JPS60216452A - Paste type positive-electrode plate for alkaline storage battery - Google Patents

Paste type positive-electrode plate for alkaline storage battery

Info

Publication number
JPS60216452A
JPS60216452A JP59071606A JP7160684A JPS60216452A JP S60216452 A JPS60216452 A JP S60216452A JP 59071606 A JP59071606 A JP 59071606A JP 7160684 A JP7160684 A JP 7160684A JP S60216452 A JPS60216452 A JP S60216452A
Authority
JP
Japan
Prior art keywords
electrode plate
active material
alkali
alkaline storage
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59071606A
Other languages
Japanese (ja)
Other versions
JPH0517661B2 (en
Inventor
Masahiko Oshitani
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP59071606A priority Critical patent/JPS60216452A/en
Publication of JPS60216452A publication Critical patent/JPS60216452A/en
Publication of JPH0517661B2 publication Critical patent/JPH0517661B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a positive-electrode plate with high performance at a low cost by cobalt-plating a porous substrate made of sintered alkali-resistant metal fibers and filling it with an active material made of nickel hydroxide. CONSTITUTION:Alkali-resistant metal fibers obtained by cutting Fe, Ni, etc. are sintered to form a porous substrate. After this porous substrate is cobalt-plated, it is filled with a positive-electrode active material mainly composed of nickel hydroxide, and it is dried and thickness-adjusted to form a paste type positive- electrode plate for alkaline storage battery. Thereby, it can be filled with the active material at a high density, and the utilization factor of the active material can be improved. Accordingly, a positive-electrode plate with a high energy density can be obtained at a low cost.

Description

【発明の詳細な説明】 本発明はアルカリ蓄電池用正極板、特にペースト式ニッ
ケル板に係り、高性能で低価格かつ生産性の高いニッケ
ル正極板を提供することを目的とする〇 従来アルカリ蓄電池用ニッケル正極板としては1ニツケ
ル粉末を穿孔鋼板あるいはニッケルネット等に焼結させ
た多孔体基板に1活物質を充填させた焼結式極板がよく
知られている。
[Detailed Description of the Invention] The present invention relates to a positive electrode plate for alkaline storage batteries, particularly a paste-type nickel plate, and an object of the present invention is to provide a high-performance, low-cost, and highly productive nickel positive electrode plate for conventional alkaline storage batteries. As a nickel positive electrode plate, a sintered type electrode plate is well known in which a porous substrate made by sintering nickel powder into a perforated steel plate or a nickel net is filled with a nickel active material.

この多孔体基板は、ニッケル粉末を単に穿孔鋼板あるい
は、ニッケルネット等に焼結させたものであり、ニッケ
ル粉末粒子間の結合が弱く、高多孔度にすると脱落が生
じるために、実用上多孔度80−程炭が限界である。
This porous substrate is made by simply sintering nickel powder onto a perforated steel plate or nickel net, and the bond between the nickel powder particles is weak, causing them to fall off when the porosity is high. 80-degree charcoal is the limit.

又、これらの多孔体基板はニッケル粉末粒子間結合が弱
いため、常に穿孔鋼板、ニッケルネット等の芯金な必要
とし、単位体積あたりの活物質充填電が芯金体積分だけ
少なくなる欠点を有している。
In addition, these porous substrates have a weak bond between the nickel powder particles, so they always require a core metal such as a perforated steel plate or nickel net, which has the disadvantage that the active material filling charge per unit volume decreases by the volume of the core metal. are doing.

さらに多孔体細孔が10μ以下と小さいために、充填方
法は繁雑な工程を繰返す溶液含浸法に限定されている。
Furthermore, since the pores of the porous material are as small as 10 μm or less, the filling method is limited to a solution impregnation method that involves repeated complicated steps.

これらの欠点を改良する試みとして、例えば芯金なもた
ないニッケルメッキ鉄繊維焼結体、ニッケル繊維焼結体
等に直接固体活物質を充填させる、いわゆるペースト式
充填方法等が行なわれている。その他、TtJ′接固体
活物質を充填させたものには、ポケット式極板があるが
、このものは穿孔銅板を加工し、ポケット部を作り、そ
の中に活物質を充填する構造のため、ポケット部の穿孔
鋼板の占める体積が大きく、単位体積あたりの充填密度
はかなり低いものである。
In an attempt to improve these shortcomings, a so-called paste filling method has been carried out, in which a solid active material is directly filled into a nickel-plated iron fiber sintered body without a core, a nickel fiber sintered body, etc. . In addition, there is a pocket type electrode plate that is filled with TtJ' contacting solid active material, but this type has a structure in which a perforated copper plate is processed to create a pocket part and the active material is filled in the pocket part. The volume occupied by the perforated steel plate in the pocket portion is large, and the packing density per unit volume is quite low.

これまで金属繊維の製造方法として、安価なものとして
切削加工法あるいは金践粉末を繊維状に加工焼結させた
もの等がある。
Hitherto, as methods for manufacturing metal fibers, there have been inexpensive methods such as a cutting method or a method in which metal powder is processed and sintered into a fiber form.

切削加工法には固定されたバイト上を線径数鱈の金lj
4線を移動させることによって繊維な切削する場合と、
旋削加工における自励振動を利用する、いわゆるびびり
振動切削加工による2種類がある。金属繊維の径は4μ
程度より製造可能であり、繊維径が細ければ細い程、表
面積が増大するので活物質利用率は向上する。一方。
In the cutting method, a gold lj of several wire diameters is passed onto a fixed tool.
When cutting fibers by moving the 4 wires,
There are two types of so-called chatter vibration cutting that utilize self-excited vibration in turning. The diameter of the metal fiber is 4μ
The thinner the fiber diameter, the greater the surface area and the higher the utilization rate of the active material. on the other hand.

繊維径が太くなれば表面積が減少し、確実に活物質利用
率が低下するために、50μ以上の繊維はメリットが少
ない。実用上の活物質の充填しやすい基板の細孔分布、
引張強度、活物質利用率を考慮した場合、4〜50μ程
度が望ましい。この繊維をエアーレード方法やその他の
方法によって均一分布させた後、約1000℃前後の高
温還元雰囲気下で焼結すると、多孔体基板が得られる。
As the fiber diameter increases, the surface area decreases and the active material utilization rate definitely decreases, so fibers with a diameter of 50 μm or more have little merit. Pore distribution of the substrate that is easy to fill with practical active materials,
When considering tensile strength and active material utilization rate, it is desirable to have a thickness of about 4 to 50 μm. A porous substrate is obtained by uniformly distributing the fibers by air lading or other methods and then sintering them in a high-temperature reducing atmosphere of about 1000°C.

多孔体基板は、繊維量、焼結温度、時間等をコン)o−
ルすることによって、多孔度85〜98襲程度の東用強
度を満足するものが得られる。なおこの多孔体基板が鉄
繊維である場合、アルカリ電解液中での腐蝕を防止する
ために10〜20%のニッケルメッキを必要とする。
For the porous substrate, the fiber amount, sintering temperature, time, etc.
By doing so, it is possible to obtain a material with a porosity of 85 to 98 and a strength for eastern use. Note that when this porous substrate is made of iron fiber, 10 to 20% nickel plating is required to prevent corrosion in an alkaline electrolyte.

従来これらの多孔体基板に水酸化工yケルな主成分とす
る活物質を充填した場合、例えば焼結式極板に比べ活物
質利用率が低くなる欠点を有した。本発明はこの点を改
良するべくなされたもので、多孔体基板にあらかじめコ
バルトメッキを施す事により活物質料、用率を向上させ
得る事に着目したものである。本発明によればまず多孔
体基板に1〜2μ程度のコバルトメッキを施こし、この
コバルトメッキされた多孔体基板に1水酸化ニツケルを
主成分とし、少量の水酸化カド之つム、するいは、水酸
化コバルトを共晶状態で含有する活物質を水等溶剤でス
ラリー状として充填後乾燥し、厚味調節して正極板とす
る。以下本発明の一寮施例について詳述する。
Conventionally, when these porous substrates are filled with an active material whose main component is hydroxide, the active material utilization rate is lower than that of, for example, a sintered electrode plate. The present invention has been made to improve this point, and focuses on the fact that the utilization of active materials can be improved by pre-plating cobalt on a porous substrate. According to the present invention, a porous substrate is first plated with cobalt of about 1 to 2 μm, and the cobalt-plated porous substrate is coated with nickel monohydroxide as a main component, a small amount of cadmium hydroxide, and nickel monohydroxide as a main component. In this method, an active material containing cobalt hydroxide in a eutectic state is filled in a slurry form with a solvent such as water, dried, and the thickness is adjusted to form a positive electrode plate. A dormitory embodiment of the present invention will be described in detail below.

びびり振動切削加工法によって得たニッケル繊維をエア
ーレード法で分布した後、還元性雰囲気下1050℃で
約30分間焼結させ、厚み2n1多孔度95%の多孔体
基板を得た。しかる後、a酸コバルトアンモニウム、酢
酸アン1モニウム、酢酸、ホルマリン、硫mカドミウム
等か5− らなるメッキ浴で1〜2μのコバルトメッキをほどこし
た。 。
After distributing the nickel fibers obtained by the chatter vibration cutting method using the air lading method, the fibers were sintered at 1050° C. for about 30 minutes in a reducing atmosphere to obtain a porous substrate with a thickness of 2n1 and a porosity of 95%. Thereafter, cobalt plating with a thickness of 1 to 2 μm was applied in a plating bath consisting of ammonium cobalt acetate, ammonium acetate, acetic acid, formalin, cadmium sulfate, etc. .

このコバルトメッキされた多孔体に、水酸化ニッケル9
4モル%、水酸化コバルト5モル%、水酸化カドミウム
1モル%からなる共晶物質に約10重量%のニッケル粉
末を加えてよく混合し、さらに約40重量%の水および
約2重量%のカルボキシメチルセルルーズを加えてスラ
リー状にしたものを充填した後、乾燥1厚味19tf1
して0.7nの正極板とした。活物質の充填密度は約1
.89/cc工ある。この正極板を4 X 4 cmに
切断し、水酸化カリウム電解液中で充放電し、エネルギ
ー密度t < ”h/cc)を測定した。なお比較のた
めに同一寸法のコバルトメッキをしていない正極板のエ
ネルギー密度(mAh7−)をもとめた。
This cobalt-plated porous body is coated with 9 nickel hydroxide.
Approximately 10% by weight of nickel powder is added to a eutectic material consisting of 4 mol% of cobalt hydroxide, 5 mol% of cobalt hydroxide, and 1 mol% of cadmium hydroxide, and mixed well, and further mixed with approximately 40% by weight of water and approximately 2% by weight of nickel powder. After adding carboxymethyl cellulose and filling the slurry, dry 1 thickness 19tf1
A 0.7n positive electrode plate was obtained. The packing density of the active material is approximately 1
.. There is 89/cc engineering. This positive electrode plate was cut into 4 x 4 cm pieces, charged and discharged in a potassium hydroxide electrolyte, and the energy density t<''h/cc) was measured.For comparison, a piece of the same size but not plated with cobalt was measured. The energy density (mAh7-) of the positive electrode plate was determined.

表Iは比重1.24の水酸化カリ、ウム電解液中にて0
.1.011流で15時間充填した後、0.20電流で
OV VS 、 ”9/Hp□まで放電させた時の千ネ
ルギー密度(mAh/cc)の比較を示した。
Table I shows potassium hydroxide with a specific gravity of 1.24.
.. A comparison of 1,000 energy densities (mAh/cc) is shown when the battery was charged with a current of 1.011 for 15 hours and then discharged to OV VS ``9/Hp□ with a current of 0.20.

6− 表 1 表1より繊維多孔体表面をコパルFメッキすることによ
って活物質利用率が向上している。
6-Table 1 From Table 1, the active material utilization rate is improved by coating the surface of the fiber porous body with Copal F plating.

なおどの種類の繊維多孔体をもちいても同様の傾向が認
められた。このことからおそらく繊維多孔体と活物質と
の接触面が活物質利用率の向上に対し重要な働きをもっ
ているものと推定される。すなわち、コバルトはアルカ
リ電解液中アノード方向でCo−+HOOO,→002
0sと一度溶解して沈澱する性質を有するため、集電体
表面と活物質を完全に接続する作用をもつために活物質
利用率が向上するものと推定される。本発明の金属繊維
正極板は、従来のニッケル粉末焼結極板に比べてエネル
ギー密度が約40%も向上している。この原因は、芯金
な必要とせずかつ高多孔度基板の使用可能によって活物
質の高密度充填が可能になったこと及び、従来の金属繊
維正極板より高い活物質利用率が夾現できたからである
A similar tendency was observed no matter what type of fibrous porous material was used. From this, it is presumed that the contact surface between the fibrous porous material and the active material plays an important role in improving the active material utilization rate. That is, cobalt is Co-+HOOO,→002 in the alkaline electrolyte in the anode direction.
Since it has the property of dissolving once with 0s and precipitating, it is presumed that the active material utilization rate is improved because it has the effect of completely connecting the current collector surface and the active material. The metal fiber positive electrode plate of the present invention has an energy density that is approximately 40% higher than that of a conventional nickel powder sintered electrode plate. This is due to the fact that high-density packing of the active material is possible without the need for a metal core and the use of a highly porous substrate, and also because the active material utilization rate is higher than that of conventional metal fiber positive electrode plates. It is.

電池のコンパクト化が要求される今日1本発明によって
高エネルギー密度でしかも低コストのニッケル正極板の
製造が可能になり、その工業的価値はきわめて大なるも
のである。
Nowadays, when batteries are required to be made more compact, the present invention makes it possible to manufacture a nickel positive electrode plate with high energy density and at low cost, and its industrial value is extremely great.

出願人 湯浅電池株式会社Applicant Yuasa Battery Co., Ltd.

Claims (1)

【特許請求の範囲】 1)耐アルカリ性金属繊維を焼結してなる多孔体基板に
コバルトメッキ処理し、水酸化ニッケルを主成物とする
正極活物質を充填することを特徴とするアルカリ蓄電池
用ペースト式2)耐アルカリ性金属繊維が畝線の切削に
よる繊維である特許請求の範囲第1項記載のアルカリ蓄
電池用ペースト式極板。 3)耐アルカリ性金I14IIm維が鉄インゴットのび
びり振動切削による繊維である特許請求の範囲第1項記
載のアルカリ蓄電旭川ベースF式4) 耐アルカリ性金
属繊維がニッケルインボッ)のびびり振動切削による繊
維である特許請求の範囲第1項記載のアルカリ蓄電池用
ペースト式正極板。 5)耐アルカリ性金属繊維がニッケル粉末あるいは酸化
二yケル粉末を繊維加工した特許請求の範囲第1項記載
のアルカリ蓄電池用ペースト式正極板0
[Claims] 1) For an alkaline storage battery, characterized in that a porous substrate formed by sintering alkali-resistant metal fibers is coated with cobalt and filled with a positive electrode active material mainly composed of nickel hydroxide. Paste type 2) The paste type electrode plate for an alkaline storage battery according to claim 1, wherein the alkali-resistant metal fibers are fibers obtained by cutting ridge lines. 3) The alkali-resistant gold I14IIm fiber is a fiber obtained by chatter vibration cutting of an iron ingot.4) The alkali-resistant metal fiber is a fiber obtained by chatter vibration cutting of a nickel ingot. A paste-type positive electrode plate for an alkaline storage battery according to claim 1. 5) Paste-type positive electrode plate 0 for alkaline storage batteries according to claim 1, in which the alkali-resistant metal fibers are processed from nickel powder or dichelic oxide powder.
JP59071606A 1984-04-09 1984-04-09 Paste type positive-electrode plate for alkaline storage battery Granted JPS60216452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59071606A JPS60216452A (en) 1984-04-09 1984-04-09 Paste type positive-electrode plate for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59071606A JPS60216452A (en) 1984-04-09 1984-04-09 Paste type positive-electrode plate for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS60216452A true JPS60216452A (en) 1985-10-29
JPH0517661B2 JPH0517661B2 (en) 1993-03-09

Family

ID=13465475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59071606A Granted JPS60216452A (en) 1984-04-09 1984-04-09 Paste type positive-electrode plate for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS60216452A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290864A (en) * 1985-10-17 1987-04-25 Sanyo Electric Co Ltd Manufacture of nickel hydroxide electrode for alkaline storage battery
JPS62128448A (en) * 1985-11-28 1987-06-10 Yuasa Battery Co Ltd Hermetically sealed type nickel-zinc storage battery
EP0757396A1 (en) * 1995-07-31 1997-02-05 Matsushita Electric Industrial Co., Ltd. Porous, nickel coated, sintered iron substrate for electrodes in alkaline secondary batteries
EP0878858A1 (en) * 1997-05-15 1998-11-18 Matsushita Electric Industrial Co., Ltd. Electrode for alkaline storage battery and method for manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290864A (en) * 1985-10-17 1987-04-25 Sanyo Electric Co Ltd Manufacture of nickel hydroxide electrode for alkaline storage battery
JPH0570907B2 (en) * 1985-10-17 1993-10-06 Sanyo Electric Co
JPS62128448A (en) * 1985-11-28 1987-06-10 Yuasa Battery Co Ltd Hermetically sealed type nickel-zinc storage battery
EP0757396A1 (en) * 1995-07-31 1997-02-05 Matsushita Electric Industrial Co., Ltd. Porous, nickel coated, sintered iron substrate for electrodes in alkaline secondary batteries
US5681673A (en) * 1995-07-31 1997-10-28 Matsushita Electric Industrial Co., Ltd. Alkaline secondary battery
EP0878858A1 (en) * 1997-05-15 1998-11-18 Matsushita Electric Industrial Co., Ltd. Electrode for alkaline storage battery and method for manufacturing the same
US6120937A (en) * 1997-05-15 2000-09-19 Matsushita Electric Industrial Co., Ltd. Electrode for alkaline storage battery and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0517661B2 (en) 1993-03-09

Similar Documents

Publication Publication Date Title
EP0571630B1 (en) Method for production of nickel plate and alkali storage battery
JPS60216452A (en) Paste type positive-electrode plate for alkaline storage battery
JPH10241697A (en) Alkaline storage battery electrode and manufacture thereof
JPS61138458A (en) Alkaline battery
JP3267075B2 (en) Manufacturing method of electrode plate for lead-acid battery
JPS6329450A (en) Manufacture of electrode for cell
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPS60250556A (en) Production of nickel-cadmium storage battery
JPS62222566A (en) Nickel electrode for alkaline battery
JP2981538B2 (en) Electrodes for alkaline batteries
JPS6174261A (en) Nickel positive pole for alkaline strage battery
JPS60143569A (en) Positive plate for alkaline battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP2001236959A (en) Non-sintered alkali cell positive electrode
JP3114160B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery using the same
JPS61124060A (en) Paste type positive pole plate for alkaline storage battery
JPS60105172A (en) Paste type positive plate for alkaline storage battery
JPH04359864A (en) Non-sintering nickel positive electrode and its manufacture
JP3003218B2 (en) Method for producing nickel electrode plate and method for producing alkaline storage battery
JP4168293B2 (en) Paste type nickel hydroxide positive electrode plate for alkaline storage battery
JP2810460B2 (en) Positive plate for alkaline storage battery
JPH04248264A (en) Manufacture of paste type nickel electrode
JPH0377271A (en) Nickel electrode for alkaline storage battery
JPH01302668A (en) Electrode for alkaline storage battery
JPH0326501B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees