JP4168293B2 - Paste type nickel hydroxide positive electrode plate for alkaline storage battery - Google Patents

Paste type nickel hydroxide positive electrode plate for alkaline storage battery Download PDF

Info

Publication number
JP4168293B2
JP4168293B2 JP13597297A JP13597297A JP4168293B2 JP 4168293 B2 JP4168293 B2 JP 4168293B2 JP 13597297 A JP13597297 A JP 13597297A JP 13597297 A JP13597297 A JP 13597297A JP 4168293 B2 JP4168293 B2 JP 4168293B2
Authority
JP
Japan
Prior art keywords
cobalt
nickel hydroxide
positive electrode
electrode plate
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13597297A
Other languages
Japanese (ja)
Other versions
JPH10312800A (en
Inventor
佐々木  秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP13597297A priority Critical patent/JP4168293B2/en
Publication of JPH10312800A publication Critical patent/JPH10312800A/en
Application granted granted Critical
Publication of JP4168293B2 publication Critical patent/JP4168293B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、負極がカドミウム、水素吸蔵合金、亜鉛あるいは鉄等であるアルカリ蓄電池に用いるペースト式水酸化ニッケル正極板に関する。
【0002】
【従来の技術】
近年の携帯電話、ビデオカメラあるいはヘッドホンステレオ等の種々の小型携帯機器の普及にともない、それらの電源としてアルカリ蓄電池は重要な役割を果たしている。アルカリ蓄電池の正極板には、従来、ニッケル粉末を穿孔鋼板に焼結してなる焼結基板に水酸化ニッケル活物質を含浸して製作される焼結式正極板が用いられてきた。しかしながら、焼結基板の多孔度が80%程度であることから、焼結式正極板の高容量化には限界があった。
【0003】
そこで、発泡ニッケル等の3次元多孔体の基板に、粉末状の水酸化ニッケルを種々の添加物と混合した活物質ペーストを充填して製作されるペースト式正極板の開発が進められている。3次元多孔体は焼結基板よりも高多孔度であるため高容量化が図れる利点があるが、その空孔径が大きいため極板としての導電性が低くなり、高率放電性能が低下する問題がある。この問題を改善することを目的として、グラファイトや金属ニッケル、および酸化コバルト、水酸化コバルトあるいは金属コバルト等のコバルト化合物を導電剤として添加する方法や、これらの導電剤によって水酸化ニッケルや3次元多孔体を被覆する方法が提案されている。最近では、被覆したコバルト化合物を酸化処理して導電性の高い2価を超える化合物とする技術も提案されている。
【0004】
【発明が解決しようとする課題】
ペースト式正極板は、低率放電においては焼結式極板よりも高容量となるが、高率放電においては性能が低下する問題がある。本発明は、これを改善して、高率放電性能の向上したアルカリ蓄電池用ペースト式水酸化ニッケル正極板を提供することを目的とする。
【0005】
正極板に添加された2価以下のコバルト化合物は、アルカリ水溶液に溶解してコバルト錯イオンとなり、水酸化コバルトとして水酸化ニッケル活物質表面あるいは活物質同士の隙間等に析出し、化成充電等によって2価を超える高次の酸化物であるオキシ水酸化コバルトに変化するものと考えられている。この2価を超えるオキシ水酸化コバルトは高導電性であり、2価以下の化合物に比べてアルカリ水溶液へ溶解度が小さく安定であり、良好な導電剤として作用して水酸化ニッケル正極板の充放電性能を向上させるものと考えられている。
【0006】
また、2価以下のコバルト化合物によって活物質である水酸化ニッケルを被覆した場合あるいは集電体である3次元多孔体を被覆した場合も、水酸化ニッケル正極板の充放電性能を向上する効果があることが知られている。しかしながら、2価以下のコバルト化合物を正極板に添加したり、水酸化ニッケルあるいは3次元多孔体を被覆した場合も、これらを単独で用いた場合には、高率放電性能の点で充分ではなかった。
【0007】
【課題を解決するための手段】
本発明ペースト式水酸化ニッケル正極板は、コバルトを主体とする化合物で被覆された3次元多孔体に、コバルトを主体とする化合物で被覆された水酸化ニッケル活物質を保持させてなるアルカリ蓄電池用ペースト式水酸化ニッケル正極板であって、該正極板の化成充電をするまでもなく、前記コバルトを主体とする化合物の少なくとも一方が2価を超えるものであることを特徴とする。
【0008】
【発明の実施の形態】
