JPH10334899A - Manufacture of alkaline storage battery and its electrode - Google Patents

Manufacture of alkaline storage battery and its electrode

Info

Publication number
JPH10334899A
JPH10334899A JP9141968A JP14196897A JPH10334899A JP H10334899 A JPH10334899 A JP H10334899A JP 9141968 A JP9141968 A JP 9141968A JP 14196897 A JP14196897 A JP 14196897A JP H10334899 A JPH10334899 A JP H10334899A
Authority
JP
Japan
Prior art keywords
nickel
fibers
electrode
core material
conductive core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9141968A
Other languages
Japanese (ja)
Other versions
JP3460509B2 (en
Inventor
Hiroki Takeshima
宏樹 竹島
Toru Inagaki
徹 稲垣
Kazushige Sugimoto
一茂 杉本
Katsuhiro Okamoto
克博 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14196897A priority Critical patent/JP3460509B2/en
Publication of JPH10334899A publication Critical patent/JPH10334899A/en
Application granted granted Critical
Publication of JP3460509B2 publication Critical patent/JP3460509B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To improve charge/discharge characteristic using a base board formed by integrating a conductive core material which is composed of a porous material such as a metal board or a net with nickel fibers constituted of a core part, which is raised from the both surfaces of the core material and composed of carbon fibers, and a nickel layer covering its surface. SOLUTION: After a polyvinyl butyral-based adhesive has been applied on the both sides of a nickel plated steel punching metal 1 of numerical aperture 42%, rayon fibers are transplanted and the surfaces of the punching metal 1 and the rayon fibers are coated with nickel with a prescribed thickness. The rayon fibers are heated in a non-oxidizing atmosphere, so as to be formed into carbon fibers, the nickel applied on the punching metal 1 and rayon fiber surfaces, and the core material are burned, and the obtained base board is filled with an active material. That is to say, the base board formed by integrating the punching metal 1 with the nickel fibers and constituting the nickel fibers of a carbon fibers 2 and a nickel coating layer 3 is filled with the active material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はアルカリ蓄電池とそ
の電極の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline storage battery and a method for manufacturing an electrode thereof.

【0002】[0002]

【従来の技術】アルカリ蓄電池はその利用機器である通
信機、パーソナルコンピュータなどの携帯化が進むにつ
れて市場規模を拡大してきた。これらの分野においては
最近では軽量かつ高容量な電池への需要が急激に伸びて
いる。また、電動工具、補助動力など大電流での充放電
が必要とされる用途においても、アルカリ蓄電池の需要
は高まっている。
2. Description of the Related Art The market size of alkaline storage batteries has been expanding as portable devices such as communication devices and personal computers have been used. In these fields, the demand for lightweight and high-capacity batteries has been rapidly increasing recently. In addition, demands for alkaline storage batteries are increasing also in applications that require charging and discharging with a large current, such as power tools and auxiliary power.

【0003】アルカリ蓄電池用電極の製造法は大別し
て、パンチングメタルなどの導電性芯材にニッケル粉末
と増粘剤とを混練したペーストを塗着し、これを焼結し
た基板に活物質を含浸することによって得られる焼結式
と、発泡メタル、ニッケル不織布などの金属多孔体ある
いはパンチングメタル、エキスパンドメタルなどの導電
性芯材に、活物質を含むペーストを充填または塗着して
得られるペースト式とがある。
The method of manufacturing an electrode for an alkaline storage battery is roughly classified into a method in which a paste obtained by kneading a nickel powder and a thickener on a conductive core material such as punching metal is applied, and a substrate obtained by sintering the paste is impregnated with an active material. And a paste type obtained by filling or applying a paste containing an active material to a porous metal such as foamed metal or nickel nonwoven fabric or a conductive core material such as punched metal or expanded metal. There is.

【0004】本発明の電極に類似したものとして、特開
昭61−293618号公報においては、ステンレス鋼
網に繊維状ニッケルを植毛し、これを圧延して焼結した
基板が提案されている。これは、上述したような焼結式
極板において焼結されたニッケル板の亀裂発生や、板厚
の制御は不可能となる不都合を解決しようとするもので
ある。
Japanese Patent Application Laid-Open No. 61-293618 proposes a substrate obtained by implanting fibrous nickel in a stainless steel mesh, rolling the sintered nickel, and sintering the same, similar to the electrode of the present invention. This is intended to solve the above-described disadvantages that the nickel plate sintered in the sintering type electrode plate has cracks and the thickness cannot be controlled.

