JP2981537B2 - Negative electrode for alkaline batteries - Google Patents

Negative electrode for alkaline batteries

Info

Publication number
JP2981537B2
JP2981537B2 JP6148500A JP14850094A JP2981537B2 JP 2981537 B2 JP2981537 B2 JP 2981537B2 JP 6148500 A JP6148500 A JP 6148500A JP 14850094 A JP14850094 A JP 14850094A JP 2981537 B2 JP2981537 B2 JP 2981537B2
Authority
JP
Japan
Prior art keywords
negative electrode
iron
sintered body
storage alloy
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6148500A
Other languages
Japanese (ja)
Other versions
JPH07335206A (en
Inventor
哲男 境
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6148500A priority Critical patent/JP2981537B2/en
Publication of JPH07335206A publication Critical patent/JPH07335206A/en
Application granted granted Critical
Publication of JP2981537B2 publication Critical patent/JP2981537B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Powder Metallurgy (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル−カドミウム
電池、ニッケル−亜鉛電池、ニッケル−水素電池等のア
ルカリ蓄電池に用いられる負極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode used for an alkaline storage battery such as a nickel-cadmium battery, a nickel-zinc battery and a nickel-hydrogen battery.

【0002】[0002]

【従来の技術及びその問題点】各種の電源として使われ
る蓄電池として鉛電池とアルカリ電池がある。このうち
アルカリ蓄電池は高い信頼性が期待でき、小型軽量化も
可能などの理由で、小型アルカリ電池は各種ポータブル
機器用に、大型アルカリ電池は産業用として広く使用さ
れてきた。
2. Description of the Related Art Lead-acid batteries and alkaline batteries are known as storage batteries used as various power sources. Among these, the alkaline storage battery has been widely used for various portable devices, and the large alkaline battery has been widely used for industrial use, for any reason that high reliability can be expected and small size and light weight can be achieved.

【0003】このアルカリ蓄電池において、正極として
は、一部空気極や酸化銀極なども取り上げられている
が、ほとんどの場合ニッケル極である。ポケット式から
焼結式に代わって電極の特性が向上し、さらに密閉化が
可能になるとともに用途も広がった。一方、負極として
はカドミウムの他に亜鉛、鉄、水素などが対象となって
いる。
In this alkaline storage battery, as the positive electrode, an air electrode, a silver oxide electrode, and the like are partially used, but in most cases, the electrode is a nickel electrode. The characteristics of the electrodes have been improved from the pocket type to the sintered type, and the sealing has become possible and the use has been expanded. On the other hand, in addition to cadmium, zinc, iron, hydrogen and the like are targeted as the negative electrode.

【0004】最も広く普及している負極はカドミウム極
であり、ニッケル−カドミウム蓄電池がポータブル機器
から産業用まで二次電池の主役になっている。負極とし
て次に普及している亜鉛は、電位と容量と価格の点では
申し分ないが、可溶性であるため寿命に問題があり、広
く使われるまでには至っていない。一方、水素吸蔵合金
極は高容量と低公害を特徴に、ニッケル−水素蓄電池が
商品化され、小型を中心に需要が伸びている。
[0004] The most widely used negative electrode is a cadmium electrode, and nickel-cadmium storage batteries play a leading role in secondary batteries from portable equipment to industrial use. Zinc, which is next popularized as a negative electrode, is satisfactory in terms of potential, capacity, and price, but has a problem in life due to its solubility, and has not yet been widely used. On the other hand, the hydrogen storage alloy electrode is characterized by high capacity and low pollution, and a nickel-hydrogen storage battery has been commercialized, and the demand is growing mainly in small size.

【0005】これら負極の方式としては焼結式カドミウ
ム極や水素吸蔵合金極が、一部で使われている他はペー
スト式が主である。ペースト式は低廉であるが、特性は
焼結式や発泡式などに比べるとやや劣る。
[0005] As a method of these negative electrodes, a sintered cadmium electrode and a hydrogen storage alloy electrode are mainly used, and a paste type is mainly used except for some of them. Although the paste type is inexpensive, its properties are slightly inferior to those of the sintered type and the foam type.