本発明によるペースト式水酸化ニッケル正極板は、コバルトを主体とする化合物で被覆された3次元多孔体に、コバルトを主体とする化合物で被覆された水酸化ニッケル活物質を保持させ、かつ、このコバルトを主体とする化合物のうち少なくとも一方は2価を超えるものとする。このようにすれば、3次元多孔体あるいは水酸化ニッケル活物質は、アルカリ電解液中で安定な導電性の高いオキシ水酸化コバルトのような2価を超えるコバルト化合物で被覆されているため、予め高い導電性が付与されているものと考えられ、2価の化合物のように化成充電にて変化させるまでもなく、活物質と基板との集電性が向上して、高率放電性能が向上するものと考えられる。
【0009】
【実施例】
以下、本発明の詳細を実施例を用いて説明する。
【0010】
[実験1]
(実施例1)
3次元多孔体のコバルト化合物による被覆は、つぎのようにしておこなった。多孔度95%の発泡ニッケル(住友電工製、商品名セルメット)を2.5M硫酸コバルト水溶液に浸漬した後、80℃で30分間の予備乾燥をおこない、ついで6MのNaOH水溶液に浸漬して水酸化物に変換した。ついで、充分に洗浄・乾燥をおこなった。
【0011】
本操作の実施回数あるいは前記硫酸コバルト水溶液の濃度を変更することによって、所定の被覆量を得ることが可能である。ここでは、発泡ニッケルを被覆した水酸化コバルトの、後の工程で充填する水酸化ニッケル活物質に対する割合を5wt%とした。
【0012】
ついで、25℃の25wt%水酸化カリウム水溶液中で5mA/cm2 の電流密度で陽極酸化をおこない、その後洗浄・乾燥をおこなって2価を超えるコバルト化合物で被覆した3次元多孔体を得た。
【0013】
水酸化ニッケル活物質は、1.5M硫酸ニッケル水溶液のpHが一定に保たれるように攪拌しながら、アルカリ性水溶液を徐々に供給して水酸化ニッケルを沈殿させ、濾過・洗浄・乾燥して得た。
【0014】
つぎに、この粉末に精製水を加えて分散させ、pHを一定に保たれるように攪拌しながら10wt%硫酸コバルト水溶液を加え、濾過・洗浄・乾燥して、水酸化コバルトで被覆された水酸化ニッケル活物質を得た。被覆した水酸化コバルトは2価であり、その水酸化ニッケル活物質に対する割合は5wt%とした。
【0015】
つぎに、この活物質を0.4wt%カルボキシメチルセルロース水溶液に分散させて、活物質ペーストを調製した。このペーストを、前記の方法で製作したコバルト化合物で被覆した発泡ニッケルに充填し、さらに乾燥・プレスすることにより、本発明によるペースト式水酸化ニッケル正極板A(本発明正極板A)を製作した。
【0016】
この正極板Aと、正極より充分大きな容量をもち化成処理によって部分充電済みの公知の焼結式カドミウム負極板とを、親水性を付与したポリプロピレン製セパレータを介して渦巻状に捲回し、電解液として7M水酸化カリウムを主体とする水溶液を用いて公称容量1000mAh、KR−AAサイズの密閉式ニッケル−カドミウム電池A(以下、本発明電池A)を製作した。
【0017】
(実施例2)
実施例1に記載した方法にて、2価の水酸化コバルトで被覆した水酸化ニッケルを得た。これを、100℃の空気中で熱処理して被覆した水酸化コバルトを酸化させて2価を超える状態とした活物質を得た。この活物質を、0.4wt%カルボキシメチルセルロース水溶液に分散させてペーストを調製した。このペーストを、実施例1に記載した方法と同様にして得た2価の水酸化コバルトで被覆された発泡ニッケルに充填し、さらに乾燥・プレスすることにより本発明正極板Bを製作し、さらに実施例1と同様の方法にて本発明電池Bを製作した。
【0018】
(実施例3)
実施例1に記載した方法にて、2価の水酸化コバルトで被覆した水酸化ニッケルを得た。これを、100℃の空気中で熱処理して被覆した水酸化コバルトを酸化させて2価を超える状態とした活物質を得た。この活物質を、0.4wt%カルボキシメチルセルロース水溶液に分散させてペーストを調製した。
【0019】
このペーストを、実施例1に記載した方法と同様にして得た2価を超えるコバルト化合物で被覆された発泡ニッケルに充填し、さらに乾燥・プレスすることにより本発明正極板Cを製作し、さらに実施例1と同様の方法にて本発明電池Cを製作した。
【0020】
(比較例1)
実施例1に記載した方法に準じて、被覆された2価を超えるコバルト化合物の水酸化ニッケルに対する割合が10wt%である、2価を超えるコバルト化合物で被覆された水酸化ニッケル活物質を製作した。この活物質を、0.4wt%カルボキシメチルセルロース水溶液に分散させてペーストを調製した。このペーストを、コバルト化合物で被覆されていない発泡ニッケルに充填し、さらに乾燥・プレスすることにより正極板Dを製作し、さらに実施例1と同様の方法にて比較電池Dを製作した。
【0021】
(比較例2)実施例1に記載した方法で製作したコバルト化合物で被覆されない水酸化ニッケル活物質を、0.4wt%カルボキシメチルセルロース水溶液に分散させてペーストを調製した。このペーストを、実施例1に記載した方法に準じて製作した2価を超えるコバルト化合物の水酸化ニッケルに対する割合が10wt%である2価を超えるコバルト化合物で被覆された発泡ニッケルに充填し、さらに乾燥・プレスすることにより正極板Eを製作し、さらに実施例1と同様の方法にて比較電池を製作した。
【0022】
(比較例3)
実施例1に記載した方法で製作したコバルト化合物で被覆されない水酸化ニッケル活物質100重量部と、水酸化コバルト10重量部を、0.4wt%カルボキシメチルセルロース水溶液に分散させてペーストを調製した。このペーストを、水酸化コバルトで被覆されていない発泡ニッケルに充填し、さらに乾燥・プレスすることにより正極板Fを製作し、さらに実施例1と同様の方法にて比較電池Fを製作した。
【0023】
前記の本発明電池A、BおよびC、および比較電池D、EおよびFは、いずれも水酸化ニッケルと水酸化コバルトの割合が100:10(wt%)であるペースト式水酸化ニッケル正極板を具備している。以上の電池を、25℃において0.1CmA(100mA)で15時間初充電したのち、0.2CmA(200mA)で1Vまで放電した。さらに、1CmA(1000mA)で1.2時間充電し、1CmA(1000mA)で1Vまで放電するという充放電を5サイクルおこなった。ついで、同様の条件で充電した後、3CA(3000mA)での放電をおこなった。このときの放電特性の比較を図1に示す。
【0024】
図1より、2価を超えるコバルト化合物で被覆された発泡ニッケルに2価の水酸化コバルトで被覆された水酸化ニッケルを充填した正極板を用いた本発明電池A、2価のコバルト化合物で被覆された発泡ニッケルに2価を超えるコバルト化合物で被覆された水酸化ニッケルを充填した正極板を用いた本発明電池B、および2価を超えるコバルト化合物で被覆された発泡ニッケルに2価を超えるコバルト化合物で被覆された水酸化ニッケルを充填した正極板を用いた本発明電池Cは、2価を超えるコバルト化合物で被覆された発泡ニッケルにコバルト化合物で被覆されない水酸化ニッケルを充填して製作した正極板Eを用いた比較電池E、コバルト化合物で被覆されていない発泡ニッケルに2価を超えるコバルト化合物で被覆された水酸化ニッケルを充填して製作した正極板Dを用いた比較電池D、および発泡ニッケル・水酸化ニッケル活物質ともコバルト化合物で被覆されてなく、水酸化コバルトが添加された正極板Fを用いた比較電池Fに比べて、放電時の分極が小さく、放電容量も大きいことがわかる。
【0025】
これは、本発明電池A、BおよびCでは、少なくとも一方が2価を超えるコバルト化合物で被覆された発泡ニッケルおよび水酸化ニッケルを用いたため、集電体あるいは活物質の少なくとも一方が予め導電性が高いため、発泡ニッケルと活物質の間の良好な導電剤として作用して、極板の集電性が向上したためと考えられる。
【0026】
また、比較電池DおよびEでは、発泡ニッケルおよび活物質のいずれか一方のみが2価を超えるコバルト化合物で被覆されたものであるが、発泡ニッケルと水酸化ニッケルがともにコバルト化合物で被覆された本発明電池Aに比べて、発泡ニッケルと活物質の間の集電性が小さいものと考えられる。この両者ともコバルト化合物で被覆されてなく、水酸化コバルトが添加されたのみである比較電池Fは、発泡ニッケルと活物質の間の水酸化コバルトの分布状態が均一となりにくいため、これらの電池より更に集電性が小さいものと考えられる。
【0027】
[実験2]
3次元多孔体を被覆する2価を超えるコバルト化合物および水酸化ニッケルを被覆する2価のコバルト化合物量を限定するために、実施例1に準じて、各々の被覆量を変えて種々の極板を製作して、前記と同様の試験をおこなった。試験の結果を、水酸化ニッケル量を100(wt%)として表1に示す。
【0028】
【表1】

Figure 0004168293
表1より、活物質を被覆した2価のコバルト化合物の量が1wt%より小さい場合および15wt%以上の場合には放電容量が小さく、適正値は1〜14wt%であることがわかる。また、3次元多孔体を被覆した2価を超えるコバルト化合物の量が1wt%より小さい場合および15wt%以上の場合には放電容量が小さく、適正値は1〜14wt%であることがわかる。
【0029】
放電容量が小さかった原因として、活物質を被覆した水酸化コバルトの量が1wt%未満の場合は、活物質自身の導電性を向上させる効果が小さいものと考えられる。3次元多孔体を被覆した2価を超えるコバルト化合物の量が1wt%未満の場合は、活物質と多孔体との導電性を向上させる効果が小さいためと考えられる。一方、活物質および多孔体を被覆した水酸化コバルトの量が15wt%以上の場合には、水酸化ニッケル活物質の占有体積が小さくなったためと考えられる。
【0030】
[実験3]
3次元多孔体を被覆する2価のコバルト化合物および水酸化ニッケルを被覆する2価を超えるコバルト化合物量を限定するために、実験2と同様にして、実施例2に準じて試験をおこなった。試験の結果を、表2に示す。
【0031】
【表2】
Figure 0004168293
表2より、活物質を被覆した2価を超えるコバルト化合物の量は、1〜14wt%が適正値であることがわかる。また、3次元多孔体を被覆した2価のコバルト化合物の量は、1〜14wt%が適正値であることがわかる。
【0032】
[実験4]
3次元多孔体を被覆する2価を超えるコバルト化合物および水酸化ニッケルを被覆する2価を超えるコバルト化合物量を限定するために、実験2と同様にして、実施例3に準じて試験をおこなった。試験の結果を、表3に示す。
【0033】
【表3】
Figure 0004168293
表3より、活物質を被覆した2価を超えるコバルト化合物の量は、1〜14wt%が適正値であることがわかる。また、3次元多孔体を被覆した2価を超えるコバルト化合物の量は、1〜14wt%が適正値であることがわかる。
【0034】
なお、実施例に示した本発明による正極板では、2価以下のコバルト化合物として水酸化コバルトを取り上げたが、一酸化コバルト、コバルトサブオキサイドや金属コバルトを用いても同様の効果が得られた。3次元多孔体は、実施例に用いた発泡ニッケルに限らず、3次元形状の骨格を持つものであれば繊維状のものでもよく、例えばアルカリ電解液中で安定なニッケルをメッキした不織布のような3次元多孔体も使用することができる。また、被覆した水酸化コバルトの酸化方法は、本実施例に記載した陽極酸化や空気酸化に限定されるものではなく、過マンガン酸カリウム等の酸化剤を用いる化学酸化や、その他公知の方法を用いることが可能である。さらに、水酸化ニッケルにコバルト、亜鉛、カドミウム等を共沈させて正極板の種々の性能を向上させる手段を妨げるものではない。
【0035】
また、言うまでもなく、本発明によるペースト式水酸化ニッケル正極板の効果はニッケル・カドミウム電池に限定されるものではなく、負極に水素吸蔵合金、亜鉛あるいは鉄等を用いたアルカリ蓄電池においても有効である。