【0005】また、特開平8−144153号公報で
は、炭素繊維を含む糸状基布層とこの基布層より起毛し
た植毛部からなる炭素繊維パイル布帛が提案されてい
る。これは、一部の二次電池、特にナトリウム−硫黄電
池の電極導電性(基板)として使用するものであり、ア
ルカリ蓄電池用電極基板としては、適性がなかった。
Japanese Patent Application Laid-Open No. 8-144153 proposes a carbon fiber pile fabric comprising a thread-like base fabric layer containing carbon fibers and a flocking portion raised from the base fabric layer. This is used as electrode conductivity (substrate) for some secondary batteries, particularly for sodium-sulfur batteries, and was not suitable as an electrode substrate for alkaline storage batteries.

【0006】[0006]

【発明が解決しようとする課題】ペースト式電極の基板
としては、活物質の導電性が低いニッケル極では発泡メ
タルやニッケル不織布などの金属多孔体が使用されてい
る。これらの基板は、基板中央部に導電性芯材が通って
いる焼結式基板と比較して、活物質から電流出入口とし
ての電極端子までの集電経路が長いため大電流での充放
電特性が劣る。また、焼結式基板と比較して総じて基板
の空孔径が大きいため基板強度や活物質の保持力も劣
る。ニッケル極においては充放電を繰り返すと活物質の
体積が大きく変化し、電解液を吸収して極板が膨潤す
る。その際、活物質の保持力が低いと、基板と活物質粒
子との接触性が低下しやすく集電能力の劣化が大きい。
As a substrate for a paste type electrode, a porous metal such as a foamed metal or a nickel nonwoven fabric is used for a nickel electrode having a low conductivity of an active material. These substrates have a longer current collection path from the active material to the electrode terminal as a current inlet / outlet compared to sintered substrates in which a conductive core material passes through the center of the substrate. Is inferior. Further, since the pore diameter of the substrate is generally larger than that of the sintered substrate, the substrate strength and the active material holding power are also inferior. In the nickel electrode, when charge and discharge are repeated, the volume of the active material changes greatly, and the electrode plate swells by absorbing the electrolytic solution. At this time, if the holding power of the active material is low, the contact between the substrate and the active material particles is likely to be reduced, and the current collecting ability is greatly deteriorated.

【0007】一方、活物質の導電性が比較的高いカドミ
ウム極、水素吸蔵合金極では基板としてパンチングメタ
ルなどの二次元の導電性芯材を使用し、さらに導電性を
補うためにカーボン粉末あるいはその繊維などの導電
材、活物質保持力を補うための結着剤などを添加した電
極が普及している。しかし、導電材の添加によっても大
電流で充放電する場合には集電能力がなお不足してい
た。
On the other hand, a cadmium electrode and a hydrogen storage alloy electrode having relatively high conductivity of the active material use a two-dimensional conductive core material such as a punching metal as a substrate, and further use carbon powder or a carbon powder to supplement the conductivity. 2. Description of the Related Art Electrodes to which a conductive material such as fiber, a binder for supplementing an active material holding power, and the like are added have been widely used. However, when charging and discharging with a large current by adding a conductive material, the current collecting ability is still insufficient.

【0008】なお、ニッケル極についても電極製造コス
トの低廉化のため、パンチングメタルなどの二次元の導
電性芯材を使用した電極の検討が従来からなされている
が、適当な導電材、結着剤が得られていないため、充放
電特性、充放電の繰り返し寿命特性が劣るため、まだ実
用化されていない。
In order to reduce the manufacturing cost of the nickel electrode, an electrode using a two-dimensional conductive core material such as a punched metal has been conventionally studied. Since no agent has been obtained, the charge / discharge characteristics and the charge / discharge repetition life characteristics are inferior, and thus have not yet been put to practical use.

【0009】焼結式電極は大電流での充放電特性はペー
スト式より優れているが、ペースト式で用いられている
基板と比べてその空孔率が低く、また多孔体の厚みを厚
くすることが困難であるため単位体積当たりの電池容量
はペースト式より低い。さらに焼結式基板の空孔径はペ
ースト式のそれより小さいため、必要量の活物質を充填
するためには溶液の含浸を数回くり返す必要があるなど
製法が繁雑であるという課題もある。
Although the sintered electrode has better charge / discharge characteristics at a large current than the paste type, it has a lower porosity and a thicker porous body than the substrate used in the paste type. The battery capacity per unit volume is lower than that of the paste type because it is difficult. Furthermore, since the pore diameter of the sintered substrate is smaller than that of the paste type, there is also a problem that the production method is complicated such that it is necessary to repeat the impregnation of the solution several times in order to fill the required amount of the active material.