【0006】ところが、一般の焼結式支持体では、多孔
度を85%以上にすると、強度が大幅に低下するため活
物質の充填量、すなわち高容量化に限界があり、90%
以上のような一層高多孔度の基板として焼結基板に代え
て発泡状基板や繊維状基板が取り上げられ、一部実用化
されている。しかし、発泡状樹脂にニッケルペーストを
塗着し、これを焼結することで高多孔度の焼結体を得る
ことが古くから提案されている。例えば特願昭36−4
5195号では、ニッケル粉末を泥状にしてウレタンフ
ォームに含浸して水素中で樹脂を炭化した後、ニッケル
を半融状態にして多孔体を製造している。また、特願昭
48−55274号では、アルミナ粉末、シリカ粉末な
どをボールミルで粉砕後、やはりウレタンフォームに含
浸して空気中で焼いて焼結体を得ている。特願昭49−
64529号では、水酸化ニッケル陽電極用としてポリ
エーテルフォームをモンドニッケル粉の緩い粉末床に浸
漬し、これを加熱して支持体としている。またフォーム
の代わりに不織布も例示されている。
However, in the case of a general sintered support, if the porosity is 85% or more, the strength is greatly reduced. Therefore, the filling amount of the active material, that is, the increase in the capacity is limited.
A foamed substrate or a fibrous substrate has been taken up as a substrate with higher porosity instead of a sintered substrate as described above, and a part of the substrate has been put to practical use. However, it has long been proposed to apply a nickel paste to a foamed resin and sinter the nickel paste to obtain a sintered body having a high porosity. For example, Japanese Patent Application No. 36-4
In No. 5195, a porous body is manufactured by making nickel powder into a mud state, impregnating urethane foam, carbonizing the resin in hydrogen, and then making nickel in a semi-molten state. In Japanese Patent Application No. 48-55274, alumina powder, silica powder and the like are crushed by a ball mill, then impregnated in urethane foam and baked in air to obtain a sintered body. Japanese Patent Application No. 49-
In No. 64529, a polyether foam for a nickel hydroxide positive electrode is immersed in a loose powder bed of mond nickel powder and heated to form a support. A nonwoven fabric is also exemplified in place of the foam.

【0007】芯材を用いた粉末充填−焼結、ペースト−
焼結の方式の焼結体では基板の多孔度を85%以上にす
ると、強度が大幅に低下するので高容量化に限界があ
る。そこで90%以上のような一層高多孔度の基板とし
て発泡状樹脂にニッケルペーストを塗着しこれを焼結す
ることで高多孔度の焼結体を得ることが古くから提案さ
れている。しかし焼結の操作を行うこと、原料のニッケ
ルが高価なことなどからパンチングメタル、スクリー
ン、エキスパンドメタルなどを支持体としたペースト式
よりも高価になる。
Powder filling using core material-sintering, paste-
In a sintered body of the sintering method, if the porosity of the substrate is set to 85% or more, the strength is greatly reduced, so that there is a limit to increasing the capacity. Therefore, it has long been proposed to obtain a highly porous sintered body by applying a nickel paste to a foamed resin and sintering it as a substrate with a higher porosity of 90% or more. However, the sintering operation and the high price of nickel as a raw material are more expensive than the paste type using a punching metal, screen, expanded metal or the like as a support.

【0008】[0008]

【発明が解決しようとする課題】本発明は、より高容量
且つ安価なアルカリ電池用の負極及びその製造法を提供
することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a negative electrode for a higher capacity and less expensive alkaline battery and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】本発明は、多孔性の樹脂
芯体の骨格に、鉄粉末と結着剤とを主成分としたペース
トを被覆し、ついで鉄粉末が焼結する温度以上に非酸化
性粉末中で加熱して三次元スポンジ状焼結体とし、これ
に負極活物質を充填して得られることを特徴とするアル
カリ電池用負極を提供するものである。
According to the present invention, a skeleton of a porous resin core is coated with a paste containing iron powder and a binder as main components, and then heated to a temperature higher than the temperature at which the iron powder is sintered. An object of the present invention is to provide a negative electrode for an alkaline battery, wherein the negative electrode is obtained by heating in a non-oxidizing powder to form a three-dimensional sponge-like sintered body, and filling it with a negative electrode active material.

【0010】本発明において、「三次元スポンジ状」と
は、焼結体の空隙部分の比率、すなわち多孔度が90〜
96%、好ましくは94〜96%程度であることを意味
する。また、空隙部分の平均直径は円形に換算して10
0〜300μm、好ましくは150〜250μm程度で
ある。この空隙部分に負極活物質が充填される。
In the present invention, the "three-dimensional sponge-like" means that the ratio of the voids of the sintered body, that is, the porosity is 90 to 90%.
96%, preferably about 94 to 96%. The average diameter of the void portion is 10 in terms of a circle.
It is about 0 to 300 μm, preferably about 150 to 250 μm. The space is filled with the negative electrode active material.

【0011】三次元スポンジ状焼結体に充填される負極
活物質は、公知の負極活物質がいずれも用いられ、特に
限定されないが、例えばカドミウム、水素吸蔵合金、亜
鉛等が挙げられ、好ましくは水素吸蔵合金である。
As the negative electrode active material to be filled in the three-dimensional sponge-like sintered body, any known negative electrode active material is used, and is not particularly limited. Examples thereof include cadmium, a hydrogen storage alloy, and zinc. It is a hydrogen storage alloy.

【0012】これらの負極活物質の充填は、特に限定さ
れないが、例えばその粉末と適当な結着剤を混合してペ
ースト状とし、上記三次元焼結体に含浸して充填するこ
とができる。
The filling of the negative electrode active material is not particularly limited. For example, the powder can be mixed with a suitable binder to form a paste, and the paste can be filled by impregnating the three-dimensional sintered body.

【0013】本発明において、多孔性の樹脂芯体の樹脂
としては、焼結時に焼却除去される限り特に限定されな
いが、例えばポリウレタン、ポリスチロールが例示され
る。
In the present invention, the resin of the porous resin core is not particularly limited as long as it is incinerated and removed at the time of sintering, and examples thereof include polyurethane and polystyrene.

【0014】他の主成分である結着剤としては、公知の
結着剤が挙げられ、特に限定されないが、例えばカルボ
キシメチルセルロース(CMC)、カルボキシプロピル
メチルセルロース、メチルセルロース、デンプン、ポリ
ビニルアルコール(PVA)等が挙げられ、好ましくは
CMC、PVAが例示される。結着剤は、水、アルコー
ルなどの溶媒に溶解等して用いることができる。ペース
ト全体を100重量部としたとき、鉄粉末は94〜99
重量部、結着剤は1〜6重量部含まれる。上記結着剤
は、負極活物質の充填時にも必要に応じ同様なものが用
いられる。
[0014] The binder as the other main component includes known binders, and is not particularly limited. Examples thereof include carboxymethylcellulose (CMC), carboxypropylmethylcellulose, methylcellulose, starch, and polyvinyl alcohol (PVA). And preferably CMC and PVA. The binder can be used after being dissolved in a solvent such as water or alcohol. When the whole paste is 100 parts by weight, the iron powder is 94-99.
Parts by weight and 1 to 6 parts by weight of the binder are contained. The same binder may be used as needed when filling the negative electrode active material.

【0015】本発明でペーストを「被覆」するとは、多
孔性の樹脂芯体の表面にペーストが付着した状態を示
す。ペーストを被覆させる方法としては、特に限定され
ないが、例えば常圧又は加圧下にペースト中に多孔性の
樹脂芯体を浸漬ないし含浸し、次いで該芯体をペースト
中から取り出すことにより被覆することができる。本発
明でペーストとは、鉄粉末及び結着剤が多孔性の樹脂芯
体に一様ないしほぼ一様に分布することができ、芯体表
面の鉄粉末及び結着剤が付着し、流出等しない程度の流
動性を有するものを意味する。
In the present invention, "coating" a paste means a state in which the paste adheres to the surface of a porous resin core. The method of coating the paste is not particularly limited. For example, coating may be performed by immersing or impregnating the porous resin core in the paste under normal pressure or pressure, and then removing the core from the paste. it can. In the present invention, the paste means that the iron powder and the binder can be uniformly or almost uniformly distributed on the porous resin core, and the iron powder and the binder on the surface of the core adhere to the paste and flow out. Means that the fluidity is not so high.

【0016】本発明で、焼結は鉄粉末が焼結する以上の
温度は、鉄粉末の粒子の大きさによっても異なり、特に
限定されないが、例えば850〜1150℃、好ましく
は950〜1050℃程度である。該焼結は、非酸化性
雰囲気中、すなわち窒素などの不活性気体中、水素ガ
ス、分解アンモニアガス等の還元性気体中で行われる。
In the present invention, the temperature at which the sintering of the iron powder is carried out depends on the size of the particles of the iron powder and is not particularly limited. For example, about 850 to 1150 ° C., preferably about 950 to 1050 ° C. It is. The sintering is performed in a non-oxidizing atmosphere, that is, in an inert gas such as nitrogen, or in a reducing gas such as hydrogen gas or decomposed ammonia gas.

【0017】[0017]

【作用】先ず、多孔性の芯体の骨格として、還元鉄、カ
ーボニル鉄、電解鉄などの鉄粉末と結着剤とを主成分と
したペーストを被覆し、ついで鉄粉末が焼結する温度以
上に非酸化性雰囲気中で加熱して三次元スポンジ状鉄焼
結体とする。
First, as a skeleton of a porous core, a paste containing iron powder such as reduced iron, carbonyl iron, electrolytic iron and the like as a main component and a binder is coated. Is heated in a non-oxidizing atmosphere to form a three-dimensional sponge-like iron sintered body.

【0018】ところで鉄は安価であるが、電解液の苛性
アルカリ中で酸素発生電位になるとニッケルと異なり一
部酸化する。しかし、一般に蓄電池では正極の容量より
も負極の容量を多く用いるため、負極が過放電すること
はなく、従って酸素発生電位になることはない。換言す
れば、支持体が酸化する心配はなく、高容量の負極の支
持体として鉄製の三次元スポンジ状焼結体を用い得るこ
とを見出した。なお、鉄としては、鉄負極用のように高
純度の粉末は必要でなく、強度の大きい焼結体になれば
よく、安価な還元鉄が用いられる。その他、やや高価に
なるが電解鉄やカーボニル鉄などでもよく、種類に限定
されない。この場合、鉄は高純度でしかも電解液中に硫
化物を含まないと放電することはない。
Although iron is inexpensive, it partially oxidizes, unlike nickel, when it reaches an oxygen generation potential in caustic alkali of an electrolytic solution. However, since the capacity of the negative electrode is generally larger than the capacity of the positive electrode in a storage battery, the negative electrode does not overdischarge, and thus does not reach the oxygen generation potential. In other words, it has been found that there is no concern that the support is oxidized, and that a three-dimensional sponge-like sintered body made of iron can be used as the support for the high-capacity negative electrode. In addition, as iron, high-purity powder is not required as in the case of an iron negative electrode, and a sintered body having high strength may be used, and inexpensive reduced iron is used. In addition, although slightly expensive, electrolytic iron or carbonyl iron may be used, and the type is not limited. In this case, the iron does not discharge unless the electrolyte has high purity and the electrolyte does not contain sulfide.

【0019】[0019]

【実施例】以下、本発明を実施例を用いてより詳細に説
明するが、本発明はこれら実施例に限定されない。
EXAMPLES The present invention will be described below in more detail with reference to examples, but the present invention is not limited to these examples.

【0020】市販の見掛け比重2.5g/cc、平均粒
径1〜3μmの還元鉄粉にカルボキメチルセルロース3
%水溶液を280cc加え、これを厚さ1.5mm、平
均孔径0.3mm、多孔度97%のポリウレタン発泡体
を支持体として含浸し、付着させる。ローラを通して基
本的に発泡体に付着している以外のペーストを除く。こ
れを90℃で乾燥後、1150℃で30分間水素中で焼
結する。この間に発泡体とカルボキメチルセルロースは
分解して除去される。得られた鉄の焼結体は、厚さ1.
4mm、空隙部分の平均孔径0.25mm、多孔度95
%であった。
Commercially available reduced iron powder having an apparent specific gravity of 2.5 g / cc and an average particle diameter of 1 to 3 μm was added to carboxymethyl cellulose 3
280 cc of a 2.5% aqueous solution is added and impregnated with a polyurethane foam having a thickness of 1.5 mm, an average pore diameter of 0.3 mm, and a porosity of 97% as a support and adhered thereto. Except for the paste that is basically adhered to the foam through the roller. After drying at 90 ° C., it is sintered at 1150 ° C. for 30 minutes in hydrogen. During this time, the foam and carboxymethyl cellulose are decomposed and removed. The obtained iron sintered body had a thickness of 1.
4 mm, average pore size 0.25 mm in voids, porosity 95
%Met.

【0021】上記で得た鉄の焼結体を支持体として用い
た水素吸蔵合金極の製造法を以下に詳述する。
A method for producing a hydrogen storage alloy electrode using the iron sintered body obtained above as a support will be described in detail below.

【0022】LaNi5の一種であるMmNi3.7Mn
0.4Al0.3Co0.6を粉砕して300メッシュを通過さ
せる。この粉末にカルボキシメチルセルロースの2重量
%水溶液を加えてペーストとする。このペーストを焼結
体に充填する。表面を平滑化し、その後120℃で1時
間乾燥した。得られた電極はエンボス加工を施したロー
ラプレス機を3回通して厚さ0.5mmに調整した。こ
のようにして得られたペースト式水素吸蔵合金極を幅3
3mm、長さ220mmに裁断し、リード板をスポット
溶接により取り付けた。相手極として公知の公称容量
2.7Ahの発泡式ニッケル極、親水処理したポリプロ
ピレン不織布セパレータを用いて密閉形ニッケル−水素
蓄電池を構成した。電解液として比重1.28の苛性カ
リ水溶液に30g/lの水酸化リチウムを溶解して用い
た。電池は、SubC型とした。この電池をAとする。
MmNi 3.7 Mn which is a kind of LaNi 5
0.4 Al 0.3 Co 0.6 is crushed and passed through a 300 mesh. A 2% by weight aqueous solution of carboxymethylcellulose is added to this powder to form a paste. This paste is filled in a sintered body. The surface was smoothed and then dried at 120 ° C. for 1 hour. The obtained electrode was passed through an embossed roller press three times to adjust the thickness to 0.5 mm. The paste-type hydrogen storage alloy electrode obtained in this manner was
The sheet was cut into a size of 3 mm and a length of 220 mm, and a lead plate was attached by spot welding. A sealed nickel-hydrogen storage battery was formed using a known foamed nickel electrode having a nominal capacity of 2.7 Ah as a counter electrode and a polypropylene nonwoven fabric separator subjected to hydrophilic treatment. As an electrolytic solution, 30 g / l of lithium hydroxide was dissolved and used in an aqueous caustic potassium solution having a specific gravity of 1.28. The battery was a SubC type. This battery is designated as A.

【0023】負極として公知の発泡式ニッケルに実施例
2と同じ水素吸蔵合金を充填して用いた電池をBとし
た。
A battery B was used as a negative electrode in which a known foaming nickel was filled with the same hydrogen storage alloy as in Example 2.

【0024】また、負極として公知の鉄にニッケルメッ
キしたパンチングメタルにフッ素樹脂を結着剤としてペ
ーストとしたものを塗着して得られた水素吸蔵合金極を
用いて得られた電池をCとした。
A battery obtained using a hydrogen-absorbing alloy electrode obtained by coating a known punching metal obtained by plating nickel with iron on a paste using a fluororesin as a binder is referred to as C. did.

【0025】電池の性能試験 化成終了後の各電池(A、B及びC)の放電電流1Aで
終止電圧0.95Vと10Aで終止電圧0.85Vの際
の平均放電電圧と容量及び5時間率で容量の120%定
電流充電し、1.5Aで終止電圧0.9Vまでの条件で
の寿命特性を調べた。これらの試験結果を一括して表1
に示す。
Battery performance test After completion of the formation, the average discharge voltage, capacity and 5 hour rate of each battery (A, B and C) at a discharge voltage of 1A at a cut-off voltage of 0.95V and at a discharge voltage of 10A at a cut-off voltage of 0.85V The battery was charged at a constant current of 120% of the capacity, and the life characteristics under conditions of 1.5 A and a final voltage of 0.9 V were examined. Table 1 summarizes these test results.
Shown in

【0026】[0026]

【表1】 電池 1A放電 10A放電 700サイクル V Ah V Ah 容量維持率(%) A 1.24 2.67 1.15 2.23 88 B 1.24 2.67 1.15 2.23 88C 1.23 2.67 1.13 2.20 82 上記表1の結果から明らかなように、本発明の負極を用
いた電池の放電特性はニッケル発泡状支持体の場合と全
く差がなく、二次元構造の支持体であるCよりも優れて
いた。
Table 1 Battery 1A discharge 10A discharge 700 cycles V Ah V Ah Capacity retention (%) A 1.24 2.67 1.15 2.23 88 B 1.24 2.67 1.15 2.23 88 C 1.23 2.67 1.13 2.20 82 As is clear from the results in Table 1 above, the discharge characteristics of the battery using the negative electrode of the present invention did not differ at all from the case of the nickel foamed support. It was superior to C, which is a support having a three-dimensional structure.

【0027】なお、本発明のような鉄を支持体とした密
閉型の電池では、過充電時に正極からの酸素で酸化雰囲
気になり鉄の酸化が懸念されるが、実際にはこのような
現象は全くなく、水素吸蔵合金中の水素が鉄の酸化や電
解液による腐食を防いでいることが判明した。
In a sealed battery using iron as a support as in the present invention, oxygen from the positive electrode causes an oxidizing atmosphere at the time of overcharge, and there is a concern that iron may be oxidized. It was found that the hydrogen in the hydrogen storage alloy prevented oxidation of iron and corrosion by the electrolyte.

【0028】[0028]

【発明の効果】本発明により、安価で放電特性、寿命と
もに優れたアルカリ電池用電極が得られる。
According to the present invention, an electrode for an alkaline battery which is inexpensive and has both excellent discharge characteristics and long life can be obtained.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01M 4/24 - 4/26 H01M 4/80 B22F 5/00 Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01M 4/24-4/26 H01M 4/80 B22F 5/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】多孔性の樹脂芯体の骨格に、鉄粉末と結着
剤とを主成分とするペーストを被覆し、ついで非酸化性
雰囲気中で鉄粉末が焼結する温度以上に加熱して三次元
スポンジ状焼結体を得た後、得られた三次元スポンジ状
焼結体に負極活物質として水素吸蔵合金を充填してな
、焼結体の多孔度が90〜96%であり、焼結体の空
隙部分の平均直径(円形換算)が100〜300μmである
閉型アルカリ電池用水素吸蔵合金負極。
A skeleton of a porous resin core is coated with a paste containing iron powder and a binder as main components, and then heated in a non-oxidizing atmosphere to a temperature at which the iron powder sinters. After obtaining a three-dimensional sponge-like sintered body by the above, the obtained three-dimensional sponge-like sintered body is filled with a hydrogen storage alloy as a negative electrode active material.
Ri, the porosity of the sintered body is 90 to 96%, the average diameter of the void portions of the sintered body (circular equivalent) is 100~300μm dense
Hydrogen storage alloy negative electrode for closed alkaline batteries.
【請求項2】多孔性の樹脂がポリウレタン又はポリスチ
ロールである請求項1記載の密閉型アルカリ電池用水素
吸蔵合金負極。
2. The hydrogen for a sealed alkaline battery according to claim 1, wherein the porous resin is polyurethane or polystyrene.
Storage alloy negative electrode.
【請求項3】鉄が還元鉄、カーボニル鉄、電解鉄のいず
れかである請求項1記載の密閉型アルカリ電池用水素吸
蔵合金負極。
3. The hydrogen storage device for a sealed alkaline battery according to claim 1, wherein the iron is any one of reduced iron, carbonyl iron, and electrolytic iron.
Storage alloy negative electrode.
JP6148500A 1994-06-06 1994-06-06 Negative electrode for alkaline batteries Expired - Lifetime JP2981537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6148500A JP2981537B2 (en) 1994-06-06 1994-06-06 Negative electrode for alkaline batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6148500A JP2981537B2 (en) 1994-06-06 1994-06-06 Negative electrode for alkaline batteries

Publications (2)

Publication Number Publication Date
JPH07335206A JPH07335206A (en) 1995-12-22
JP2981537B2 true JP2981537B2 (en) 1999-11-22

Family

ID=15454151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6148500A Expired - Lifetime JP2981537B2 (en) 1994-06-06 1994-06-06 Negative electrode for alkaline batteries

Country Status (1)

Country Link
JP (1) JP2981537B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7227194B2 (en) 2020-07-16 2023-02-21 トヨタ自動車株式会社 Sulfide all-solid-state battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142377A (en) * 1984-08-02 1986-02-28 Mitsubishi Motors Corp Method for painting metal thin plate structure
JPS6224561A (en) * 1985-07-23 1987-02-02 Yuasa Battery Co Ltd Cadmium negative plate
JPH02254107A (en) * 1989-03-29 1990-10-12 Nippon Steel Corp Sound absorbing material

Also Published As

Publication number Publication date
JPH07335206A (en) 1995-12-22

Similar Documents

Publication Publication Date Title
JP5062724B2 (en) Method for producing nickel electrode for alkaline battery and nickel electrode for alkaline battery
JP3386634B2 (en) Alkaline storage battery
JP4772185B2 (en) Positive electrode plate for alkaline storage battery, method for producing the same, and alkaline storage battery using the same
JPH10241697A (en) Alkaline storage battery electrode and manufacture thereof
JP4634322B2 (en) Battery electrode
JP2981537B2 (en) Negative electrode for alkaline batteries
JP2981538B2 (en) Electrodes for alkaline batteries
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
KR100276634B1 (en) Alkali battery metal hydride electrode and its manufacturing method
JP2537128B2 (en) Method for producing hydrogen storage alloy powder for negative electrode of nickel-hydrogen secondary battery and method for producing negative electrode for nickel-hydrogen secondary battery
JP2590437B2 (en) Electrode substrate for alkaline batteries
JP4366722B2 (en) Nickel hydroxide active material for alkaline storage battery
JPH11233120A (en) Electrode for alkaline storage battery and its manufacture
JP3156485B2 (en) Nickel electrode for alkaline storage battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPH11111280A (en) Hydride secondary battery
JPH10334899A (en) Manufacture of alkaline storage battery and its electrode
JP3374995B2 (en) Manufacturing method of nickel electrode
JP4531874B2 (en) Nickel metal hydride battery
JPH103940A (en) Nickel-metal hydride storage battery and its manufacture
JPH0513077A (en) Manufacture of hydrogen storage alloy electrode
JP4168293B2 (en) Paste type nickel hydroxide positive electrode plate for alkaline storage battery
JPH0773876A (en) Nickel electrode for secondary battery and manufacture thereof
JPH09147857A (en) Manufacture of positive electrode active material for alkaline storage battery
JP3573885B2 (en) Method for producing nickel hydroxide active material for alkaline storage battery and alkaline storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term