【0036】
【発明の効果】
本発明によるアルカリ蓄電池用ペースト式水酸化ニッケル正極板は、高率放電性能の優れたアルカリ蓄電池を提供するものであり、その工業的価値は極めて大きい。
【図面の簡単な説明】
【図1】各電池の放電特性の比較を示した図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a paste-type nickel hydroxide positive electrode plate used for an alkaline storage battery whose negative electrode is cadmium, a hydrogen storage alloy, zinc, iron, or the like.
[0002]
[Prior art]
With the recent spread of various small portable devices such as mobile phones, video cameras, and headphone stereos, alkaline storage batteries play an important role as their power source. Conventionally, a sintered positive electrode plate produced by impregnating a nickel hydroxide active material into a sintered substrate obtained by sintering nickel powder into a perforated steel plate has been used as a positive electrode plate of an alkaline storage battery. However, since the porosity of the sintered substrate is about 80%, there is a limit to increasing the capacity of the sintered positive electrode plate.
[0003]
Accordingly, development of a paste-type positive electrode plate manufactured by filling a three-dimensional porous substrate such as nickel foam with an active material paste in which powdered nickel hydroxide is mixed with various additives is underway. The three-dimensional porous body has an advantage that the capacity can be increased because it has a higher porosity than the sintered substrate. However, since the pore diameter is large, the conductivity as the electrode plate is lowered and the high-rate discharge performance is lowered. There is. For the purpose of improving this problem, a method of adding graphite or metallic nickel and a cobalt compound such as cobalt oxide, cobalt hydroxide or metallic cobalt as a conductive agent, or nickel hydroxide or three-dimensional porous by these conductive agents. Methods for covering the body have been proposed. Recently, a technique has also been proposed in which a coated cobalt compound is oxidized to obtain a compound having a high conductivity and a value exceeding divalent.
[0004]
[Problems to be solved by the invention]
The paste-type positive electrode plate has a higher capacity than the sintered electrode plate in the low rate discharge, but has a problem that the performance is deteriorated in the high rate discharge. An object of the present invention is to provide a paste-type nickel hydroxide positive electrode plate for an alkaline storage battery that improves this and has improved high rate discharge performance.