【0010】本発明は、このような課題を解決するもの
で、アルカリ蓄電池において従来のペースト式電極と同
等の電池容量を維持するとともに、活物質保持力、集電
機能が改善された、優れた充放電特性をもった電極を提
供するものである。
[0010] The present invention solves the above-described problems, and is an excellent alkaline storage battery that maintains a battery capacity equivalent to that of a conventional paste-type electrode and has improved active material holding power and current collecting function. An object of the present invention is to provide an electrode having charge / discharge characteristics.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、本発明では金属板またはネット等の多孔性素材から
なる導電性芯材と、この芯材の両表面より起毛している
ニッケル繊維とが一体化していて、かつニッケル繊維は
炭素繊維よりなる芯部とその表面を覆ったニッケル層と
から構成されている基板を用いた電極とこれを用いたア
ルカリ蓄電池を提供するものである。
According to the present invention, there is provided a conductive core made of a porous material such as a metal plate or a net, and nickel fibers brushed from both surfaces of the core. The present invention provides an electrode using a substrate composed of a core portion made of carbon fiber and a nickel layer covering the surface thereof, and an alkaline storage battery using the same.

【0012】また、この電極の製造法は、導電性芯材の
両面に接着剤を塗布してから樹脂繊維を静電植毛工法な
どにより植毛する工程と、導電性芯材および樹脂繊維の
表面に例えば無電解メッキや電気メッキによって所望の
厚みまでニッケルを被覆する工程と、これを非酸化性雰
囲気下で加熱処理して、樹脂繊維を炭素繊維化するとと
もに導電性芯材の表面および樹脂繊維表面を被覆してい
るニッケルと芯材とを焼結する工程から得られた基板に
活物質を充填する工程とからなるものである。
Further, the method of manufacturing the electrode includes a step of applying an adhesive to both surfaces of the conductive core material and then implanting resin fibers by an electrostatic flocking method or the like; For example, a step of coating nickel to a desired thickness by electroless plating or electroplating, and a heat treatment in a non-oxidizing atmosphere to convert the resin fibers into carbon fibers and to form the surface of the conductive core material and the surface of the resin fibers. And a step of filling the substrate obtained from the step of sintering the nickel coating the core with the core material with an active material.

【0013】[0013]

【発明の実施の形態】請求項1に記載の発明は、アルカ
リ蓄電池について規定したものであり、正極と負極とセ
パレータとアルカリ電解液とからなるアルカリ蓄電池で
あって、正・負極のうちの少なくとも一方の電極は、導
電性芯材と、この導電性芯材の両表面より起毛している
ニッケル繊維とが一体化していて、かつニッケル繊維は
炭素繊維よりなる芯部とその表面を覆ったニッケル層と
から構成されている基板に活物質が充填されているもの
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 is directed to an alkaline storage battery, which is an alkaline storage battery comprising a positive electrode, a negative electrode, a separator and an alkaline electrolyte, wherein at least one of the positive and negative electrodes is provided. One electrode has a conductive core material and nickel fibers brushed from both surfaces of the conductive core material integrated with each other, and the nickel fiber is a carbon fiber core and a nickel covering the surface. The active material is filled in the substrate composed of the layers.

【0014】請求項2,3は、ニッケル繊維の形態を規
定したものである。
Claims 2 and 3 define the form of the nickel fiber.

【0015】また、請求項4に記載の発明は、この電極
の製造法について規定したものである。
[0015] The invention according to claim 4 specifies a method of manufacturing the electrode.

【0016】樹脂繊維は静電気を利用した静電植毛工法
によって、接着剤が塗布されているパンチングメタルな
どの導電性芯材表面に、ほぼ当間隔をおいて直立した構
造に植毛される。その間隔は繊維の長さ、直径によって
規制され、繊維長さが短くなるほど、直径が細くなるほ
ど狭くなる。この植毛間隔が狭くなるにともないニッケ
ル被覆後に形成されるニッケル繊維の密度も高まって活
物質から基板までの集電経路が短くなるため、電極とし
ての充放電特性が向上する。
The resin fibers are planted by a static flocking method utilizing static electricity on the surface of a conductive core material such as a punching metal to which an adhesive is applied, in an upright structure at substantially equal intervals. The interval is regulated by the length and diameter of the fiber. As the spacing between the flocks becomes narrower, the density of nickel fibers formed after nickel coating increases, and the current collection path from the active material to the substrate becomes shorter, so that the charge / discharge characteristics as an electrode are improved.

【0017】しかし、このようなニッケル繊維が直立し
た植毛構造では機械的強度が低いため、電極としての活
物質保持力が不足する。そこで、静電植毛後に、樹脂繊
維表面をニッケルで被覆した後、非酸化性雰囲気下で加
熱処理して樹脂繊維を炭素繊維化するとともに、導電性
芯材の表面および被覆しているニッケルと芯材とを焼結
することで、植毛部分の機械的強度を高くして、電極の
活物質保持力を向上させることができる。これにより電
極として充放電を繰り返したときの活物質の膨潤の影響
も抑制できる。また、活物質と基板との接触性も向上し
て集電機能が向上するため充放電特性も改善される。
However, in such a flocking structure in which nickel fibers are upright, the mechanical strength is low, so that the active material holding power as an electrode is insufficient. Therefore, after electrostatic flocking, the resin fiber surface is coated with nickel, and then heat-treated in a non-oxidizing atmosphere to convert the resin fiber into carbon fiber, and the surface of the conductive core material and the coated nickel and core are coated. By sintering the material, the mechanical strength of the planted portion can be increased, and the active material holding power of the electrode can be improved. Thereby, the influence of swelling of the active material when charge and discharge are repeated as an electrode can be suppressed. In addition, the contact property between the active material and the substrate is improved and the current collecting function is improved, so that the charge and discharge characteristics are also improved.

【0018】[0018]

【実施例】【Example】

(実施例)厚さ60μm、パンチング孔径1mm、開孔
率42%のニッケルメッキした鉄製パンチングメタルの
両面にポリビニルブチラール系接着剤(固形分20%)
を塗布量が50g/m2になるようにスプレー塗布し
た。続いて、この接着剤が乾燥する前に、直径30μ
m、長さ2mmのレーヨン繊維を電極を備えたふるいか
ら振り落としつつ、ふるい内の電極とパンチングメタル
との間に70kVの電圧を印加してレーヨン繊維を帯電
させて、パンチングメタル側に静電吸引する静電植毛を
行った。
(Example) Polyvinyl butyral-based adhesive (solid content: 20%) on both surfaces of a nickel-plated iron punched metal having a thickness of 60 μm, a punching hole diameter of 1 mm, and a porosity of 42%.
Was spray-coated so that the coating amount was 50 g / m 2 . Subsequently, before the adhesive dries, a diameter of 30 μm
m, a rayon fiber having a length of 2 mm is shaken off from a sieve provided with electrodes, and a voltage of 70 kV is applied between the electrode in the sieve and the punching metal to charge the rayon fiber, and the electrostatic force is applied to the punching metal side. Electrostatic flocking for suction was performed.

【0019】次いで接着剤を硬化させるため120℃で
10分間乾燥させた後、無電解メッキによりレーヨン繊
維およびパンチングメタルの表面に厚さ0.5μmのニ
ッケル−リン合金を被覆した。その後、電気メッキ用ワ
ット浴を用いて電流密度10A/dm2でニッケルメッ
キ重量が300g/m2になるように電気ニッケルメッ
キを施した。
Then, after drying at 120 ° C. for 10 minutes to cure the adhesive, the surface of the rayon fiber and the punching metal was coated with a nickel-phosphorus alloy having a thickness of 0.5 μm by electroless plating. Thereafter, electroplating was performed using a watt bath for electroplating at a current density of 10 A / dm 2 and a nickel plating weight of 300 g / m 2 .

【0020】この後、ポリビニルブチラール系接着剤と
ニッケルで被覆したレーヨン繊維と導電芯材を窒素−水
素気流中において1000℃で加熱処理し、パンチング
メタルとニッケルの繊維の焼結と同時に、樹脂繊維を炭
素繊維化し、本発明による基板aを作製した。得られた
基板aの厚みは約4mmであった。
Thereafter, a rayon fiber and a conductive core material coated with a polyvinyl butyral-based adhesive and nickel are heat-treated at 1000 ° C. in a nitrogen-hydrogen stream to sinter the punched metal and nickel fibers, Was made into carbon fiber to produce a substrate a according to the present invention. The thickness of the obtained substrate a was about 4 mm.

【0021】尚、ポリビニルブチラール系接着剤は、加
熱処理により分解した。
Incidentally, the polyvinyl butyral adhesive was decomposed by heat treatment.

【0022】図1はこの基板aの拡大模式図である。図
中1はニッケルメッキした鉄製パンチングメタルであ
り、2は炭素繊維化したコアとしてのレーヨン繊維を示
し、3は被覆されているニッケル層を示している。なお
ニッケルメッキの処理過程で、ニッケルメッキの一部に
ピンホール等が存在すると、この部分には炭素繊維が露
呈するが、少量であれば活物質と接触してカバーされる
ので何ら支障なく使える。
FIG. 1 is an enlarged schematic view of the substrate a. In the figure, 1 is a nickel-plated iron punching metal, 2 is a rayon fiber as a carbon fiber core, and 3 is a nickel layer coated. In the process of nickel plating, if there is a pinhole or the like in a part of the nickel plating, carbon fiber is exposed in this part, but if it is a small amount, it can be used without any trouble because it is covered in contact with the active material. .

【0023】次に得られた基板aを加圧して厚さ1.4
mmに調整した後、所定の位置に5mm四方の金型で厚
さ約0.2mmまで圧縮して活物質が充填されないリー
ド取付部分を形成した。
Next, the obtained substrate a is pressed to a thickness of 1.4.
After adjusting the thickness to mm, a lead attachment portion not filled with the active material was formed at a predetermined position by compressing to a thickness of about 0.2 mm with a 5 mm square mold.

【0024】続いて市販の水酸化ニッケル90部と水酸
化コバルト10部にペースト中の水分率が30%となる
量の水を加えて混練したペーストを基板aに充填し、9
0℃で30分間乾燥した後、加圧して厚さ0.7mmに
調整した。このようにして得られたニッケル電極を幅3
5mm、長さ110mmに裁断した。このニッケル電極
の容量は約1600mAhである。そして活物質が充填
されていない所定の位置にニッケルリード板をスポット
溶接してニッケル極4とした。
Subsequently, 90 parts of commercially available nickel hydroxide and 10 parts of cobalt hydroxide were mixed with water in such an amount that the water content of the paste became 30%, and the mixture was kneaded and filled into a substrate a.
After drying at 0 ° C. for 30 minutes, the pressure was adjusted to 0.7 mm in thickness. The nickel electrode obtained in this way was
It was cut into 5 mm and 110 mm in length. The capacity of this nickel electrode is about 1600 mAh. Then, a nickel lead plate was spot-welded to a predetermined position where the active material was not filled to form a nickel electrode 4.

【0025】負極には水素吸蔵合金極を用いた。これは
MmNi3.55Mn0.4Al0.3Co0. 75からなる組成の水
素吸蔵合金を粉砕して50μm以下の粉末を用意し、こ
れを80℃の31%KOH水溶液に1時間入れて、合金
粉末表面の酸化被膜を取り除く活性化処理を行った。こ
の粉末に1.5wt%カルボキシメチルセルロース水溶
液を加えたペーストを発泡状ニッケル板に充填し、90
℃で30分間乾燥した後、加圧して厚さ0.4mmに調
整した。その後5wt%のフッ素樹脂ディスパージョン
でコーティングし、乾燥した後、幅35mm、長さ14
5mmに裁断して水素吸蔵合金極5とした。
A hydrogen storage alloy electrode was used as the negative electrode. This provides the following powder 50μm by pulverizing a hydrogen absorbing alloy having a composition consisting of MmNi 3.55 Mn 0.4 Al 0.3 Co 0. 75, put 1 hour it in 31% KOH aqueous solution of 80 ° C., the alloy powder surface An activation treatment for removing the oxide film was performed. A paste obtained by adding a 1.5 wt% carboxymethylcellulose aqueous solution to this powder was filled in a foamed nickel plate, and
After drying at 30 ° C. for 30 minutes, the pressure was adjusted to 0.4 mm in thickness. After that, it is coated with a 5 wt% fluororesin dispersion, dried, and then has a width of 35 mm and a length of 14 mm.
It was cut to 5 mm to obtain a hydrogen storage alloy electrode 5.

【0026】このニッケル極4と水素吸蔵合金5との間
にスルホン化処理したポリプロピレン不織布製セパレー
タレータ6を介在させて渦巻状に捲回し、4/5Aサイ
ズの電池ケース7に収納した。その後、比重1.30の
水酸化カリウム水溶液に30g/lの水酸化リチウムを
溶解した電解液を所定量注入し、正極端子を固定した封
口板8でケース開口部を封口して図2に示すような密閉
型ニッケル−水素蓄電池を構成した。このようにして本
発明の電池Aを作製した。
Between the nickel electrode 4 and the hydrogen-absorbing alloy 5, a separator non-woven fabric separator 6 made of sulfonated polypropylene was interposed and spirally wound, and stored in a battery case 7 of 4 / 5A size. Thereafter, a predetermined amount of an electrolytic solution obtained by dissolving 30 g / l of lithium hydroxide in a potassium hydroxide aqueous solution having a specific gravity of 1.30 was injected, and the opening of the case was closed with a sealing plate 8 to which the positive electrode terminal was fixed, as shown in FIG. Such a sealed nickel-hydrogen storage battery was constructed. Thus, Battery A of the present invention was produced.

【0027】(比較例1)厚さ60μm、パンチング孔
径1mm、開孔率42%のニッケルメッキした鉄製パン
チングメタルの両面にフェノール系接着剤(固形分20
%)を塗布量が50g/m2になるようにスプレー塗布
した。続いて、接着剤が乾燥する前に、直径30μm、
長さ2mmのレーヨン繊維を電極を備えたふるいから振
り落としつつ、ふるい内の電極とパンチングメタルとの
間に70kVの電圧を印加してレーヨン繊維を帯電させ
て静電植毛を行った。
Comparative Example 1 A phenolic adhesive (solid content: 20%) was applied to both surfaces of a nickel-plated iron punched metal having a thickness of 60 μm, a punching hole diameter of 1 mm, and a porosity of 42%.
%) Was spray-coated so that the coating amount was 50 g / m 2 . Subsequently, before the adhesive dries, the diameter is 30 μm,
While shaking the rayon fiber having a length of 2 mm from the sieve provided with the electrodes, a voltage of 70 kV was applied between the electrodes in the sieve and the punching metal to charge the rayon fibers, thereby performing electrostatic flocking.

【0028】次いで接着剤を硬化させるため120℃で
10分間乾燥させた後、無電解メッキによりレーヨン繊
維およびパンチングメタル表面に厚さ0.5μmのニッ
ケル−リン合金を被覆した。その後、電気メッキ用ワッ
ト浴を用いて電流密度10A/dm2でニッケルメッキ
重量が300g/m2になるように電気ニッケルメッキ
を施した。
Next, after drying at 120 ° C. for 10 minutes to cure the adhesive, the surface of the rayon fiber and the punching metal was coated with a 0.5 μm thick nickel-phosphorus alloy by electroless plating. Thereafter, electroplating was performed using a watt bath for electroplating at a current density of 10 A / dm 2 and a nickel plating weight of 300 g / m 2 .

【0029】この後、植毛時のフェノール系接着剤とレ
ーヨン繊維とを除去するために大気中で700℃で5分
間焼成をおこなった。続いて、窒素−水素気流中におい
て1000℃でパンチングメタルとニッケル繊維との焼
結を行い、比較のための基板bを作製した。これを用い
て実施例と同様な方法により電池Bを作製した。
Thereafter, firing was performed at 700 ° C. for 5 minutes in the air to remove the phenolic adhesive and rayon fiber at the time of flocking. Subsequently, the punched metal and the nickel fiber were sintered at 1000 ° C. in a nitrogen-hydrogen stream to prepare a substrate b for comparison. Using this, a battery B was produced in the same manner as in the example.

【0030】[0030]

【表1】 [Table 1]

【0031】(表1)の結果に示すように、実施例の電
池Aは比較例の電池B,Cと比較して放電容量、放電平
均電圧ともに向上した。これはニッケル繊維部分での集
電性、活物質保持力が高まったことによる。
As shown in the results in Table 1, the discharge capacity and the average discharge voltage of the battery A of the example were improved as compared with the batteries B and C of the comparative example. This is because the current collecting property and the active material holding power in the nickel fiber portion were increased.

【0032】次に、電池A,Bの各3セルについて、2
0℃で0.5CmAで3時間充電し、1CmAで0.9
Vまで放電するサイクル寿命試験を行い、放電容量が初
期容量の60%まで低下したときのサイクル数を(表
2)に示す。
Next, for each of the three cells A and B,
Charge at 0.5 CmA for 3 hours at 0 ° C. and 0.9 at 1 CmA
A cycle life test for discharging to V was performed, and the number of cycles when the discharge capacity was reduced to 60% of the initial capacity is shown in (Table 2).

【0033】[0033]

【表2】 [Table 2]

【0034】(表2)の結果に示すように実施例の電池
Aは電池Bに比較して、充放電サイクル寿命特性が向上
した。
As shown in the results of Table 2, the battery A of the example had improved charge / discharge cycle life characteristics as compared with the battery B.

【0035】なお、実施例では導電性芯材にパンチング
メタルを使用したが、開孔部のない金属板や金網、エキ
スパンドメタルなどを使用しても同様な効果が得られ
る。また、実施例では植毛型基板をニッケル極に使用し
た場合についても同様な効果が得られる。
Although a punching metal is used as the conductive core material in the embodiment, a similar effect can be obtained by using a metal plate having no holes, a wire net, an expanded metal, or the like. Further, in the embodiment, the same effect can be obtained also when the flocking type substrate is used for the nickel electrode.

【0036】[0036]

【発明の効果】本発明によれば、アルカリ蓄電池および
その電極において、基板の集電性が改善され充放電特性
が向上し、電極としての活物質保持力も改善されるため
充放電サイクル寿命特性も向上する。
According to the present invention, in the alkaline storage battery and its electrode, the current collecting property of the substrate is improved, the charge / discharge characteristics are improved, and the active material holding power as an electrode is also improved, so that the charge / discharge cycle life characteristics are also improved. improves.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における基板の拡大模式図FIG. 1 is an enlarged schematic view of a substrate according to an embodiment of the present invention.

【図2】同実施例における電池の断面概略図FIG. 2 is a schematic cross-sectional view of the battery in the example.

【符号の説明】[Explanation of symbols]

1 ニッケルメッキした鉄製パンチングメタル 2 炭素繊維 3 ニッケル被覆層 4 ニッケル極 5 水素吸蔵合金 6 セパレータ 7 電池ケース 8 封口板 DESCRIPTION OF SYMBOLS 1 Nickel-plated iron punching metal 2 Carbon fiber 3 Nickel coating layer 4 Nickel electrode 5 Hydrogen storage alloy 6 Separator 7 Battery case 8 Sealing plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡本 克博 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Katsuhiro Okamoto, Inventor 1006 Oaza Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】正極と負極とセパレータとアルカリ電解液
とからなり、正・負極のうちの少なくとも一方の電極
は、金属板または金網等の多孔体よりなる導電性芯材と
前記導電性芯材の両表面から起毛しているニッケル繊維
とが一体化した基板に活物質を充填したものであって、
前記ニッケル繊維は炭素繊維よりなる芯部とその表面を
覆ったニッケル層とから構成されているアルカリ蓄電
池。
1. A conductive core comprising a positive electrode, a negative electrode, a separator, and an alkaline electrolyte, at least one of the positive electrode and the negative electrode has a conductive core material made of a porous material such as a metal plate or a wire mesh, and the conductive core material. A substrate in which nickel fibers that are raised from both surfaces are integrated with an active material,
An alkaline storage battery in which the nickel fibers include a core made of carbon fiber and a nickel layer covering the surface thereof.
【請求項2】ニッケル繊維は、ニッケルの表面層の一部
に炭素繊維を露呈させている請求項1記載のアルカリ蓄
電池。
2. The alkaline storage battery according to claim 1, wherein the nickel fibers have carbon fibers exposed on a part of the nickel surface layer.
【請求項3】ニッケル繊維は、その直径に大小の変化を
もち、および/または繊維表面層に凹凸の変化をもった
ものである請求項1記載のアルカリ蓄電池。
3. The alkaline storage battery according to claim 1, wherein the nickel fiber has a variation in diameter and / or a variation in irregularities in the fiber surface layer.
【請求項4】正極と負極とセパレータとアルカリ電解液
とからなり、正・負極のうちの少なくとも一方の電極
は、金属板または金網等の多孔体よりなる導電性芯材と
前記導電性芯材の両表面から垂直方向に起毛しているニ
ッケル繊維とが一体化した基板に活物質を充填したもの
であり、前記ニッケル繊維は炭素繊維よりなる芯部とそ
の表面を覆ったニッケル層とから構成したものであっ
て、この電極は導電性芯材の両面に接着剤を塗布してか
ら樹脂繊維を植毛する工程と、 この導電性芯材の両表面から起毛している樹脂繊維の上
から接着剤をスプレー塗布する工程と、 無電解めっきにより前記導電性芯材および樹脂繊維の表
面にニッケルを被覆する工程と、 ニッケル被覆層の表面に、さらに電気めっきによりニッ
ケルを被覆する工程と、これを非酸化性雰囲気下で加熱
処理して樹脂繊維を炭素繊維化するとともに、この炭素
繊維および芯材の表面を被覆しているニッケルと芯材と
を焼結する工程と、 上記の工程で得られた基板に活物質を充填するものであ
るアルカリ蓄電池用電極の製造法。
4. A positive electrode, a negative electrode, a separator, and an alkaline electrolyte, wherein at least one of the positive and negative electrodes has a conductive core material made of a porous material such as a metal plate or a wire mesh, and the conductive core material. The active material is filled into a substrate in which nickel fibers which are raised vertically from both surfaces are integrated, and the nickel fibers are composed of a core portion made of carbon fibers and a nickel layer covering the surface. The electrode is coated with an adhesive on both sides of the conductive core material and then planted with resin fibers. The electrode is bonded from the resin fibers raised from both surfaces of the conductive core material. A step of spray-coating an agent, a step of coating the surface of the conductive core material and the resin fiber with nickel by electroless plating, and a step of coating nickel by electroplating on the surface of the nickel coating layer. Heat-treating the resin fibers into carbon fibers in a non-oxidizing atmosphere, and sintering the nickel and the core material covering the surfaces of the carbon fibers and the core material; and A method for producing an electrode for an alkaline storage battery, wherein the substrate is filled with an active material.
JP14196897A 1997-05-30 1997-05-30 Manufacturing method of alkaline storage battery and its electrode Expired - Fee Related JP3460509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14196897A JP3460509B2 (en) 1997-05-30 1997-05-30 Manufacturing method of alkaline storage battery and its electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14196897A JP3460509B2 (en) 1997-05-30 1997-05-30 Manufacturing method of alkaline storage battery and its electrode

Publications (2)

Publication Number Publication Date
JPH10334899A true JPH10334899A (en) 1998-12-18
JP3460509B2 JP3460509B2 (en) 2003-10-27

Family

ID=15304323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14196897A Expired - Fee Related JP3460509B2 (en) 1997-05-30 1997-05-30 Manufacturing method of alkaline storage battery and its electrode

Country Status (1)

Country Link
JP (1) JP3460509B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058574A1 (en) * 2008-11-19 2010-05-27 独立行政法人産業技術総合研究所 Nickel positive electrode for fiber battery
JP2010160912A (en) * 2009-01-06 2010-07-22 National Institute Of Advanced Industrial Science & Technology Alloy negative electrode for fiber battery
JP2010225354A (en) * 2009-03-23 2010-10-07 National Institute Of Advanced Industrial Science & Technology Nickel positive electrode for fibrous battery
US9972831B2 (en) 2001-04-09 2018-05-15 Murata Manufacturing Co., Ltd Negative material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the negative material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9972831B2 (en) 2001-04-09 2018-05-15 Murata Manufacturing Co., Ltd Negative material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the negative material
WO2010058574A1 (en) * 2008-11-19 2010-05-27 独立行政法人産業技術総合研究所 Nickel positive electrode for fiber battery
CN102217122A (en) * 2008-11-19 2011-10-12 独立行政法人产业技术综合研究所 Nickel positive electrode for fiber battery
JP5408804B2 (en) * 2008-11-19 2014-02-05 独立行政法人産業技術総合研究所 Nickel positive electrode for fiber battery
US9620770B2 (en) 2008-11-19 2017-04-11 National Institute Of Advanced Industrial Science And Technology Nickel positive electrode for fiber battery
JP2010160912A (en) * 2009-01-06 2010-07-22 National Institute Of Advanced Industrial Science & Technology Alloy negative electrode for fiber battery
JP2010225354A (en) * 2009-03-23 2010-10-07 National Institute Of Advanced Industrial Science & Technology Nickel positive electrode for fibrous battery

Also Published As

Publication number Publication date
JP3460509B2 (en) 2003-10-27

Similar Documents

Publication Publication Date Title
CN102856538B (en) Negative plate, include the cylindrical battery of this negative plate
JP3527586B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
JP3460509B2 (en) Manufacturing method of alkaline storage battery and its electrode
US6150056A (en) Alkaline storage battery and method for producing an electrode used therefor
JP2000285922A (en) Alkaline storage battery, and manufacture of its electrode
JP3438538B2 (en) Manufacturing method of alkaline storage battery and its electrode
JP3424501B2 (en) Manufacturing method of alkaline storage battery and its electrode
JP3473350B2 (en) Manufacturing method of alkaline storage battery and its electrode
JP3440753B2 (en) Manufacturing method of alkaline storage battery and its electrode
JP3451888B2 (en) Manufacturing method of alkaline storage battery and its electrode
JPH0763006B2 (en) Method for manufacturing hydrogen storage electrode
JP3446539B2 (en) Manufacturing method of alkaline storage battery and its electrode
JPH10334898A (en) Alkaline storage battery, its electrode and manufacture thereof
JPH10334902A (en) Alkaline storage battery and manufacture of its electrode
JPH10334892A (en) Manufacture of alkaline storage battery and its electrode
JP3156485B2 (en) Nickel electrode for alkaline storage battery
JPH10162835A (en) Electrode for alkaline storage battery and manufacture thereof
JP2981538B2 (en) Electrodes for alkaline batteries
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPH10334895A (en) Manufacture of alkaline storage battery and its electrode
JP4531874B2 (en) Nickel metal hydride battery
JPH10334901A (en) Alkaline storage battery and manufacture of its electrode
JPH06168719A (en) Negative electrode plate for nickel-hydrogen battery, manufacture thereof, and nickel-hydrogen battery
JP3941341B2 (en) Alkaline battery and nickel plate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees