material utilization, high performance, and excellent productivity, so its industrial value is It is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は活物質の集電体への付着工程を示した図・第2
図は各種正極板の特性比較した図である。
Figure 1 shows the process of attaching the active material to the current collector. Figure 2
The figure is a diagram comparing the characteristics of various positive electrode plates.

Claims (1)

【特許請求の範囲】[Claims] コバルトメッキしたニッケル箔に水酸化ニッケル及び酸
化コバルトを主体とする活物質層を該箔の両面に付着す
ることを特徴とするアルカリ電池用ニッケル極。
A nickel electrode for an alkaline battery, comprising a cobalt-plated nickel foil and an active material layer mainly composed of nickel hydroxide and cobalt oxide attached to both sides of the foil.
JP60104394A 1985-05-16 1985-05-16 Nickel electrode for alkaline battery Granted JPS61263047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60104394A JPS61263047A (en) 1985-05-16 1985-05-16 Nickel electrode for alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60104394A JPS61263047A (en) 1985-05-16 1985-05-16 Nickel electrode for alkaline battery

Publications (2)

Publication Number Publication Date
JPS61263047A true JPS61263047A (en) 1986-11-21
JPH0582027B2 JPH0582027B2 (en) 1993-11-17

Family

ID=14379517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60104394A Granted JPS61263047A (en) 1985-05-16 1985-05-16 Nickel electrode for alkaline battery

Country Status (1)

Country Link
JP (1) JPS61263047A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02265165A (en) * 1989-04-04 1990-10-29 Yuasa Battery Co Ltd Nickel electrode for alkaline storage battery
JPH0378966A (en) * 1989-08-22 1991-04-04 Yuasa Battery Co Ltd Nickel electrode for alkaline storage battery
JPH0613076A (en) * 1992-06-25 1994-01-21 Japan Storage Battery Co Ltd Nickel hydroxyde positive electrode plate for alkaline battery and its manufacture

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211770A (en) * 1984-04-03 1985-10-24 Japan Storage Battery Co Ltd Positive electrode plate for alkaline battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211770A (en) * 1984-04-03 1985-10-24 Japan Storage Battery Co Ltd Positive electrode plate for alkaline battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02265165A (en) * 1989-04-04 1990-10-29 Yuasa Battery Co Ltd Nickel electrode for alkaline storage battery
JPH0378966A (en) * 1989-08-22 1991-04-04 Yuasa Battery Co Ltd Nickel electrode for alkaline storage battery
JPH0613076A (en) * 1992-06-25 1994-01-21 Japan Storage Battery Co Ltd Nickel hydroxyde positive electrode plate for alkaline battery and its manufacture

Also Published As

Publication number Publication date
JPH0582027B2 (en) 1993-11-17

Similar Documents

Publication Publication Date Title
JPS61263047A (en) Nickel electrode for alkaline battery
JPH0526304B2 (en)
JPH0429189B2 (en)
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPH04359864A (en) Non-sintering nickel positive electrode and its manufacture
JP3191830B2 (en) Method for producing nickel electrode for alkaline storage battery
EP0331599B1 (en) Process for obtaining electrodes with a non-woven support of nickel or nickel alloy fibres
JP2529308B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JPH01302668A (en) Electrode for alkaline storage battery
JPS61110962A (en) Manufacture of positive nickel plate for alkaline storage battery
JPS61259456A (en) Manufacture of negative cadmium electrode
JPH06101350B2 (en) Nickel cadmium alkaline storage battery
JPS60258854A (en) Method of manufacturing paste type cadmium negative pole
JPS63310565A (en) Manufacture of paste type cadmium negative electrode
JPS60211770A (en) Positive electrode plate for alkaline battery
JP2003092111A (en) Method of manufacturing substrate material for electrode plate, method of manufacturing positive plate, and alkaline storage battery
JPH0722026A (en) Manufacture of nickel electrode plate
JPS58158867A (en) Zinc pole
JPS5832363A (en) Manufacture of negative cadmium electrode for alkaline storage battery
JPH02244555A (en) Zinc electrode for alkaline storage battery
JPH04344B2 (en)
JPH0654662B2 (en) Cadmium negative electrode manufacturing method
JPH03210769A (en) Manufacture of negative electrode plate for alkali storage battery
JPS6211455B2 (en)
JPH07282838A (en) Sealed lead-acid battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term