[0005]
The divalent or lower valent cobalt compound added to the positive electrode plate is dissolved in an alkaline aqueous solution to form a cobalt complex ion, which is precipitated as cobalt hydroxide on the surface of the nickel hydroxide active material or between the active materials. It is considered to change to cobalt oxyhydroxide, which is a higher-order oxide exceeding divalent. This cobalt oxyhydroxide exceeding 2 valences is highly conductive, has low solubility in an alkaline aqueous solution and is stable compared to compounds below 2 valences, and acts as a good conducting agent to charge and discharge the nickel hydroxide positive electrode plate. It is thought to improve performance.
[0006]
Also, when nickel hydroxide as an active material is coated with a cobalt compound having a valence of 2 or less, or when a three-dimensional porous body as a current collector is coated, the effect of improving the charge / discharge performance of the nickel hydroxide positive electrode plate can be obtained. It is known that there is. However, even when a divalent or lower valent cobalt compound is added to the positive electrode plate, or when nickel hydroxide or a three-dimensional porous body is coated, it is not sufficient in terms of high rate discharge performance when these are used alone. It was.
[0007]
[Means for Solving the Problems]
The paste type nickel hydroxide positive electrode plate of the present invention is for an alkaline storage battery in which a nickel hydroxide active material coated with a cobalt-based compound is held in a three-dimensional porous material coated with a cobalt-based compound. It is a paste type nickel hydroxide positive electrode plate, characterized in that at least one of the cobalt-based compounds is more than divalent without needing chemical charge of the positive electrode plate.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The paste-type nickel hydroxide positive electrode plate according to the present invention holds a nickel hydroxide active material coated with a cobalt-based compound in a three-dimensional porous body coated with a cobalt-based compound, and At least one of the compounds mainly composed of cobalt is more than divalent. In this way, since the three-dimensional porous material or the nickel hydroxide active material is coated with a cobalt compound exceeding bivalent, such as cobalt oxyhydroxide, which is stable in an alkaline electrolyte and has high conductivity, It is considered that high electrical conductivity is imparted, and it is not necessary to change it by chemical charging like a divalent compound, but the current collecting property between the active material and the substrate is improved, and the high rate discharge performance is improved. It is thought to do.
[0009]
【Example】
Hereinafter, the details of the present invention will be described using examples.
[0010]
[Experiment 1]
(Example 1)
The three-dimensional porous body was coated with the cobalt compound as follows. A nickel foam with a porosity of 95% (manufactured by Sumitomo Electric, trade name Celmet) is immersed in a 2.5M cobalt sulfate aqueous solution, pre-dried at 80 ° C. for 30 minutes, and then immersed in a 6M NaOH aqueous solution for hydroxylation. It was converted into a thing. Next, it was thoroughly washed and dried.
[0011]
By changing the number of times this operation is performed or the concentration of the cobalt sulfate aqueous solution, a predetermined coating amount can be obtained. Here, the ratio of cobalt hydroxide coated with foamed nickel to the nickel hydroxide active material to be filled in a later step was 5 wt%.
[0012]
Subsequently, anodic oxidation was performed in a 25 wt% potassium hydroxide aqueous solution at 25 ° C. at a current density of 5 mA / cm 2 , and then washing and drying were performed to obtain a three-dimensional porous body coated with a cobalt compound exceeding 2 valences.
[0013]
The nickel hydroxide active material is obtained by gradually supplying an alkaline aqueous solution to precipitate nickel hydroxide while stirring so that the pH of the 1.5M nickel sulfate aqueous solution is kept constant, followed by filtration, washing and drying. It was.
[0014]
Next, purified water is added to the powder and dispersed, and a 10 wt% cobalt sulfate aqueous solution is added with stirring to maintain a constant pH, followed by filtration, washing and drying, and water coated with cobalt hydroxide. A nickel oxide active material was obtained. The coated cobalt hydroxide was divalent, and the ratio to the nickel hydroxide active material was 5 wt%.
[0015]
Next, this active material was dispersed in a 0.4 wt% carboxymethylcellulose aqueous solution to prepare an active material paste. The paste was filled in foamed nickel coated with the cobalt compound produced by the above method, and further dried and pressed to produce a paste type nickel hydroxide positive electrode plate A (the positive electrode plate A of the present invention) according to the present invention. .
[0016]
The positive electrode plate A and a known sintered cadmium negative electrode plate that has a sufficiently large capacity than the positive electrode and has been partially charged by chemical conversion treatment are spirally wound through a polypropylene separator provided with hydrophilicity. A sealed nickel-cadmium battery A (hereinafter referred to as the present invention battery A) having a nominal capacity of 1000 mAh and a KR-AA size was manufactured using an aqueous solution mainly composed of 7M potassium hydroxide.
[0017]
(Example 2)
Nickel hydroxide coated with divalent cobalt hydroxide was obtained by the method described in Example 1. This was heat-treated in air at 100 ° C. to oxidize the coated cobalt hydroxide to obtain an active material having a divalent state. This active material was dispersed in a 0.4 wt% carboxymethylcellulose aqueous solution to prepare a paste. This paste was filled in foamed nickel coated with divalent cobalt hydroxide obtained in the same manner as described in Example 1, and further dried and pressed to produce the positive electrode plate B of the present invention. The battery B of the present invention was manufactured in the same manner as in Example 1.
[0018]
(Example 3)
Nickel hydroxide coated with divalent cobalt hydroxide was obtained by the method described in Example 1. This was heat-treated in air at 100 ° C. to oxidize the coated cobalt hydroxide to obtain an active material having a divalent state. This active material was dispersed in a 0.4 wt% carboxymethylcellulose aqueous solution to prepare a paste.
[0019]
This paste was filled in foamed nickel coated with a cobalt compound exceeding bivalent obtained in the same manner as described in Example 1, and further dried and pressed to produce the positive electrode plate C of the present invention. The battery C of the present invention was manufactured in the same manner as in Example 1.
[0020]
(Comparative Example 1)
According to the method described in Example 1, a nickel hydroxide active material coated with a cobalt compound exceeding bivalent was manufactured, wherein the ratio of the cobalt compound coated with divalent cobalt to nickel hydroxide was 10 wt%. . This active material was dispersed in a 0.4 wt% carboxymethylcellulose aqueous solution to prepare a paste. The paste was filled in foamed nickel not coated with a cobalt compound, further dried and pressed to produce a positive electrode plate D, and a comparative battery D was produced in the same manner as in Example 1.
[0021]
(Comparative Example 2) A nickel hydroxide active material not coated with the cobalt compound produced by the method described in Example 1 was dispersed in a 0.4 wt% carboxymethylcellulose aqueous solution to prepare a paste. The paste was filled in a foamed nickel coated with a cobalt compound having a divalent cobalt compound, which was produced in accordance with the method described in Example 1, and the ratio of the cobalt compound having a bivalent compound to nickel hydroxide was 10 wt%. A positive electrode plate E was produced by drying and pressing, and a comparative battery E was produced in the same manner as in Example 1.
[0022]
(Comparative Example 3)
A paste was prepared by dispersing 100 parts by weight of a nickel hydroxide active material not coated with a cobalt compound prepared by the method described in Example 1 and 10 parts by weight of cobalt hydroxide in a 0.4 wt% carboxymethylcellulose aqueous solution. This paste was filled in foamed nickel not coated with cobalt hydroxide, further dried and pressed to produce a positive electrode plate F, and a comparative battery F was produced in the same manner as in Example 1.
[0023]
The batteries A, B and C of the present invention and the comparative batteries D, E and F are all paste type nickel hydroxide positive plates in which the ratio of nickel hydroxide and cobalt hydroxide is 100: 10 (wt%). It has. The above battery was initially charged at 0.1 CmA (100 mA) at 25 ° C. for 15 hours, and then discharged to 1 V at 0.2 CmA (200 mA). Furthermore, 5 cycles of charging / discharging which were charged with 1 CmA (1000 mA) for 1.2 hours and discharged to 1 V with 1 CmA (1000 mA) were performed. Then, after charging under the same conditions, discharging at 3CA (3000 mA) was performed. A comparison of the discharge characteristics at this time is shown in FIG.
[0024]
As shown in FIG. 1, the present invention battery A using a positive electrode plate in which nickel foam coated with divalent cobalt hydroxide is filled in foamed nickel coated with a cobalt compound exceeding divalent is coated with a divalent cobalt compound. Invented battery B using a positive electrode plate filled with nickel hydroxide coated with a nickel compound coated with more than two valences on the foamed nickel, and cobalt with more than two valences on the foamed nickel coated with more than two valent cobalt compounds the present invention cell C of the coated nickel hydroxide compounds using the positive electrode plate filled was fabricated by filling a divalent nickel hydroxide which is not coated with the coating foamed nickel more than cobalt compound to cobalt compound cathode Comparative battery E using plate E, nickel hydroxide coated with a cobalt compound with more than two valences on nickel foam not coated with cobalt compound Comparative battery D 1 using positive electrode plate D manufactured by filling Kell, and comparative battery using positive electrode plate F in which neither nickel foam nor nickel hydroxide active material is coated with cobalt compound and cobalt hydroxide is added It can be seen that the polarization during discharge is small and the discharge capacity is large compared to F.
[0025]
In the present invention batteries A, B, and C, at least one of the current collector and the active material is previously conductive because at least one of the nickel foam and nickel hydroxide coated with a cobalt compound having a valence of more than 2 is used. This is considered to be because the current collecting property of the electrode plate is improved by acting as a good conductive agent between the nickel foam and the active material.
[0026]
Further, in comparative batteries D and E, only one of foamed nickel and active material is coated with a cobalt compound having a valence of more than two. However, both of foamed nickel and nickel hydroxide are coated with a cobalt compound. Compared to Invention Battery A, it is considered that the current collecting property between the foamed nickel and the active material is small. Both of these batteries were not coated with a cobalt compound, and only the cobalt hydroxide was added, so that the distribution state of cobalt hydroxide between the foamed nickel and the active material is difficult to be uniform. Further, it is considered that the current collecting property is small.
[0027]
[Experiment 2]
In order to limit the amount of the divalent cobalt compound covering the bivalent cobalt compound and nickel hydroxide covering the three-dimensional porous body, various electrode plates can be used by changing the respective coating amounts in accordance with Example 1. And the same test as described above was performed. The test results are shown in Table 1 with the amount of nickel hydroxide being 100 (wt%).
[0028]
[Table 1]
Figure 0004168293
From Table 1, it can be seen that when the amount of the divalent cobalt compound coated with the active material is less than 1 wt% or more than 15 wt%, the discharge capacity is small and the appropriate value is 1 to 14 wt%. It can also be seen that the discharge capacity is small when the amount of the divalent cobalt compound covering the three-dimensional porous body is less than 1 wt% and 15 wt% or more, and the appropriate value is 1 to 14 wt%.
[0029]
As a cause of the small discharge capacity, when the amount of cobalt hydroxide coated with the active material is less than 1 wt%, it is considered that the effect of improving the conductivity of the active material itself is small. It is considered that when the amount of the cobalt compound having a valence of more than 2 covering the three-dimensional porous body is less than 1 wt%, the effect of improving the conductivity between the active material and the porous body is small. On the other hand, it is considered that when the amount of cobalt hydroxide covering the active material and the porous body is 15 wt% or more, the occupied volume of the nickel hydroxide active material is reduced.
[0030]
[Experiment 3]
In order to limit the amount of the divalent cobalt compound covering the three-dimensional porous body and the amount of the cobalt compound exceeding nickel valence covering the nickel hydroxide, a test was conducted in the same manner as in Experiment 2 according to Example 2. The test results are shown in Table 2.
[0031]
[Table 2]
Figure 0004168293
From Table 2, it can be seen that 1 to 14 wt% is an appropriate value for the amount of the cobalt compound exceeding the valence of 2 coated with the active material. Moreover, it turns out that 1-14 wt% is a suitable value for the quantity of the bivalent cobalt compound which coat | covered the three-dimensional porous body.
[0032]
[Experiment 4]
In order to limit the amount of cobalt compound exceeding 2 valences covering the three-dimensional porous body and the amount of cobalt compound exceeding 2 valences covering the nickel hydroxide, the test was conducted according to Example 3 in the same manner as in Experiment 2. . The results of the test are shown in Table 3.
[0033]
[Table 3]
Figure 0004168293
From Table 3, it can be seen that 1 to 14 wt% is an appropriate value for the amount of the cobalt compound exceeding the valence of 2 coated with the active material. Moreover, it turns out that 1-14 wt% is an appropriate value for the quantity of the cobalt compound exceeding 2 valences which coat | covered the three-dimensional porous body.
[0034]
In addition, in the positive electrode plate by this invention shown in the Example, although cobalt hydroxide was taken up as a cobalt compound below bivalent, the same effect was acquired even if it used cobalt monoxide, cobalt suboxide, and metallic cobalt. . The three-dimensional porous body is not limited to the foamed nickel used in the examples, but may be a fibrous one as long as it has a three-dimensional skeleton, such as a nonwoven fabric plated with nickel that is stable in an alkaline electrolyte. A three-dimensional porous body can also be used. Further, the method of oxidizing the coated cobalt hydroxide is not limited to the anodic oxidation or air oxidation described in this example, and chemical oxidation using an oxidizing agent such as potassium permanganate, and other known methods. It is possible to use. Further, it does not hinder means for co-precipitation of cobalt, zinc, cadmium, etc. with nickel hydroxide to improve various performances of the positive electrode plate.
[0035]
Needless to say, the effect of the paste type nickel hydroxide positive electrode plate according to the present invention is not limited to the nickel-cadmium battery, but is also effective in an alkaline storage battery using a hydrogen storage alloy, zinc, iron or the like for the negative electrode. .
[0036]
【The invention's effect】
The paste type nickel hydroxide positive electrode plate for alkaline storage battery according to the present invention provides an alkaline storage battery with excellent high rate discharge performance, and its industrial value is extremely large.
[Brief description of the drawings]
FIG. 1 is a diagram showing a comparison of discharge characteristics of batteries.

Claims (3)

コバルトを主体とする化合物で被覆された3次元多孔体に、コバルトを主体とする化合物で被覆された水酸化ニッケル活物質を保持させてなるアルカリ蓄電池用ペースト式水酸化ニッケル正極板であって、該正極板の化成充電をするまでもなく、前記コバルトを主体とする化合物の少なくとも一方が2価を超えるものであることを特徴とするアルカリ蓄電池用ペースト式水酸化ニッケル正極板。A paste type nickel hydroxide positive electrode plate for an alkaline storage battery in which a nickel hydroxide active material coated with a cobalt-based compound is held in a three-dimensional porous body coated with a cobalt-based compound, A paste type nickel hydroxide positive electrode plate for an alkaline storage battery, characterized in that at least one of the compounds mainly composed of cobalt is more than divalent without chemical conversion charging of the positive electrode plate . 前記3次元多孔体を被覆したコバルトを主体とする化合物の量が、水酸化ニッケルに対して1〜14wt%であることを特徴とする請求項1記載のアルカリ蓄電池用ペースト式水酸化ニッケル正極板。 2. The paste type nickel hydroxide positive electrode plate for an alkaline storage battery according to claim 1, wherein the amount of the cobalt-based compound covering the three-dimensional porous body is 1 to 14 wt% with respect to nickel hydroxide. . 前記水酸化ニッケル活物質を被覆したコバルトを主体とする化合物の量が、水酸化ニッケルに対して1〜14wt%であることを特徴とする請求項1記載のアルカリ蓄電池用ペースト式水酸化ニッケル正極板。 2. The paste type nickel hydroxide positive electrode for an alkaline storage battery according to claim 1, wherein the amount of the cobalt-based compound coated with the nickel hydroxide active material is 1 to 14 wt% with respect to nickel hydroxide. Board.
JP13597297A 1997-05-09 1997-05-09 Paste type nickel hydroxide positive electrode plate for alkaline storage battery Expired - Lifetime JP4168293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13597297A JP4168293B2 (en) 1997-05-09 1997-05-09 Paste type nickel hydroxide positive electrode plate for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13597297A JP4168293B2 (en) 1997-05-09 1997-05-09 Paste type nickel hydroxide positive electrode plate for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH10312800A JPH10312800A (en) 1998-11-24
JP4168293B2 true JP4168293B2 (en) 2008-10-22

Family

ID=15164180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13597297A Expired - Lifetime JP4168293B2 (en) 1997-05-09 1997-05-09 Paste type nickel hydroxide positive electrode plate for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP4168293B2 (en)

Also Published As

Publication number Publication date
JPH10312800A (en) 1998-11-24

Similar Documents

Publication Publication Date Title
EP0571630B1 (en) Method for production of nickel plate and alkali storage battery
JP4710225B2 (en) Method for producing nickel electrode material
JP3191751B2 (en) Alkaline storage battery and surface treatment method for positive electrode active material thereof
JP2000021401A (en) Nickel hydroxide powder for alkaline battery and nickel hydroxide electrode using the same
JP3617203B2 (en) Manufacturing method of nickel metal hydride secondary battery
JP2889669B2 (en) Non-sintered nickel positive electrode plate for alkaline storage batteries
JPH0221098B2 (en)
JP4168293B2 (en) Paste type nickel hydroxide positive electrode plate for alkaline storage battery
JP4366722B2 (en) Nickel hydroxide active material for alkaline storage battery
JP3249414B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery
JP3543607B2 (en) Alkaline storage battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP3490825B2 (en) Nickel electrode for alkaline storage battery
JP2981538B2 (en) Electrodes for alkaline batteries
JPH10312801A (en) Paste type nickel hydroxide positive electrode plate for alkaline storage battery
JPH10270039A (en) Paste nickel hydroxide positive electrode plate for alkaline storage battery
JP3003218B2 (en) Method for producing nickel electrode plate and method for producing alkaline storage battery
JP4531874B2 (en) Nickel metal hydride battery
JP3384109B2 (en) Nickel plate
JPH11238507A (en) Alkaline storage battery
JP4301778B2 (en) Method for producing sintered nickel positive electrode for alkaline secondary battery
JP2981537B2 (en) Negative electrode for alkaline batteries
JP3233013B2 (en) Nickel electrode for alkaline storage battery
JPH10270038A (en) Paste nickel hydroxide positive electrode plate for alkaline storage battery
JP4120762B2 (en) Nickel electrode and nickel metal hydride storage battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050622

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

EXPY Cancellation because of completion of term