JPH0526304B2 - - Google Patents

Info

Publication number
JPH0526304B2
JPH0526304B2 JP59259592A JP25959284A JPH0526304B2 JP H0526304 B2 JPH0526304 B2 JP H0526304B2 JP 59259592 A JP59259592 A JP 59259592A JP 25959284 A JP25959284 A JP 25959284A JP H0526304 B2 JPH0526304 B2 JP H0526304B2
Authority
JP
Japan
Prior art keywords
nickel
positive electrode
cobalt
active material
coo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59259592A
Other languages
Japanese (ja)
Other versions
JPS61138458A (en
Inventor
Masahiko Oshitani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp filed Critical Yuasa Corp
Priority to JP59259592A priority Critical patent/JPS61138458A/en
Publication of JPS61138458A publication Critical patent/JPS61138458A/en
Publication of JPH0526304B2 publication Critical patent/JPH0526304B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明はニツケル正極を用いたアルカリ蓄電池
の製造法に関するものである。 従来技術とその問題点 アルカリ蓄電池例えばニツケル−カドミウム、
ニツケル−亜鉛、ニツケル−鉄等のニツケル正極
板は大きく分けて2種類のものがある。 その1つはシンター型と呼ばれているものであ
り、他の1つはペースト型と呼ばれているもので
ある。前者は2〜3μの微細なニツケル粉末を穿
孔鋼板あるいはニツケルネツトのごとき芯金に焼
結させた十数ミクロンの微孔からなる多孔性基板
に硝酸ニツケル塩溶液を含浸した後、アルカリ溶
液中で水酸化物にし充填する、いわゆる溶液含浸
法で作製するものである。 後者は、上記の工程を短縮するべく、水酸化ニ
ツケル活物質そのものを、水等によりペースト状
となし直接充填するものである。従つて基板は、
水酸化ニツケル粒子が充填できうるように数十〜
数百ミクロンと大きな細孔よりなり、これらは金
属繊維焼結体基板あるいはスポンジ状ニツケルと
称する三次元的に連続した空孔を有する多孔体基
板が用いられる。このペースト型極板において
は、基板の細孔が大きいために、シンター型極板
の基板よりも活物質に対する集電性が乏しいの
で、ペースト型での活物質利用率は50〜60%であ
る。これは、シンター型極板における活物質利用
率90%に比べて大巾に悪い欠点である。 この欠点を解消する方法として、活物質中に金
属コバルトを添加して電解液中に溶解させ、水酸
化コバルトとして析出させる方法が提案されてい
る。しかし、この方法では、金属コバルトが0価
であるから、Co→Co+++2eのごとく電気化学反
応、即ち充電をしなければ金属コバルトを溶解さ
せることができない。また、電気が流れない弧立
した場所に位置する金属コバルトは、溶解せず無
駄になる。従つて、より完全・均一に金属コバル
トを溶解させるためには、電池に組立てる前に、
電解液過剰の中で充電前処理工程という煩雑な工
程が必要になるという欠点があつた。 更に上記方法の欠点を解消するために、金属コ
バルトを添加すると共に、酸素で飽和あるいは過
飽和状態にさせたアルカリ水溶液に浸漬すること
により、前記充電前処理工程なしに金属コバルト
を溶解させる方法が、特開昭58−152371号公報に
提案されている。しかし、この方法でもアルカリ
水溶液を飽和あるいは過飽和状態にするという前
処理工程が必要となり、作業が煩雑になるという
欠点がある。 発明の目的 本発明は上記欠点を解消したもので、前記のよ
うな前処理工程がまつたく不要で、電池に電解液
を注入し密閉化、放置しただけで、水酸化コバル
トの導電性ネツトワークが形成されるという長所
を有する。その理由は、Co()Oはもともと
価の化合物であり、充電(酸化)せずとも、また
酸素の如き酸化剤を使用せずともアルカリ電解液
と接触するだけで価数変化することなく価のコ
バルトイオンに化学的に変化するからである。 発明の構成 本発明は上記目的を達成するべく、 2価の水酸化ニツケルを主体とし、分子式CoO
で表わされるコバルト酸化物を混入した正極活物
質からなる未化成正極板を用いたアルカリ蓄電池
において、電解液注入後20時間以上放置し、初充
電することを特徴とするアルカリ蓄電池の製造法
である。 実施例 以下本発明の一実施例について詳述する。 硫酸ニツケル水溶液をアルカリ溶液中に滴下
し、水酸化ニツケルを生成させ、水洗、乾燥した
後活物質とした。一方硫酸コバルト水溶液をアル
カリ溶液中に滴下し、水酸化コバルトを生成さ
せ、水洗後約180℃で真空乾燥を行ないCoO粉末
を得た。このようにして得た水酸化ニツケル粉末
の90wt%とCoO粉末10wt%を粉砕混合した。こ
の粉砕混合物とカルボキシメチルセルローズを少
量溶解した水を加えてペースト状にした。繊維径
が約25μのニツケル繊維をエアーレート法で分布
した後、還元性雰囲気下で焼結した厚み2mm、多
孔度95%の基板にこのペーストを充填した。乾
燥、厚み調節を行つて、厚み0.7mmの未化成正極
板とした。この正極板および、水酸化カドミウム
と金属カドミウムからなる負極板、ナイロンセパ
レータ、比重1.27の苛性カリウム水溶液等より
AAサイズの円筒形ニツケルカドミウム蓄電池を
作製した。この電池を注液後一度も充電すること
なく、20時間以上放置した後、初充電して本発明
電池を得た。本発明電池と一定時間放置した他の
電池を比較するべく、容量試験を行つた。放電容
量は3サイクル繰返して試験した。 第1表に放置時間と放電容量の関係及び正極板
組成との関係についての結果を示した。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing an alkaline storage battery using a nickel positive electrode. Prior art and its problems Alkaline storage batteries such as nickel-cadmium,
There are roughly two types of nickel positive electrode plates, such as nickel-zinc and nickel-iron. One of them is called a sinter type, and the other is called a paste type. The former is made by impregnating a porous substrate with fine pores of more than ten microns, made by sintering fine nickel powder of 2 to 3 microns onto a core metal such as a perforated steel plate or nickel net, with a nickel nitrate salt solution, and then soaking it in water in an alkaline solution. It is manufactured using the so-called solution impregnation method, which is filled with oxide. In the latter method, in order to shorten the above steps, the nickel hydroxide active material itself is made into a paste form with water or the like and then directly filled. Therefore, the board is
Several tens of nickel hydroxide particles can be filled.
It consists of pores as large as several hundred microns, and a porous substrate having three-dimensionally continuous pores called a metal fiber sintered substrate or a sponge-like nickel substrate is used for these. In this paste type electrode plate, since the pores of the substrate are large, the current collection ability for the active material is poorer than that of the substrate of the sintered type electrode plate, so the active material utilization rate in the paste type is 50 to 60%. . This is a much worse drawback than the active material utilization rate of 90% in sintered electrode plates. As a method to overcome this drawback, a method has been proposed in which metal cobalt is added to the active material, dissolved in an electrolytic solution, and precipitated as cobalt hydroxide. However, in this method, since metallic cobalt has a zero valence, metallic cobalt cannot be dissolved without an electrochemical reaction such as Co→Co ++ +2e, that is, without charging. In addition, metal cobalt located in an upright place where electricity does not flow is not melted and is wasted. Therefore, in order to dissolve metal cobalt more completely and uniformly, before assembling it into a battery,
The drawback was that a complicated process of pre-charging treatment was required in the presence of an excess of electrolyte. Furthermore, in order to eliminate the drawbacks of the above methods, there is a method in which cobalt metal is added and immersed in an alkaline aqueous solution saturated or supersaturated with oxygen, thereby dissolving the cobalt metal without the pre-charging process. This is proposed in Japanese Patent Application Laid-Open No. 152371/1983. However, this method also requires a pretreatment step of bringing the alkaline aqueous solution into a saturated or supersaturated state, which has the disadvantage of making the work complicated. Purpose of the Invention The present invention eliminates the above-mentioned drawbacks, and eliminates the need for the pretreatment process as described above. By simply injecting an electrolyte into a battery, sealing it, and leaving it, a conductive network of cobalt hydroxide can be formed. It has the advantage of being formed. The reason for this is that Co()O is originally a valent compound, and even without charging (oxidizing) or using an oxidizing agent such as oxygen, the valence does not change when it comes into contact with an alkaline electrolyte. This is because it chemically changes into cobalt ions. Structure of the Invention In order to achieve the above object, the present invention mainly consists of divalent nickel hydroxide and has a molecular formula of CoO
A method for producing an alkaline storage battery using an unformed positive electrode plate made of a positive electrode active material mixed with cobalt oxide represented by the formula, which is characterized in that the battery is left to stand for 20 hours or more after injection of an electrolyte and then charged for the first time. . EXAMPLE An example of the present invention will be described in detail below. An aqueous nickel sulfate solution was dropped into an alkaline solution to generate nickel hydroxide, which was washed with water and dried to obtain an active material. On the other hand, an aqueous cobalt sulfate solution was dropped into the alkaline solution to generate cobalt hydroxide, which was washed with water and then vacuum dried at about 180°C to obtain CoO powder. 90 wt% of the nickel hydroxide powder thus obtained and 10 wt% of CoO powder were ground and mixed. This pulverized mixture and water in which a small amount of carboxymethyl cellulose was dissolved were added to form a paste. After distributing nickel fibers with a fiber diameter of approximately 25 μm using the air rate method, this paste was filled into a 2 mm thick, 95% porosity substrate sintered in a reducing atmosphere. After drying and adjusting the thickness, an unformed positive electrode plate with a thickness of 0.7 mm was obtained. This positive electrode plate, a negative electrode plate made of cadmium hydroxide and metal cadmium, a nylon separator, a caustic potassium aqueous solution with a specific gravity of 1.27, etc.
An AA size cylindrical nickel cadmium storage battery was fabricated. After injecting the liquid, this battery was left for more than 20 hours without being charged, and then charged for the first time to obtain a battery of the present invention. A capacity test was conducted to compare the battery of the present invention with other batteries that had been left for a certain period of time. The discharge capacity was tested by repeating 3 cycles. Table 1 shows the results regarding the relationship between the standing time and the discharge capacity and the relationship between the positive electrode plate composition.

【表】 上記の如く、本発明による水酸化ニツケル及び
CoOの混合粉末からなる未化成正極板を用いて、
電解液注入後20時間以上放置した後初充電した電
池は優れていることが判る。 CoOを混合した正極板を用いた電池が初充電ま
でに一定時間放置すると高性能化する。この原因
は、反応をモデル化した第1図に示すようなメカ
ニズムで、混合されたCoOがアリカリ溶液中で
HCoO2 -等錯イオンとして溶解し、放置中に活物
質である水酸化ニツケル粒子表面及び粒子間と集
電体を接続するような形でCo(OH)2粒子が析出
し、充電により導電性β−CoOOHに変化する。
これによつて、活物質粒子間の導電性が向上する
ものである。従つて、β−CoOOHによつて良好
な接続をさせるためには、電極中の添加剤が溶解
して再析出させる初期充電前の放置が極めて重要
である。 錯イオンの状態にならない内に、充電されると
CoOはCoOOHあるいはCo3O4で粒子表面が不働
態化するために内部のCoOは溶解せず、HCoO2 -
の充分な供給がなされない。それ故に初充電前に
放置期間が必要である。 又、CoO以外のCo2O3,Co3O4,CoHO2
CoOOH等アルカリ溶液中で安定なコバルト化合
物では、何ら性能に変化がなかつた。 上記実施例はニツケル繊維焼結体を用いたペー
スト正極について述べたが、その他の耐アルカリ
性金属繊維あるいは、スポンジ状ニツケル多孔体
等についても同様な効果があつた。 さらに本発明のニツケル極を正極とする他のア
ルカリ蓄電池例えばニツケル−亜鉛、ニツケル−
鉄の如き蓄電池においても、同様な効果があつ
た。 発明の効果 上述した如く、本発明によれば正極板の活物質
利用率が向上して、高性能で且つ生産性の高いア
ルカリ蓄電池が提供でき、その工業的価値は大な
るものである。
[Table] As shown above, nickel hydroxide and
Using an unformed positive electrode plate made of a mixed powder of CoO,
It can be seen that batteries that are first charged after being left for 20 hours or more after electrolyte injection are superior. If a battery using a positive electrode plate containing CoO is left for a certain period of time before being charged for the first time, its performance will improve. The cause of this is the reaction modeled mechanism shown in Figure 1, in which mixed CoO is mixed in an alkaline solution.
Co(OH ) 2 particles are dissolved as HCoO 2 -isocomplex ions, and when left standing, Co(OH) 2 particles precipitate on the surface of the active material nickel hydroxide particles and between the particles, connecting the current collector, and become conductive when charged. Changes to β-CoOOH.
This improves the conductivity between the active material particles. Therefore, in order to achieve a good connection by β-CoOOH, it is extremely important to leave the electrode before the initial charging to allow the additives in the electrode to dissolve and redeposit. If it is charged before it becomes a complex ion,
Since the particle surface of CoO is passivated with CoOOH or Co 3 O 4 , the internal CoO does not dissolve and HCoO 2 -
There is insufficient supply of Therefore, it is necessary to leave the battery for a period of time before charging it for the first time. Also, other than CoO, Co 2 O 3 , Co 3 O 4 , CoHO 2 ,
With cobalt compounds that are stable in alkaline solutions such as CoOOH, there was no change in performance. Although the above embodiment described a paste positive electrode using a nickel fiber sintered body, similar effects were obtained with other alkali-resistant metal fibers, sponge-like porous nickel bodies, and the like. Further, other alkaline storage batteries using the nickel electrode of the present invention as a positive electrode, such as nickel-zinc, nickel-zinc, etc.
A similar effect was found in storage batteries such as iron. Effects of the Invention As described above, according to the present invention, the utilization rate of the active material in the positive electrode plate is improved, and an alkaline storage battery with high performance and productivity can be provided, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は導電性β−CoOOH形成のモデルを示
した図である。
FIG. 1 is a diagram showing a model for the formation of conductive β-CoOOH.

Claims (1)

【特許請求の範囲】[Claims] 1 2価の水酸化ニツケルを主体とし、分子式
CoOで表わされるコバルト酸化物を混入した正極
活物質からなる未化成正極板を用いたアルカリ蓄
電池において、電解液注入後20時間以上放置し、
初充電することを特徴とするアルカリ蓄電池の製
造法。
1 Mainly composed of divalent nickel hydroxide, molecular formula:
In an alkaline storage battery using an unformed positive electrode plate made of a positive electrode active material mixed with cobalt oxide represented by CoO, the electrolyte is left for more than 20 hours after injection,
A method for producing an alkaline storage battery characterized by initial charging.
JP59259592A 1984-12-07 1984-12-07 Alkaline battery Granted JPS61138458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59259592A JPS61138458A (en) 1984-12-07 1984-12-07 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59259592A JPS61138458A (en) 1984-12-07 1984-12-07 Alkaline battery

Publications (2)

Publication Number Publication Date
JPS61138458A JPS61138458A (en) 1986-06-25
JPH0526304B2 true JPH0526304B2 (en) 1993-04-15

Family

ID=17336246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59259592A Granted JPS61138458A (en) 1984-12-07 1984-12-07 Alkaline battery

Country Status (1)

Country Link
JP (1) JPS61138458A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01187768A (en) * 1988-01-19 1989-07-27 Yuasa Battery Co Ltd Nickel electrode for alkali battery
JPH0724218B2 (en) * 1988-04-11 1995-03-15 株式会社ユアサコーポレーション Nickel electrode for alkaline battery and battery using the same
JPH0685325B2 (en) * 1988-10-18 1994-10-26 株式会社ユアサコーポレーション Active material for nickel electrode, nickel electrode and alkaline battery using the same
DE69117068T2 (en) * 1990-10-29 1996-10-02 Yuasa Battery Co Ltd HYDROGEN STORAGE ELECTRODE, NICKEL ELECTRODE AND NICKEL HYDROGEN BATTERY
JP2530281B2 (en) * 1992-12-24 1996-09-04 古河電池株式会社 Alkaline storage battery
JP3232990B2 (en) 1994-12-19 2001-11-26 松下電器産業株式会社 Alkaline storage battery and method for manufacturing the same
US6576368B1 (en) 1998-10-02 2003-06-10 Sanyo Electric Co., Ltd. Positive active material for use in sealed alkaline storage batteries

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045246A (en) * 1973-08-13 1975-04-23
JPS58152371A (en) * 1982-03-05 1983-09-09 Japan Storage Battery Co Ltd Manufacturing method for positive plate of alkaline battery
JPS58152372A (en) * 1982-03-05 1983-09-09 Japan Storage Battery Co Ltd Manufacturing method for positive plate of alkaline battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045246A (en) * 1973-08-13 1975-04-23
JPS58152371A (en) * 1982-03-05 1983-09-09 Japan Storage Battery Co Ltd Manufacturing method for positive plate of alkaline battery
JPS58152372A (en) * 1982-03-05 1983-09-09 Japan Storage Battery Co Ltd Manufacturing method for positive plate of alkaline battery

Also Published As

Publication number Publication date
JPS61138458A (en) 1986-06-25

Similar Documents

Publication Publication Date Title
JP3617203B2 (en) Manufacturing method of nickel metal hydride secondary battery
JPH0526304B2 (en)
JP2889669B2 (en) Non-sintered nickel positive electrode plate for alkaline storage batteries
JP3644427B2 (en) Cadmium negative electrode and nickel cadmium storage battery containing the same
JP2610565B2 (en) Manufacturing method of sealed alkaline storage battery using paste-type nickel positive electrode
Amlie et al. Adsorption of Hydrogen and Oxygen on Electrode Surfaces
JPH0514382B2 (en)
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH0582027B2 (en)
JPH0429189B2 (en)
JPS58198856A (en) Manufacture of negative cadmium plate for alkaline storage battery
JPH06101350B2 (en) Nickel cadmium alkaline storage battery
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JP2558759B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP2529308B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JPS60216452A (en) Paste type positive-electrode plate for alkaline storage battery
JP3118357B2 (en) Non-sintered positive electrode plate for alkaline storage batteries
JP2638055B2 (en) Manufacturing method of paste-type cadmium negative electrode for alkaline storage battery
JPH041992B2 (en)
JPS61124060A (en) Paste type positive pole plate for alkaline storage battery
JPH04344B2 (en)
JPS61110962A (en) Manufacture of positive nickel plate for alkaline storage battery
JPH0471311B2 (en)
JPS5971265A (en) Alkali zinc lead storage battery
JP2012054074A (en) Method of manufacturing cadmium negative electrode for alkaline storage battery and nickel-cadmium storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term