JPH0613076A - Nickel hydroxyde positive electrode plate for alkaline battery and its manufacture - Google Patents

Nickel hydroxyde positive electrode plate for alkaline battery and its manufacture

Info

Publication number
JPH0613076A
JPH0613076A JP4193158A JP19315892A JPH0613076A JP H0613076 A JPH0613076 A JP H0613076A JP 4193158 A JP4193158 A JP 4193158A JP 19315892 A JP19315892 A JP 19315892A JP H0613076 A JPH0613076 A JP H0613076A
Authority
JP
Japan
Prior art keywords
nickel
cobalt
electrode plate
positive electrode
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4193158A
Other languages
Japanese (ja)
Other versions
JP3225608B2 (en
Inventor
Akihiro Kawakami
明弘 川上
Yasuaki Ito
泰章 伊藤
Hideo Yasuda
安田  秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP19315892A priority Critical patent/JP3225608B2/en
Publication of JPH0613076A publication Critical patent/JPH0613076A/en
Application granted granted Critical
Publication of JP3225608B2 publication Critical patent/JP3225608B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To suppress electrode plate swelling in a nickel hydroxide positive electrode plate for alkaline battery by providing cobalt-contained nickel base, nickel hydroxide having cobalt solid solution formed thereon, and cadmium hydroxide never forming a solid solution with them. CONSTITUTION:Carbonyl nickel powder, metal cobalt powder and methyl cellulose aqueous solution are kneaded together to form a slurry. This is applied to a nickel-plated punched plate, dried, and sintered in hydrogen atmosphere to form a nickel base having a porosity of about 85%. The base is dipped in sodium hydroxide aqueous solution. The resulting base is dipped in sodium hydroxide aqueous solution after sufficient washing with water and drying. Thereafter, washing with hot water and drying are conducted to complete a positive electrode plate. According to this constitution, the swelling of the positive electrode plate by charge and discharge is suppressed, and a long-lived and high energy density battery or quick charging battery can be provided. It is effective that the cobalt content to be solid-dissolved in nickel hydroxide is set larger than the cobalt content of the nickel base.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はコバルトを含有するニッ
ケル基板,コバルトと固溶体を形成した水酸化ニッケル
さらにニッケルあるいはコバルトと固溶体を形成しない
水酸化カドミウムとを備えた正極板とその製造法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode plate comprising a nickel substrate containing cobalt, nickel hydroxide forming a solid solution with cobalt, and nickel or cadmium hydroxide not forming a solid solution with cobalt, and a method for producing the same. Is.

【0002】[0002]

【従来の技術】近年、電子機器の発展によって新しい高
性能の二次電池の出現が期待されている。現在、電子機
器の電源としては、ニッケル・カドミウム電池、ニッケ
ル・亜鉛電池、ニッケル・水素化物電池のニッケル系電
池および鉛電池が使用されている。これらの二次電池
は、高容量化とならんで急速充電性能の向上が求められ
ている。そのうち、ニッケル系二次電池は、正極板とし
て水酸化ニッケル電極が使用されている。この正極板の
電極反応は H+ イオンの拡散であり、鉛電池の正極の電
極反応のように溶解・析出機構でないことから、高価格
であるが、長寿命で高性能の電極として使用されてい
る。この電極を充電すると水酸化ニッケルはオキシ水酸
化ニッケル(NiOOH) となる。このオキシ水酸化ニッケル
はβ形とγ形があるが、充電時にγ-NiOOHが生成すると
31% の体積膨張がおこり、さらにγ-NiOOHの放電生成物
であるα-NiOOHになると59% の膨張となる。近年、電池
の高エネルギ−密度化をはかるために、活物質を多く充
填すると、電極の残留多孔度が小さくなり、活物質が膨
張すると電極が厚くなり、セパレ−タの電解液が電極に
移動して内部抵抗が増大するいわゆる「ドライアップ」
現象が生じたり、電極が崩壊して短絡が発生することも
ある。さらに、充電時間の短縮が要求される用途、すな
わち、急速充電をおこなう場合には、γ-NiOOHの生成が
とくにおこりやすくなるために、その対策が必要になっ
てきた。
2. Description of the Related Art In recent years, with the development of electronic equipment, the emergence of new high-performance secondary batteries is expected. Currently, nickel-cadmium batteries, nickel-zinc batteries, nickel-based batteries such as nickel-hydride batteries, and lead batteries are used as power sources for electronic devices. These secondary batteries are required to have high capacity as well as rapid charging performance. Among them, nickel-based secondary batteries use a nickel hydroxide electrode as a positive electrode plate. The electrode reaction of this positive electrode plate is diffusion of H + ions, and because it does not have a dissolution / precipitation mechanism unlike the electrode reaction of the positive electrode of lead batteries, it is expensive, but it is used as a long-life and high-performance electrode. There is. When this electrode is charged, nickel hydroxide becomes nickel oxyhydroxide (NiOOH). This nickel oxyhydroxide has β type and γ type, but if γ-NiOOH is generated during charging
Volume expansion of 31% occurs, and when it becomes α-NiOOH which is a discharge product of γ-NiOOH, it expands by 59%. In recent years, in order to increase the energy density of a battery, when the active material is filled in a large amount, the residual porosity of the electrode becomes small, and when the active material expands, the electrode becomes thick, and the electrolytic solution of the separator moves to the electrode. So-called "dry-up" in which internal resistance increases
A phenomenon may occur or the electrode may collapse to cause a short circuit. Furthermore, in applications requiring a shortened charging time, that is, in the case of performing rapid charging, the production of γ-NiOOH is particularly likely to occur, and a countermeasure for it has become necessary.

【0003】従来より、水酸化ニッケル活物質の利用率
を向上させる目的で、活物質に水酸化コバルトを添加す
る方法(例えば電気化学31,47(1936),特許公開公報50-1
32441)、また活物質をニッケル基板に充填したのちCo(O
H)2 を形成させる方法(例えば特許公報昭和57-005018)
・Cd(OH)2 −Ni(OH)2 の二元系を形成させる方法(例え
ば特許公報平2-39063,USP4603094(1984), 特許公報昭56
-36796) ・Ni(OH)2 −Co(OH)2 - Cd(OH)2 の三元系を形
成させる方法(例えば特許公報平3-20860,USP395686(19
76))等が提案されている。さらに、活物質の保持体であ
る焼結ニッケル基板に金属コバルトを含有させる方法も
提案されている(例えば特許公報昭54-1010)。しかしな
がらγ-NiOOHの生成の抑制の観点からは不充分であっ
た。
Conventionally, a method of adding cobalt hydroxide to an active material for the purpose of improving the utilization rate of the nickel hydroxide active material (for example, Electrochemistry 31,47 (1936), Patent Publication 50-1).
32441), and after filling the nickel substrate with the active material, Co (O
H) 2 forming method (for example, Japanese Patent Publication No. 57-005018)
A method of forming a binary system of Cd (OH) 2 -Ni (OH) 2 (for example, Japanese Patent Publication No. 2-39063, USP4603094 (1984), Japanese Patent Publication No. Sho 56)
-36796) · Ni (OH) 2 -Co (OH) 2 - Cd (OH) method of forming a 2 ternary (e.g. Patent Publication Rights 3-20860, USP395686 (19
76)) etc. have been proposed. Further, a method of incorporating metallic cobalt into a sintered nickel substrate which is a holder of an active material has also been proposed (for example, Japanese Patent Publication No. 54-1010). However, it was insufficient from the viewpoint of suppressing the production of γ-NiOOH.

【0004】[0004]

【発明が解決しようとする課題】ニッケル・カドミウム
電池、ニッケル・亜鉛電池、ニッケル・水素化物電池の
ニッケル系電池は、高エネルギー密度化と急速充電化が
求められている。しかしながら、高エネルギー密度電池
や急速充電用電池に使用される水酸化ニッケル正極板は
充放電サイクルが進むと膨潤して厚くなりセパレ−タの
電解液が電極に移動して内部抵抗が増大するドライアッ
プ現象が生じて、電池寿命が短くなるという欠点があっ
た。とくに、活物質保持体であるニッケル基板が85% 以
上のものを使用すると、基板の強度が弱いために、正極
板の膨潤が大きくなるという課題がある。
SUMMARY OF THE INVENTION Nickel-based batteries such as nickel-cadmium batteries, nickel-zinc batteries, and nickel-hydride batteries are required to have high energy density and rapid charging. However, the nickel hydroxide positive electrode plate used in high energy density batteries and batteries for rapid charging swells and becomes thicker as the charge and discharge cycle progresses, and the electrolyte solution of the separator moves to the electrodes and increases the internal resistance. There is a drawback that the battery life is shortened due to an up phenomenon. In particular, when a nickel substrate that is an active material holder having a nickel substrate of 85% or more is used, there is a problem that the swelling of the positive electrode plate becomes large because the strength of the substrate is weak.

【0005】[0005]

【課題を解決するための手段】本発明はアルカリ電池用
水酸化ニッケル正極板においてコバルトを含有するニッ
ケル基板,コバルトと固溶体を形成した水酸化ニッケル
さらにニッケルあるいはコバルトと固溶体を形成しない
水酸化カドミウムとを備えることにより、充放電による
正極板の膨潤を抑制し、長寿命の高エネルギー密度電池
や急速充電用電池を提供するものである。とくに、水酸
化ニッケルに固溶するコバルトの含有率がニッケル基板
のコバルトの含有率よりも多いと、より効果的である。
また、本発明は、ニッケル基板の多孔度が85〜98%
のものを使用した高エネルギー密度の正極板の長寿命化
がはかれる。その製造方法としては、コバルトを含有す
るニッケル基板にコバルトと固溶体を形成した水酸化ニ
ッケルを保持させたのち、カドミウムの含有率が10〜80
mol%のコバルトとカドミウムとの混合溶液を浸漬したの
ちアルカリ水溶液で処理し乾燥することが簡易的であ
る。
The present invention provides a nickel substrate containing cobalt in a nickel hydroxide positive electrode plate for an alkaline battery, nickel hydroxide which forms a solid solution with cobalt, and nickel or cadmium hydroxide which does not form a solid solution with cobalt. By including the above, the swelling of the positive electrode plate due to charging and discharging is suppressed, and a long-life high energy density battery and a battery for rapid charging are provided. Particularly, it is more effective if the content rate of cobalt which is solid-dissolved in nickel hydroxide is higher than the content rate of cobalt of the nickel substrate.
The present invention also provides that the nickel substrate has a porosity of 85 to 98%.
It is possible to extend the life of the high energy density positive electrode plate using the above. The manufacturing method is as follows.After holding nickel hydroxide forming a solid solution with cobalt on a nickel substrate containing cobalt, the content of cadmium is 10 to 80.
It is simple to immerse a mixed solution of mol% of cobalt and cadmium, then treat with an alkaline aqueous solution and dry.

【0006】[0006]

【作用】水酸化ニッケル正極板の活物質利用率を向上さ
せる手段としてニッケル多孔体等の活物質保持体に活物
質を充填したのち、硝酸コバルトや硫酸コバルト等のコ
バルト水溶液を含浸したのち、水酸化ナトリウム等のア
ルカリ水溶液で中和して活物質の表面に水酸化コバルト
の層を形成させたのち充電して、導電性のオキシ水酸化
コバルトの層に変化させる方法が一般的に使用されてい
る。また、活物質として、水酸化コバルトを活物質に添
加して水酸化ニッケルと固溶体を形成させたり、あるい
は水酸化カドミウムを添加して、やはり固溶体を形成さ
せることによりγ-NiOOHの生成を抑制して、利用率を向
上させる手段も普遍的な技術として知られている。さら
に、正極活物質である水酸化ニッケルのほかに固溶体を
形成させない水酸化カドミウムを形成させる手段は、過
放電対策として公知の手段である。
[Function] As a means for improving the utilization rate of the active material of the nickel hydroxide positive electrode plate, the active material holder such as a nickel porous body is filled with the active material, and then an aqueous cobalt solution such as cobalt nitrate or cobalt sulfate is impregnated with water. A method is generally used in which a layer of cobalt hydroxide is formed on the surface of the active material by neutralizing with an alkaline aqueous solution such as sodium oxide, and then charged to change to a layer of conductive cobalt oxyhydroxide. There is. Further, as an active material, cobalt hydroxide is added to the active material to form a solid solution with nickel hydroxide, or cadmium hydroxide is added to form a solid solution, thereby suppressing the production of γ-NiOOH. Therefore, a means for improving the utilization rate is also known as a universal technology. Further, a means for forming cadmium hydroxide that does not form a solid solution in addition to nickel hydroxide which is a positive electrode active material is a means known as a measure against over-discharge.

【0007】本発明は、高エネルギー密度電池や急速充
電用電池に使用される水酸化ニッケル正極板は充放電サ
イクルが進むと膨潤して厚くなり、セパレ−タの電解液
が電極に移動して内部抵抗が増大してドライアップ現象
が生じ、電池寿命が短くなるという欠点の原因が、水酸
化ニッケル活物質の充電生成物としてγ-NiOOHが生成す
ることにあるという従来から知られているもののほか
に、活物質保持体として使用するニッケル多孔体が充放
電によって酸化をうけて、水酸化ニッケルとなり、それ
がγ-NiOOHになるために、正極板が膨潤して厚くなり、
セパレ−タの電解液が極板に移動することが大きな原因
であることを見いだしたことに基づくものである。そし
て、その対策として活物質保持体のニッケルにコバルト
を含有させ、さらに活物質の最適化と水酸化ニッケルや
水酸化コバルトと固溶体を形成しないこ水酸化カドミウ
ムを含有させることによって、基板の酸化で生成する水
酸化ニッケルがさらに酸化されてγ-NiOOHになることを
抑制する手段を提供するものである。
According to the present invention, the nickel hydroxide positive electrode plate used in a high energy density battery or a battery for rapid charging swells and becomes thicker as the charging / discharging cycle progresses, and the electrolytic solution of the separator moves to the electrode. Although it has been known that the cause of the increase in internal resistance, the dry-up phenomenon, and the shortening of battery life is that γ-NiOOH is produced as a charge product of the nickel hydroxide active material. In addition, the nickel porous body used as the active material holder is oxidized by charge and discharge to become nickel hydroxide, which becomes γ-NiOOH, so that the positive electrode plate swells and becomes thicker,
It is based on the finding that a major cause is that the electrolytic solution of the separator moves to the electrode plate. As a countermeasure, nickel is added to the active material holder, and cobalt is added to the active material. Further, by optimizing the active material and adding nickel hydroxide or cadmium hydroxide that does not form a solid solution with cobalt hydroxide, oxidation of the substrate can be prevented. It provides a means for suppressing the further oxidation of the nickel hydroxide produced to γ-NiOOH.

【0008】[0008]

【実施例】以下、本発明の好適な実施例を用いて説明す
る。 [実施例1]カ−ボニルニッケル粉末と2wt%の金属コバ
ルト粉末とを混合したのち、0.1wt%のメチルセルロ−ズ
水溶液と混練してスラリ−にする。このスラリ−をニッ
ケルメツキした0.1mm の穿孔板に塗布したのち、ヒ−タ
−で乾燥してから水素の還元雰囲気中950 ℃で焼結して
多孔度が85% の焼結ニッケル基板を製作した。つぎに、
この焼結式ニッケル基板に硝酸コバルト2mol% を含む5M
の硝酸ニッケル水溶液を80℃で含浸したのち、80 ℃の5M
の水酸化ナトリウム水溶液に浸漬する。その後、湯洗・
乾燥するという操作を8 回おこなつたのち、最後に10mo
l%のカドミウムを含む1.5Mの硝酸コバルト水溶液を含浸
したのち、80℃の5Mの水酸化ナトリウム水溶液に浸漬す
る(以下この操作を「ポストコ−ト」とよぶ)。その
後、湯洗・乾燥して、理論容量が300 mAh、寸法が0.
8 ×14×52(mm)の本発明の正極板を製作した。
The preferred embodiments of the present invention will be described below. [Example 1] Carbonyl nickel powder and 2 wt% metallic cobalt powder were mixed and then kneaded with a 0.1 wt% methylcellulose aqueous solution to form a slurry. This slurry was applied to a nickel plated 0.1 mm perforated plate, dried with a heater and then sintered at 950 ° C in a hydrogen reducing atmosphere to produce a sintered nickel substrate with a porosity of 85%. did. Next,
This sintered nickel substrate contains 2 mol% cobalt nitrate and 5M
Impregnated with nickel nitrate aqueous solution at 80 ℃,
Immerse in an aqueous solution of sodium hydroxide. After that,
After performing the operation of drying 8 times, at the end 10mo
After impregnating with a 1.5 M aqueous solution of cobalt nitrate containing 1% of cadmium, it is immersed in a 5 M aqueous solution of sodium hydroxide at 80 ° C. (hereinafter, this operation is referred to as “postcoat”). After that, it is washed with hot water and dried to have a theoretical capacity of 300 mAh and dimensions of 0.
A positive electrode plate of the present invention having a size of 8 × 14 × 52 (mm) was manufactured.

【0009】実施例1で金属コバルト粉末の含有率を0,
1,2,3,5,10wt% と変えた正極板2 枚と従来から公知の理
論容量500 mAh、寸法が0.7 ×15×52(mm)のカドミウム
負極板3 枚を製作した。
In Example 1, the content of metallic cobalt powder was set to 0,
Two positive electrode plates with 1,2,3,5,10 wt% were changed, and three conventionally known cadmium negative electrode plates with theoretical capacity of 500 mAh and dimensions of 0.7 x 15 x 52 (mm) were manufactured.

【0010】つぎに、この正極板を0.12mmのポリアミ
ド不織布セパレ−タで包んだのち、ヒ−トシ−ルした。
つづいて、正極板と負極板とを交互に積み重ねて極板群
とした。この極板群と電解液として8.5Mの水酸化カリウ
ム水溶液2.5ml を用いて公称容量が500mAhのニッケルメ
ッキした鉄電槽を使用した角形ニッケル・カドミウム電
池を製作した。外形寸法は67×16.5×8(mm) であり、
電池には0.5kg/cm2 で作動する安全弁を付けている。金
属コバルトの含有率が0,1,2,3,5,10wt% の電池の符号を
それぞれA,B,C,D,E,F とする。
Next, the positive electrode plate was wrapped with a 0.12 mm polyamide nonwoven fabric separator and then heat-sealed.
Subsequently, a positive electrode plate and a negative electrode plate were alternately stacked to form an electrode plate group. Using this electrode group and 2.5 ml of 8.5 M potassium hydroxide aqueous solution as an electrolyte, a prismatic nickel-cadmium battery was manufactured using a nickel-plated iron battery case with a nominal capacity of 500 mAh. The external dimensions are 67 x 16.5 x 8 (mm),
The battery is equipped with a safety valve that operates at 0.5 kg / cm 2 . The codes of the batteries containing 0,1,2,3,5,10 wt% of metallic cobalt are A, B, C, D, E, and F, respectively.

【0011】これらの電池を25℃,1Cで70分間充電した
のち、0.5Cの電流で1.0 vまで放電するというサイクル
試験をおこなった。サイクル経過にともなう内部抵抗の
値の変化を図1に示す。同図より、金属コバルトの含有
率が0%のものA は、充放電サイクルが300 回程度になる
と、内部抵抗の値が300mΩにも達することがわかる。こ
のように、内部抵抗の値が急上昇すると電池の放電容量
も減少し、充電電圧も高くなった。一方、金属コバルト
の含有率が1%以上のものB,C,D,E,F は、内部抵抗の上昇
が極端に少なくなっている。電池A を解体して、電池の
エレメントを調査したところ、セパレ−タの電解液は枯
渇しており、正極板は厚く膨れていた。電池の重量減少
は、ほとんどなかったことから、金属コバルトの含有率
が0%のものはニッケル基板が酸化をうけてγ-NiOOHの生
成がおこっていることを意味するものと考えられる。こ
のγ-NiOOHの示成式は K0.33 NiO2 ・0.67H2 O であり、
電解液が正極に吸収されることを意味する。
A cycle test was conducted in which these batteries were charged at 25 ° C. and 1 C for 70 minutes and then discharged to 1.0 V at a current of 0.5 C. FIG. 1 shows the change in the value of the internal resistance with the progress of cycles. From the figure, it can be seen that A with a metal cobalt content of 0% has an internal resistance value of 300 mΩ when the charge / discharge cycle reaches about 300 times. Thus, when the value of the internal resistance rapidly increased, the discharge capacity of the battery also decreased and the charging voltage also increased. On the other hand, the increase in internal resistance of B, C, D, E, and F having a metallic cobalt content of 1% or more is extremely small. When battery A was disassembled and the elements of the battery were examined, the separator electrolyte was depleted and the positive electrode plate was swollen thickly. Since there was almost no decrease in the weight of the battery, it is considered that a metal cobalt content of 0% means that γ-NiOOH was generated due to the oxidation of the nickel substrate. The formula of this γ-NiOOH is K 0.33 NiO 2 · 0.67H 2 O,
This means that the electrolytic solution is absorbed by the positive electrode.

【0012】金属コバルトの最適含有率は、焼結ニッケ
ル基板の多孔度と活物質を充填したのちの残留多孔度に
よって異なる。実施例1で、残留多孔度が30% 、金属コ
バルトの含有率が1,2,3wt%の正極板( それぞれG,H,I と
する) を製作し、電解液として8MKOH 、対極としてニッ
ケル板2 枚を使用し、充電率が2Cで公称容量の200%を充
電したのち、0.5Cで0V(Hg/Hg0)まで放電し、さらに同じ
条件で充電したのちの極板の厚さの変化を図2に示す。
一般に電極の厚さの増加率が15% を越えると、電池の内
部抵抗の値が上昇することが経験的に判明している。図
から、極板の厚さの増加率を15% 以下に設定するために
はニッケル基板の多孔度が80% の場合には、金属コバル
トの含有率の値を1wt%、多孔度が85% の場合は2wt%、多
孔度が90% の場合は3wt%以上の添加量が必要であること
がわかる。
The optimum content of metallic cobalt depends on the porosity of the sintered nickel substrate and the residual porosity after filling the active material. In Example 1, a positive electrode plate having residual porosity of 30% and metallic cobalt content of 1,2,3 wt% (G, H, and I, respectively) was prepared, and 8 MKOH was used as an electrolyte and a nickel plate was used as a counter electrode. Using two sheets, after charging 200% of the nominal capacity at a charge rate of 2C, discharge to 0V (Hg / Hg0) at 0.5C, and then change the thickness of the electrode plate after charging under the same conditions. As shown in FIG.
It has been empirically found that the internal resistance value of the battery rises when the increase rate of the electrode thickness exceeds 15%. From the figure, in order to set the increase rate of the thickness of the electrode plate to 15% or less, if the porosity of the nickel substrate is 80%, the content value of metallic cobalt is 1 wt% and the porosity is 85%. It is understood that the addition amount is required to be 2 wt% in the case of, and 3 wt% or more when the porosity is 90%.

【0013】つぎに、金属コバルトの含有率が2%、多孔
度が80% のニッケル基板に硝酸コバルト6mol% を含む5M
の硝酸ニッケル水溶液を80℃で含浸したのち、80 ℃の5M
の水酸化ナトリウム水溶液に浸漬する。その後、湯洗・
乾燥するという操作を8 回行った後、ポストコ−トとし
て0,5,10,20,30,60,70,80mol% のカドミウムを含む1.5M
の硝酸コバルト水溶液を含浸したのち、80℃の5Mの水酸
化ナトリウム水溶液に浸漬する。その後、湯洗・乾燥し
て、理論容量が300mAh、寸法が0.8 ×14×52(mm)の本発
明の正極板を製作した。
Next, 5M containing 6 mol% cobalt nitrate on a nickel substrate having a metal cobalt content of 2% and a porosity of 80%.
Impregnated with nickel nitrate aqueous solution at 80 ℃,
Immerse in an aqueous solution of sodium hydroxide. After that,
After the drying operation was repeated 8 times, 1.5M containing 0,5,10,20,30,60,70,80mol% cadmium as post-coat.
After being impregnated with the cobalt nitrate aqueous solution of, it is immersed in a 5M aqueous sodium hydroxide solution at 80 ° C. Then, it was washed with hot water and dried to manufacture a positive electrode plate of the present invention having a theoretical capacity of 300 mAh and dimensions of 0.8 × 14 × 52 (mm).

【0014】これらの正極板を電解液として8MKOH 、対
極としてニッケル板2 枚を使用し、充電率が2Cで公称容
量の200%を充電したのち、0.5Cで0V(Hg/Hg0)まで放電
し、さらに同じ条件で充電したのち、湯洗してから乾燥
させて、活物質のX 線回折分析をおこなった。γ-NiOOH
の生成量をγ-NiOOH(003) のピ−ク/(β-NiOOH(001) の
ピ−ク+γ-NiOOH(003) のピ−ク) からもとめ図3に示
す。図からポストコ−トのカドミウム含有率が10mol%以
上になるとγ-NiOOHの生成が抑制され、とくに50mol%以
上になるとその生成量は少なくなることがわかる。実用
的にはカドミウムの含有率は10〜80mol%がよい。ポスト
コ−トでコバルトの含有液とカドミウムの含有液とを別
々にしても同様な効果が得られたが、コバルトとカドミ
ウムの混合溶液を使用した方がプロ−セスが一回で良
く、簡便である。
These positive plates were used with 8 MKOH as the electrolyte and two nickel plates as the counter electrodes, and after charging 200% of the nominal capacity at a charging rate of 2 C, they were discharged to 0 V (Hg / Hg0) at 0.5 C. After charging under the same conditions, the material was washed with hot water and dried, and the active material was subjected to X-ray diffraction analysis. γ-NiOOH
The amount of γ-NiOOH (003) peak / (β-NiOOH (001) peak + γ-NiOOH (003) peak) is shown in FIG. From the figure, it can be seen that the production of γ-NiOOH is suppressed when the cadmium content of the postcoat is 10 mol% or more, and the production amount thereof is small particularly when it is 50 mol% or more. Practically, the cadmium content is preferably 10 to 80 mol%. Even if the cobalt-containing solution and the cadmium-containing solution were separated by post-coating, the same effect was obtained, but using a mixed solution of cobalt and cadmium requires only one process and is simple and easy. is there.

【0015】つぎに、これらの正極板2 枚と従来から公
知の理論容量が500 mAhで、寸法が0.7 ×15×52(mm)の
カドミウム負極板3 枚を製作した。
Next, two positive electrode plates and three conventionally known cadmium negative electrode plates having a theoretical capacity of 500 mAh and dimensions of 0.7 × 15 × 52 (mm) were manufactured.

【0016】そして、この正極板を0.12mmのポリアミド
不織布セパレ−タで包んだのち、ヒ−トシ−ルした。つ
づいて、正極板と負極板とを交互に積み重ねて極板群と
した。この極板群と電解液として8.5Mの水酸化カリウム
水溶液2.5ml を用いて公称容量が500mAhのニッケルメッ
キした鉄電槽を使用した角形ニッケル・カドミウム電池
を製作した。外形寸法は67×16.5×8(mm) であり、電池
には0.5kg/cm2 で作動する安全弁をつけている。ポスト
コ−トのカドミウム含有率が2,5,10,15mol% の正極板を
使用した電池をJ,K,L,M とする。この電池を1Cで1.2 時
間充電したのち、0.2Cで0.5Vまで放電するというサイク
ル試験をおこなった場合の容量推移を図4に示す。図か
らカドミウムの含有率が2mol%(J),5mol%(K) のものは,
充放電サイクル数が600 回を越えると放電容量が低下す
るが、カドミウムの含有率が10mol%(L) および15mol%
(M) の本発明による電池の容量は安定して良好であるこ
とがわかる。
The positive electrode plate was wrapped with a 0.12 mm polyamide nonwoven fabric separator and then heat-sealed. Subsequently, a positive electrode plate and a negative electrode plate were alternately stacked to form an electrode plate group. Using this electrode group and 2.5 ml of 8.5 M potassium hydroxide aqueous solution as an electrolyte, a prismatic nickel-cadmium battery was manufactured using a nickel-plated iron battery case with a nominal capacity of 500 mAh. The external dimensions are 67 × 16.5 × 8 (mm), and the battery is equipped with a safety valve that operates at 0.5 kg / cm 2 . The batteries using post-coating positive electrode plates with cadmium content of 2,5,10,15 mol% are J, K, L and M. Figure 4 shows the change in capacity when a cycle test was performed in which this battery was charged at 1C for 1.2 hours and then discharged at 0.2C to 0.5V. From the figure, those with a cadmium content of 2 mol% (J) and 5 mol% (K)
When the number of charge / discharge cycles exceeds 600, the discharge capacity decreases, but the cadmium content is 10 mol% (L) and 15 mol%.
It can be seen that the capacity of the battery (M) according to the present invention is stable and good.

【0017】このように、カドミウムの含有率が10mol%
以上になると、充放電サイクル寿命が良くなるのは活物
質およびニッケル基板のニッケルが酸化をうけて生成す
る水酸化ニッケルが、充放電サイクル経過とともに、充
電時にγ-NiOOHになりにくい状態に変化するためによる
ものと考えられる。その機構は、つぎのように考えられ
る。すなわち、ポストコート液のカドミウムの含有率が
10mol%以上になると中和工程で生成する水酸化物は、水
酸化コバルトと固溶体を形成する水酸化コバルトのほか
に、固溶体を形成しない水酸化カドミウムが生成する。
水酸化ニッケルが充電時にγ-NiOOHになり、その放電生
成物はα−Ni(OH)2 となるが、このα−Ni(OH)2 がアル
カリ水溶液中で溶解してβ−Ni(OH)2 に相変化する。そ
の際に固溶体を形成しない水酸化カドミウムが活物質中
に固溶体として結晶中に取り込まれる。すると、つづく
充電においては、γ−Ni(OH)2 の生成が抑制され極板の
膨潤が少なくなり、長寿命となるものと考えられる。な
お、ニッケル基板のコバルトの含有率と水酸化ニッケル
に固溶するコバルトの含有率との関係は、水酸化ニッケ
ルに固溶するコバルトの含有率がニッケル基板のコバル
トの含有率よりも多い方がよかった。これは、ニッケル
基板の酸化によって生成する水酸化ニッケルに含まれる
コバルトの量が多いと活物質よりも活性なものとなり、
放電時にはバルクの活物質よりも優先的に放電され、そ
の放電生成物が抵抗となって正極の放電性能を低下させ
るものと考えられる。
Thus, the content of cadmium is 10 mol%
In the above cases, the charge / discharge cycle life is improved because the nickel hydroxide formed by the oxidation of nickel on the active material and the nickel substrate changes to a state in which γ-NiOOH does not easily become γ-NiOOH during charging as the charge / discharge cycle progresses. It is thought to be due to the reason. The mechanism is considered as follows. That is, the content rate of cadmium in the post-coat liquid is
When the content is 10 mol% or more, hydroxides formed in the neutralization step form cadmium hydroxide that does not form a solid solution, in addition to cobalt hydroxide that forms a solid solution with cobalt hydroxide.
Nickel hydroxide becomes γ-NiOOH during charging, and its discharge product becomes α-Ni (OH) 2 , but this α-Ni (OH) 2 dissolves in an alkaline aqueous solution to form β-Ni (OH) 2. Phase change to 2 . At that time, cadmium hydroxide that does not form a solid solution is incorporated into the crystal as a solid solution in the active material. Then, in the subsequent charging, it is considered that the generation of γ-Ni (OH) 2 is suppressed, the swelling of the electrode plate is reduced, and the life is extended. The relationship between the content of cobalt in the nickel substrate and the content of cobalt in solid solution in nickel hydroxide is that the content of cobalt in solid solution in nickel hydroxide is higher than the content of cobalt in the nickel substrate. Was good. This is because when the amount of cobalt contained in nickel hydroxide produced by the oxidation of the nickel substrate is large, it becomes more active than the active material,
It is considered that during discharge, the active material in the bulk is discharged preferentially, and the discharge product thereof becomes a resistance to deteriorate the discharge performance of the positive electrode.

【0018】[0018]

【発明の効果】以上述べたように、アルカリ電池用水酸
化ニッケル正極板においてコバルトを含有するニッケル
基板,コバルトと固溶体を形成した水酸化ニッケルさら
にニッケルあるいはコバルトと固溶体を形成しない水酸
化カドミウムとを備えることにより、充放電による正極
板の膨潤を抑制し、長寿命の高エネルギー密度電池や急
速充電用電池を提供するものである。とくに、水酸化ニ
ッケルに固溶するコバルトの含有率がニッケル基板のコ
バルトの含有率よりも多いと、より効果的である。ま
た、本発明は、ニッケル基板の多孔度が85〜98% のもの
を使用した高エネルギー密度の正極板の長寿命化が図れ
る。
As described above, in the nickel hydroxide positive electrode plate for alkaline batteries, the nickel substrate containing cobalt, nickel hydroxide forming a solid solution with cobalt, and nickel or cobalt and cadmium hydroxide not forming a solid solution are provided. As a result, the swelling of the positive electrode plate due to charging and discharging is suppressed, and a long-life high energy density battery and a battery for rapid charging are provided. Particularly, it is more effective if the content rate of cobalt which is solid-dissolved in nickel hydroxide is higher than the content rate of cobalt of the nickel substrate. Further, according to the present invention, a positive electrode plate having a high energy density using a nickel substrate having a porosity of 85 to 98% can have a long life.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の電池と本発明による正極板を使用した密
閉形ニッケル・カドミウム電池の充放電サイクル経過に
ともなう電池の内部抵抗の変化を比較した図。
FIG. 1 is a diagram comparing changes in internal resistance of a conventional battery and a sealed nickel-cadmium battery using a positive electrode plate according to the present invention with progress of charge / discharge cycles.

【図2】本発明の正極板の極板厚さの増加率と基板の多
孔度との関係を示した図。
FIG. 2 is a diagram showing the relationship between the increase rate of the electrode plate thickness of the positive electrode plate of the present invention and the porosity of the substrate.

【図3】充電状態のγ-NiOOHの生成状態とカドミウムの
含有率との関係を示した図。
FIG. 3 is a diagram showing a relationship between a production state of γ-NiOOH in a charged state and a cadmium content rate.

【図4】本発明による正極板を使用した密閉形ニッケル
・カドミウム電池と従来の電池の充放電サイクルにとも
なう容量保持率を比較した図。
FIG. 4 is a diagram comparing the capacity retention ratios of a sealed nickel-cadmium battery using the positive electrode plate according to the present invention and a conventional battery with charge / discharge cycles.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】コバルトを含有するニッケル基板と、コバ
ルトと固溶体を形成した水酸化ニッケルと、ニツケルま
たはコバルトと固溶体を形成しない水酸化カドミウムと
を備えたアルカリ電池用水酸化ニッケル正極板。
1. A nickel hydroxide positive electrode plate for an alkaline battery, comprising a nickel substrate containing cobalt, nickel hydroxide forming a solid solution with cobalt, and nickel or cadmium hydroxide not forming a solid solution with cobalt.
【請求項2】水酸化ニッケルに固溶するコバルトの含有
率がニッケル基板のコバルトの含有率よりも多いことを
特徴とする請求項1記載のアルカリ電池用水酸化ニッケ
ル正極板。
2. The nickel hydroxide positive electrode plate for an alkaline battery according to claim 1, wherein the content of cobalt dissolved in nickel hydroxide is higher than the content of cobalt in the nickel substrate.
【請求項3】ニッケル基板の多孔度が85〜98% であるこ
とを特徴とする請求項1または2記載のアルカリ電池用
水酸化ニッケル正極板。
3. The nickel hydroxide positive electrode plate for an alkaline battery according to claim 1, wherein the nickel substrate has a porosity of 85 to 98%.
【請求項4】コバルトを含有するニッケル基板にコバル
トと固溶体を形成した水酸化ニッケルを保持させたの
ち、カドミウムの含有率が10〜80mol%のコバルトとカド
ミウムとの混合溶液を浸漬したのちアルカリ水溶液で処
理し乾燥することを特徴とするアルカリ電池用正極板の
製造方法。
4. A nickel substrate containing cobalt, which holds nickel hydroxide forming a solid solution with cobalt, is dipped in a mixed solution of cobalt and cadmium having a cadmium content of 10 to 80 mol%, and then an alkaline aqueous solution. A method for producing a positive electrode plate for an alkaline battery, which is characterized in that it is treated with and dried.
JP19315892A 1992-06-25 1992-06-25 Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same Expired - Fee Related JP3225608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19315892A JP3225608B2 (en) 1992-06-25 1992-06-25 Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19315892A JP3225608B2 (en) 1992-06-25 1992-06-25 Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2001114487A Division JP3498727B2 (en) 2001-04-12 2001-04-12 Method for producing nickel hydroxide positive plate for alkaline battery, nickel hydroxide positive plate for alkaline battery, and alkaline battery
JP2001114472A Division JP3458899B2 (en) 2001-04-12 2001-04-12 Nickel hydroxide positive plate for alkaline battery and alkaline battery thereof

Publications (2)

Publication Number Publication Date
JPH0613076A true JPH0613076A (en) 1994-01-21
JP3225608B2 JP3225608B2 (en) 2001-11-05

Family

ID=16303252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19315892A Expired - Fee Related JP3225608B2 (en) 1992-06-25 1992-06-25 Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP3225608B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6902846B2 (en) 2000-12-12 2005-06-07 Matsushita Electric Industrial Co., Ltd. Positive electrode plate for alkaline storage battery and method for manufacturing the same, and alkaline storage battery using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56143669A (en) * 1980-04-10 1981-11-09 Sanyo Electric Co Ltd Positive plate for alkaline storage battery
JPS61263047A (en) * 1985-05-16 1986-11-21 Yuasa Battery Co Ltd Nickel electrode for alkaline battery
JPH0239063A (en) * 1988-07-29 1990-02-08 Canon Inc Image forming device
JPH02253559A (en) * 1989-03-25 1990-10-12 Yuasa Battery Co Ltd Nickel electrode and alkaline storage battery using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56143669A (en) * 1980-04-10 1981-11-09 Sanyo Electric Co Ltd Positive plate for alkaline storage battery
JPS61263047A (en) * 1985-05-16 1986-11-21 Yuasa Battery Co Ltd Nickel electrode for alkaline battery
JPH0239063A (en) * 1988-07-29 1990-02-08 Canon Inc Image forming device
JPH02253559A (en) * 1989-03-25 1990-10-12 Yuasa Battery Co Ltd Nickel electrode and alkaline storage battery using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6902846B2 (en) 2000-12-12 2005-06-07 Matsushita Electric Industrial Co., Ltd. Positive electrode plate for alkaline storage battery and method for manufacturing the same, and alkaline storage battery using the same

Also Published As

Publication number Publication date
JP3225608B2 (en) 2001-11-05

Similar Documents

Publication Publication Date Title
JP2730121B2 (en) Alkaline secondary battery and manufacturing method thereof
JPH07122271A (en) Manufacture of nickel hydroxide for nickel pole, manufacture of nickel pole using the nickel hydroxide and alkaline secondary battery incorporating the nickel pole
JP2002117842A (en) Positive electrode active material for alkaline storage battery and its manufacturing method, positive electrode for alkaline storage battery and alkaline storage battery
JPH0221098B2 (en)
JP3225608B2 (en) Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same
JP3498727B2 (en) Method for producing nickel hydroxide positive plate for alkaline battery, nickel hydroxide positive plate for alkaline battery, and alkaline battery
JP3458899B2 (en) Nickel hydroxide positive plate for alkaline battery and alkaline battery thereof
JP3200822B2 (en) Nickel-metal hydride storage battery
JP2591988B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2923946B2 (en) Sealed alkaline secondary battery and method of manufacturing the same
JP2989877B2 (en) Nickel hydride rechargeable battery
JP2926732B2 (en) Alkaline secondary battery
JP2577964B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2591982B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2796674B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2591985B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2577954B2 (en) Cadmium negative electrode plate and alkaline secondary battery
JP2591987B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2564176B2 (en) Cadmium negative electrode plate for sealed alkaline secondary battery and sealed alkaline secondary battery using the negative electrode plate
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JP2591986B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2564172B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3558082B2 (en) Nickel-cadmium secondary battery
JP2926288B2 (en) Nickel-cadmium battery
JP2600307B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees