JP3156485B2 - Nickel electrode for alkaline storage battery - Google Patents

Nickel electrode for alkaline storage battery

Info

Publication number
JP3156485B2
JP3156485B2 JP02228094A JP2228094A JP3156485B2 JP 3156485 B2 JP3156485 B2 JP 3156485B2 JP 02228094 A JP02228094 A JP 02228094A JP 2228094 A JP2228094 A JP 2228094A JP 3156485 B2 JP3156485 B2 JP 3156485B2
Authority
JP
Japan
Prior art keywords
nickel hydroxide
nickel
amount
electrode
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02228094A
Other languages
Japanese (ja)
Other versions
JPH07235303A (en
Inventor
道雄 伊藤
始 小西
道代 秋元
剛史 八尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP02228094A priority Critical patent/JP3156485B2/en
Publication of JPH07235303A publication Critical patent/JPH07235303A/en
Application granted granted Critical
Publication of JP3156485B2 publication Critical patent/JP3156485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル・カドミウム
蓄電池やニッケル・水素蓄電池のようなニッケル極を備
えたアルカリ蓄電池のニッケル極の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in the nickel electrode of an alkaline storage battery having a nickel electrode, such as a nickel-cadmium storage battery or a nickel-hydrogen storage battery.

【0002】[0002]

【従来の技術】各種の電源として使われるアルカリ蓄電
池は高信頼性が期待でき、小型軽量化も可能などの理由
で小型電池は各種ポ−タブル機器用に、大型電池は産業
用として広く使われてきた。
2. Description of the Related Art Alkaline storage batteries used as various power sources can be expected to have high reliability and can be reduced in size and weight. Small batteries are widely used for various portable devices and large batteries are widely used for industrial purposes. Have been.

【0003】このアルカリ蓄電池において、負極として
はカドミウムの他に亜鉛、鉄、水素吸蔵合金などが対象
となっている。しかし正極としては一部空気極や酸化銀
極なども取り上げられているが、ほとんどの場合ニッケ
ル極である。ポケット式から焼結式に代わって特性が向
上し、さらに密閉化が可能になるとともに用途も広がっ
た。
In this alkaline storage battery, in addition to cadmium, zinc, iron, a hydrogen storage alloy, and the like are used as the negative electrode. However, although some air electrodes, silver oxide electrodes, and the like are also taken up as the positive electrode, most of them are nickel electrodes. The characteristics have been improved from the pocket type to the sintering type, and the sealing has been made possible and the use has expanded.

【0004】しかし焼結式は基板の製法や活物質の充填
などの点で工程が煩雑であり高価である。その上焼結式
では基板の多孔度を83%以上にすると強度が大幅に低
下するので活物質の充填に限界があり、したがって高容
量化にも限界がある。そこで非焼結式ニッケル極として
1つの方向は多孔度が90%以上のような高多孔度の基
板として発泡状基板や繊維状基板が取り上げられ、高容
量化が図られ実用化されている。
[0004] However, the sintering method is complicated and expensive in terms of the method of manufacturing the substrate and the filling of the active material. In addition, in the case of the sintering method, if the porosity of the substrate is 83% or more, the strength is greatly reduced, so that there is a limit to the filling of the active material, and therefore, there is a limit to the increase in capacity. Therefore, a foamed substrate or a fibrous substrate is taken up as a non-sintered nickel electrode as a substrate having a high porosity of 90% or more in one direction, and a high capacity has been achieved and it has been put to practical use.

【0005】[0005]

【発明が解決しようとする課題】水酸化ニッケルを直接
用いて得られるニッケル極は焼結式に比べて水酸化ニッ
ケルの利用率がやや悪い。これを向上するために焼結式
も含めて特にコバルト系が有効であるが、加えすぎると
絶対容量が減少する。いずれにしてもニッケル極の利用
率を上げて体積効率や重量効率を大きくすることがこの
ニッケル極を正極に、カドミウム極や水素吸蔵合金を負
極に用いるアルカリ蓄電池のエネルギー密度の向上のた
めに重要である。本発明は極板内のCo原子の量が同じ
でも活物質の高い利用率が得られるニッケル極を得るこ
とを目的とする。
The nickel electrode obtained by directly using nickel hydroxide has a slightly lower utilization rate of nickel hydroxide than the sintered type. In order to improve this, a cobalt system is particularly effective including the sintering method, but if too much is added, the absolute capacity decreases. In any case, increasing the utilization rate of nickel electrodes to increase volumetric efficiency and weight efficiency is important for improving the energy density of alkaline storage batteries that use nickel electrodes as positive electrodes and cadmium electrodes and hydrogen storage alloys as negative electrodes. It is. An object of the present invention is to obtain a nickel electrode that can provide a high utilization rate of an active material even when the amount of Co atoms in an electrode plate is the same.

【0006】[0006]

【課題を解決するための手段】本発明は前記目的を達成
するべく、表面にCo(OH)2 の被覆層を形成した水
酸化ニッケルを主成分とする粉末に、CoあるいはCo
化合物の少なくとも1種類以上を添加した活物質を用い
てアルカリ蓄電池用ニッケル極を構成するようにした。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a method of producing a powder containing nickel hydroxide having a coating layer of Co (OH) 2 on its surface, comprising Co or Co.
A nickel electrode for an alkaline storage battery was constituted by using an active material to which at least one compound was added.

【0007】前記水酸化ニッケル粉末としては、充填密
度が大きい、球状、ほぼ球状、鶏卵状若しくはこれらを
集合した形状を持つものが好ましい。
The nickel hydroxide powder preferably has a high packing density, a spherical shape, a substantially spherical shape, an egg-like shape, or a shape obtained by assembling them.

【0008】また、Co(OH)2 の被覆層は、水酸化
ニッケルに対して2〜10wt%であることが好まし
い。
It is preferable that the coating layer of Co (OH) 2 is 2 to 10% by weight based on nickel hydroxide.

【0009】また、CoあるいはCo化合物の添加総量
は、Co原子の添加量に換算して、水酸化ニッケルに対
して2.4〜9.4wt%の組成であることが好まし
い。
The total amount of Co or Co compound added is preferably 2.4 to 9.4% by weight, based on the amount of Co atoms added, relative to nickel hydroxide.

【0010】また、表面にCo(OH)2 の被覆層を形
成した水酸化ニッケルは、水酸化ニッケルの晶析時に、
Co塩を添加して得るようにすることが好ましい。
In addition, nickel hydroxide having a coating layer of Co (OH) 2 formed on the surface thereof, during crystallization of nickel hydroxide,
It is preferable to obtain by adding a Co salt.

【0011】[0011]

【作用】水酸化ニッケルにCo(OH)2 を被覆した
り、水酸化ニッケルにCoあるいはCo化合物を添加す
ると水酸化ニッケルの利用率が向上することは広く知ら
れており、その被覆、添加条件、量などに関していくつ
かの提案がなされている。表面にCo(OH)2 の被覆
層を形成した水酸化ニッケル粉末を用いることでニッケ
ル極の利用率が向上する理由としては、一度充電すると
被覆しているCo(OH)2 が、導電性の高い不可逆な
CoOOHになりニッケル極の導電ネットワークを形成
するためと考えられる。このCo(OH)2 は水酸化ニ
ッケルを被覆しているので効率良く水酸化ニッケル粉末
間に導電ネットワークを形成することができる。Coや
Co化合物がニッケル極の利用率をあげる理由として
は、Coに関しては、ニッケル極を充電することでニッ
ケル極中のCoが酸化されCo(OH)2 となり、Co
(OH)2 がさらに導電性のある不可逆なCoOOHと
なり導電ネットワークを形成するためと考えられる。C
o化合物は特に苛性アルカリ溶液中にコバルト酸イオン
として溶解し、これが水酸化ニッケルの粒子間に拡散し
てCo(OH)2 として析出し、充電により不可逆なC
oOOHとなり活物質の利用率を高めているとされてい
る。表面にCo(OH)2 の被覆層を形成した水酸化ニ
ッケル粉末と、CoあるいはCo化合物の少なくとも1
種類以上を併用することで、被覆されたCo(OH)2
は後添加によるCoやCo化合物では水酸化ニッケルの
粒子間に入り込めないところまで入り込むことができ、
導電ネットワークをより細かく形成することができる。
しかし表面にCo(OH)2 の被覆層を形成した水酸化
ニッケル粉末を用いる方法のみでは、極板のプレス時に
Co(OH)2 の被覆層にクラックが入り破壊されてし
まう。そこで、後添加としてCoあるいはCo化合物の
少なくとも1種類以上を用いることで、Co(OH)2
の被覆層の破壊を補い、かつ、被覆されたCo(OH)
2 は水酸化ニッケルの粒子間に入り込んでいるので、両
者を併用することでより細かい導電ネットワークを形成
することができる。よってニッケル極の利用率は、Co
原子の量が同等でも表面にCo(OH)2 の被覆層を形
成した水酸化ニッケル粉末、あるいはCo、Co化合物
添加などの単体での利用率より高くなる。なお、水酸化
ニッケルとしては、球状構造が充填密度が大きくなるの
でコバルト酸イオンの拡散、析出、CoOOHへの変化
が容易となり好ましい。なお、水酸化ニッケル粉末表面
に化学的に被覆できるCo(OH)2 量には限度があ
り、CoやCo化合物の添加量も容量密度の観点から前
記好ましい条件にすることで最もニッケル極の利用率を
他の弊害を伴わずに高めることができる。また、表面を
Co(OH)2 で被覆した水酸化ニッケルは、水酸化ニ
ッケルの晶析時にコバルト塩を添加して得ることができ
るので、工業的には最も適した手段である。
It is widely known that coating nickel hydroxide with Co (OH) 2 or adding Co or a Co compound to nickel hydroxide improves the utilization of nickel hydroxide. Some suggestions have been made regarding the amount, amount and the like. The reason that the utilization rate of the nickel electrode is improved by using a nickel hydroxide powder having a Co (OH) 2 coating layer formed on the surface is that once coated, the coated Co (OH) 2 becomes conductive. This is considered to be due to high irreversible CoOOH to form a conductive network of the nickel electrode. Since this Co (OH) 2 covers nickel hydroxide, a conductive network can be efficiently formed between the nickel hydroxide powders. The reason why Co or a Co compound increases the utilization rate of the nickel electrode is that, with respect to Co, by charging the nickel electrode, Co in the nickel electrode is oxidized to Co (OH) 2 , and
It is considered that (OH) 2 becomes irreversible CoOOH which is more conductive and forms a conductive network. C
The o-compound is particularly dissolved as a cobaltate ion in a caustic solution, which diffuses between the particles of nickel hydroxide and precipitates as Co (OH) 2, which is irreversible by charging.
It is said to be oOOH and increase the utilization rate of the active material. Nickel hydroxide powder having a Co (OH) 2 coating layer on its surface, and at least one of Co or a Co compound
Co (OH) 2 coated by using more than one type
Can penetrate to the point where it cannot enter between the particles of nickel hydroxide with Co or Co compound by post-addition,
The conductive network can be formed more finely.
However, if only the method using nickel hydroxide powder having a Co (OH) 2 coating layer formed on the surface, cracks occur in the Co (OH) 2 coating layer at the time of pressing the electrode plate, causing breakage. Therefore, by using at least one kind of Co or a Co compound as a post-addition, Co (OH) 2
Co (OH) that compensates for the destruction of the coating layer of
Since 2 penetrates between the nickel hydroxide particles, a finer conductive network can be formed by using both in combination. Therefore, the utilization rate of the nickel electrode is Co
Even if the amount of atoms is the same, the utilization ratio of nickel hydroxide powder having a coating layer of Co (OH) 2 formed on the surface, or the utilization rate of a simple substance such as the addition of Co or a Co compound becomes higher. It is preferable that nickel hydroxide has a spherical structure with a high packing density, so that cobalt oxide ions can be easily diffused, precipitated, and changed to CoOOH. The amount of Co (OH) 2 that can chemically coat the surface of the nickel hydroxide powder is limited, and the amount of Co or Co compound added is preferably set to the above-mentioned preferable condition from the viewpoint of capacity density. The rate can be increased without other adverse effects. Nickel hydroxide whose surface is coated with Co (OH) 2 can be obtained by adding a cobalt salt during crystallization of nickel hydroxide, and is therefore the most industrially suitable means.

【0012】[0012]

【実施例】以下、本発明の実施例を説明する。 (実施例1)水酸化ニッケル粉末を水に分散させ、そこ
にCo塩と一定のpHを保つようアルカリを添加して水
酸化ニッケル粉末表面にCo(OH)2 の被覆層を形成
した。被覆量はCo塩の添加量により調整し、水酸化ニ
ッケル粉末に対し、3wt%とした。表面にCo(O
H)2 の被覆層が3wt%形成された水酸化ニッケル粉
末に、CoOを3wt%添加したものに水を加え分散、
練合してペーストを得た。このペーストを厚さ1.3m
m、孔径200μm、多孔度95%の発泡状ニッケル基
板に充填塗着し、90℃で30分間乾燥した。得られた
電極は加圧して厚さ0.63mmに調整した。このよう
にして得られた発泡式ニッケル極をフッ素樹脂ディスパ
ージョンの2wt%の水溶液に浸漬し乾燥後4/5A形
用として幅35mm、長さ110mmに裁断し、リード
板をスポット溶接により取り付けた。負極には水素吸蔵
合金を用いた。MmNi5 系合金の一つであるMmNi
3.7Mn0.4 Al0.3 Co0.6 を粉砕して360メッシ
ュ通過させた後、1.5wt%CMC水溶液を加えてペ
ーストを得た。ついでこのペーストを多孔度95%、厚
さ0.8mmのニッケル板に充填し加圧して電極を得
た。減圧で乾燥後5%のフッ素樹脂ディスパージョンを
添加した。この発泡状ペースト式水素吸蔵合金極を幅3
5mm、長さ145mmに裁断した。これらと親液処理
ポリプロピレン不織布セパレータを用いて密閉形ニッケ
ル・水素蓄電池を構成した。比重1.30の苛性カリ水
溶液に40g/lの水酸化リチウムを溶解した電解液を
注入した。電池は4/5A形である。このあと初充放電
を行った。
Embodiments of the present invention will be described below. (Example 1) A nickel hydroxide powder was dispersed in water, a Co salt and an alkali were added so as to maintain a constant pH, and a coating layer of Co (OH) 2 was formed on the surface of the nickel hydroxide powder. The coating amount was adjusted by the addition amount of the Co salt, and was 3 wt% with respect to the nickel hydroxide powder. Co (O) on the surface
H) A nickel hydroxide powder having a coating layer of 2 wt% formed with 3 wt% of CoO added with water and dispersed therein,
It was kneaded to obtain a paste. This paste is 1.3m thick
m, a pore size of 200 μm, and a porosity of 95% were filled and applied to a nickel foam substrate, and dried at 90 ° C. for 30 minutes. The obtained electrode was pressurized and adjusted to a thickness of 0.63 mm. The foamed nickel electrode thus obtained was immersed in a 2 wt% aqueous solution of a fluororesin dispersion, dried, cut into a 35 mm width and 110 mm length for a 4 / 5A type, and a lead plate was attached by spot welding. . A hydrogen storage alloy was used for the negative electrode. MmNi, one of the MmNi 5- based alloys
After 3.7 Mn 0.4 Al 0.3 Co 0.6 was pulverized and passed through 360 mesh, a 1.5 wt% CMC aqueous solution was added to obtain a paste. Next, this paste was filled into a nickel plate having a porosity of 95% and a thickness of 0.8 mm, and pressed to obtain an electrode. After drying under reduced pressure, a 5% fluororesin dispersion was added. This foamed paste type hydrogen storage alloy electrode is
It was cut to 5 mm and 145 mm in length. Using these and a lyophilic treated polypropylene nonwoven fabric separator, a sealed nickel-metal hydride battery was constructed. An electrolytic solution in which 40 g / l of lithium hydroxide was dissolved was poured into an aqueous solution of potassium hydroxide having a specific gravity of 1.30. The battery is a 4 / 5A type. Thereafter, the first charge / discharge was performed.

【0013】比較のために正極のCo(OH)2 の水酸
化ニッケル粉末表面への被覆量を実施例1の正極中のC
o原子の量と同じ量にしたもので他のCo種を加えない
ものを従来例1、Co(OH)2 を被覆した水酸化ニッ
ケルを使わずにCoOのみを添加し、その添加量を実施
例の正極中のCo原子の量と同じ量にしたものを従来例
2として、各電池の0.2C放電における正極利用率を
測定した。その結果を表1に示した。
For comparison, the coating amount of Co (OH) 2 on the nickel hydroxide powder surface of the positive electrode was determined by the amount of C in the positive electrode of Example 1.
The same amount as the amount of o atoms but no other Co species was added in Conventional Example 1, only CoO was added without using nickel hydroxide coated with Co (OH) 2 , and the amount was added. Using the same amount of Co atoms in the positive electrode of the example as Conventional Example 2, the utilization factor of the positive electrode at 0.2 C discharge of each battery was measured. The results are shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】表1より、同じCo原子の量ならば、表面
にCo(OH)2 の被覆層を形成した水酸化ニッケル粉
末を用いる単独の方法、またはCoあるいはCo化合物
添加単独の方法により、正極活物質全体のCo原子の量
が同じであれば、水酸化ニッケル粉末表面へのCo(O
H)2 の被覆と、CoあるいはCo化合物添加の併用が
正極利用率に関してより効果的な方法であり、導電ネッ
トワークを効率良く形成しているものと考えられる。 (実施例2)次に、水酸化ニッケル粉末表面のCo(O
H)2 の適正被覆量を調べるために、Co(OH)2
覆量を0、1、2、3、6、10、12wt%とした時
の正極の0.2C利用率と容量密度を測定した。このと
きCoOを正極に3wt%添加したものを用いた。その
結果を図1に示した。
According to Table 1, if the amount of Co atoms is the same, the positive electrode can be prepared by a single method using nickel hydroxide powder having a Co (OH) 2 coating layer formed on the surface, or a single method of adding Co or a Co compound. If the amount of Co atoms in the entire active material is the same, Co (O
It is considered that the combination of the coating of H) 2 and the addition of Co or a Co compound is a more effective method for the utilization rate of the positive electrode, and efficiently forms a conductive network. (Example 2) Next, Co (O) on the surface of nickel hydroxide powder
H) In order to investigate the appropriate coating amount of 2 , the 0.2C utilization and capacity density of the positive electrode were measured when the coating amount of Co (OH) 2 was 0, 1, 2, 3, 6, 10, and 12 wt%. did. At this time, a material obtained by adding 3 wt% of CoO to the positive electrode was used. The result is shown in FIG.

【0016】図1より、Co(OH)2 の被覆量は2w
t%から10wt%が適当であり、この範囲だとCoO
OHの生成量が増加しそれに伴い導電ネットワークが形
成するがそれを越えるとその効果に際立った差が見られ
ずCo(OH)2 の被覆量の増大に伴う水酸化ニッケル
活物質量が低下し容量密度が下がる。 (実施例3)次に、Co化合物添加量の最適値を調べる
ために、CoOを用いて0、1、3、6、10、12w
t%とした時の正極の0.2C利用率と容量密度を測定
した。このとき表面にCo(OH)2 の被覆量が3wt
%の水酸化ニッケル粉末と併用した。この結果を図2に
示した。
FIG. 1 shows that the coating amount of Co (OH) 2 is 2w.
It is suitable that t% to 10 wt% is within this range.
Although the amount of OH produced increases and a conductive network is formed with the increase of OH, a significant difference in the effect is not seen beyond that, and the amount of nickel hydroxide active material decreases with an increase in the coating amount of Co (OH) 2. The capacity density decreases. (Example 3) Next, in order to examine the optimum value of the added amount of Co compound, 0, 1, 3, 6, 10, 12 w
The 0.2 C utilization rate and the capacity density of the positive electrode at t% were measured. At this time, the coating amount of Co (OH) 2 was 3 wt.
% Nickel hydroxide powder. The result is shown in FIG.

【0017】図2よりCoOの添加量は3wt%から1
2wt%が好ましく、Co原子の量に換算して、2.4
wt%から9.4wt%の添加量である。CoOの添加
量がこの範囲より多くなるとその効果に際立った差が見
られずCoOの添加量の増大に伴う水酸化ニッケル活物
質量が低下し容量密度が下がってしまう。
FIG. 2 shows that the amount of CoO added ranges from 3 wt% to 1 wt.
2 wt% is preferable, and 2.4 wt.
The added amount is from wt% to 9.4 wt%. If the amount of CoO added exceeds this range, no significant difference is observed in the effect, and the amount of nickel hydroxide active material decreases with an increase in the amount of CoO added, and the capacity density decreases.

【0018】水酸化ニッケルの晶析時に硫酸コバルトを
添加して得られたCo(OH)2 の被覆量が3wt%で
ある水酸化ニッケルと、CoOを3wt%添加して得ら
れた正極板で構成した電池をA、水酸化ニッケル粉末を
水に分散させた後、硫酸コバルトを添加して得られたC
o(OH)2 の被覆量が3wt%である水酸化ニッケル
と、CoOを3wt%添加して得られた正極板で構成し
た電池をBとする。こうして得られた電池の0.2C放
電の正極活物質の利用率を表2に示した。
Nickel hydroxide having a coating amount of 3 wt% of Co (OH) 2 obtained by adding cobalt sulfate during crystallization of nickel hydroxide, and a positive electrode plate obtained by adding 3 wt% of CoO. The obtained battery was A, and the nickel hydroxide powder was dispersed in water, and then C was obtained by adding cobalt sulfate.
B is a battery composed of nickel hydroxide having an o (OH) 2 coverage of 3 wt% and a positive electrode plate obtained by adding 3 wt% of CoO. Table 2 shows the utilization factor of the positive electrode active material of the battery obtained at 0.2 C discharge.

【0019】[0019]

【表2】 [Table 2]

【0020】表2より正極利用率に関し電池A,Bには
差がないと言える。即ち水酸化ニッケル表面へのCo
(OH)2 の被覆層の形成方法としては、この2つの方
法のいずれでもかまわない。しかし水酸化ニッケル晶析
時にCo(OH)2 を被覆する方法は水洗、乾燥工程等
が簡素化されコストメリットが期待できる。
From Table 2, it can be said that there is no difference between the batteries A and B with respect to the positive electrode utilization factor. That is, Co on the nickel hydroxide surface
Either of these two methods may be used for forming the (OH) 2 coating layer. However, the method of coating Co (OH) 2 during crystallization of nickel hydroxide simplifies the washing and drying steps, and can be expected to have a cost merit.

【0021】また実施例では負極に水素吸蔵合金を用い
た場合を示したが本発明はニッケル極の改良に関するも
のであり、負極にカドミウムを用いても同じ効果を発揮
する。そのほか負極が鉄極や亜鉛極などでも同じ効果が
得られる。また実施例ではCoOを使用したがCoやC
o(OH)2 を使用しても同様の効果が得られる。さら
に球状、ほぼ球状、鶏卵状若しくはこれらを集合した形
状の水酸化ニッケルを用いた方が充填密度が向上し電池
性能が向上する。また、前記形状の水酸化ニッケルは、
比表面積が小さく被覆に要するCo(OH)2 の量が少
量ですむためコスト的に有利である。
Further, in the embodiment, the case where the hydrogen storage alloy is used for the negative electrode is shown, but the present invention relates to the improvement of the nickel electrode, and the same effect is exerted even when cadmium is used for the negative electrode. In addition, the same effect can be obtained when the negative electrode is an iron electrode or a zinc electrode. In the embodiment, CoO is used.
The same effect can be obtained by using o (OH) 2 . Further, the use of nickel hydroxide having a spherical shape, a substantially spherical shape, an egg-like shape, or a shape obtained by assembling them increases the packing density and the battery performance. Further, the nickel hydroxide having the above-mentioned shape,
Since the specific surface area is small and the amount of Co (OH) 2 required for coating is small, the cost is advantageous.

【0022】[0022]

【発明の効果】表面にCo(OH)2 の被覆層を形成し
た水酸化ニッケル粉末と、CoあるいはCo化合物の少
なくとも1種以上を添加したニッケル極で電池を構成す
ることにより、高い正極利用率を示すアルカリ蓄電池が
得られる。
The present invention provides a high positive electrode utilization rate by forming a battery with a nickel hydroxide powder having a Co (OH) 2 coating layer formed on the surface and a nickel electrode to which at least one of Co or a Co compound is added. Is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における、水酸化ニッケル表面
に被覆されたCo(OH)2 量と0.2C放電時の正極
活物質の利用率を示した特性図
FIG. 1 is a characteristic diagram showing the amount of Co (OH) 2 coated on the surface of nickel hydroxide and the utilization rate of a positive electrode active material at the time of 0.2 C discharge in an example of the present invention.

【図2】本発明の実施例におけるCoOの正極への添加
量の割合と0.2C放電時の正極活物質の利用率を示し
た特性図
FIG. 2 is a characteristic diagram showing the ratio of the amount of CoO added to a positive electrode and the utilization rate of a positive electrode active material during 0.2 C discharge in an example of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 八尾 剛史 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平4−332470(JP,A) 特開 昭62−234867(JP,A) 特開 平3−78966(JP,A) 特開 平3−93161(JP,A) 特開 平4−215248(JP,A) 特開 昭60−131765(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/32 H01M 4/52 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeshi Yao 1006 Kazuma Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-4-332470 (JP, A) JP-A-62- 234867 (JP, A) JP-A-3-78966 (JP, A) JP-A-3-93161 (JP, A) JP-A-4-215248 (JP, A) JP-A-60-131765 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01M 4/32 H01M 4/52

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 表面にCo(OH)2の被覆層を形成し
た水酸化ニッケルを主成分とする粉末と、CoOを併用
し、前記Co(OH)2の被覆層は水酸化ニッケルに対
して2〜10wt%であり、かつ前記CoOの添加量が
水酸化ニッケルに対してCo原子の量に換算して、2.
4〜9.4wt%の組成であることを特徴とするアルカ
リ蓄電池用ニッケル極。
1. A powder mainly composed of nickel hydroxide having a coating layer of Co (OH) 2 formed on its surface, and CoO in combination, wherein the coating layer of Co (OH) 2 is 2 to 10 wt %, and the amount of CoO added is converted into the amount of Co atoms with respect to nickel hydroxide .
A nickel electrode for an alkaline storage battery having a composition of 4 to 9.4 wt% .
【請求項2】 前記水酸化ニッケル粉末の形状が、球
状、ほぼ球状、鶏卵状もしくはこれらを集合した形状で
あることを特徴とする請求項1記載のアルカリ蓄電池用
ニッケル極。
2. The nickel electrode for an alkaline storage battery according to claim 1, wherein the shape of the nickel hydroxide powder is spherical, substantially spherical, egg-shaped, or a shape obtained by assembling them.
JP02228094A 1994-02-21 1994-02-21 Nickel electrode for alkaline storage battery Expired - Fee Related JP3156485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02228094A JP3156485B2 (en) 1994-02-21 1994-02-21 Nickel electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02228094A JP3156485B2 (en) 1994-02-21 1994-02-21 Nickel electrode for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH07235303A JPH07235303A (en) 1995-09-05
JP3156485B2 true JP3156485B2 (en) 2001-04-16

Family

ID=12078353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02228094A Expired - Fee Related JP3156485B2 (en) 1994-02-21 1994-02-21 Nickel electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3156485B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040007A (en) * 1996-06-19 2000-03-21 Tanaka Chemical Corporation Nickel hydroxide particles having an α- or β-cobalt hydroxide coating layer for use in alkali batteries and a process for producing the nickel hydroxide
JP2001332257A (en) * 1999-10-08 2001-11-30 Hitachi Maxell Ltd Non-baking type positive electrode for alkaline battery, its manufacturing method and the alkaline battery using the non-baking type positive electrode
JP2007066697A (en) * 2005-08-31 2007-03-15 Matsushita Electric Ind Co Ltd Manufacturing method of alkaline storage battery

Also Published As

Publication number Publication date
JPH07235303A (en) 1995-09-05

Similar Documents

Publication Publication Date Title
US5077149A (en) Nickel/hydrogen storage battery and method of manufacturing the same
US4091181A (en) Rechargeable galvanic cell
JP2993886B2 (en) Anode and cathode for alkaline storage battery and method for producing the same
JP2001143745A (en) Nickel hydrogen storage battery
US5360687A (en) Hydrogen-occulusion electrode
JP3156485B2 (en) Nickel electrode for alkaline storage battery
JPH0714578A (en) Nickel positive electrode for alkaline storage battery and sealed nickel-hydrogen storage battery
JPH09274916A (en) Alkaline storage battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JP3094033B2 (en) Nickel hydride rechargeable battery
JP2000012011A (en) Manufacture of nickel-hydrogen storage battery
JPH1173957A (en) Alkaline storage battery and manufacture of nickel positive pole plate thereof
JP2001283902A (en) Alkaline battery
JP4531874B2 (en) Nickel metal hydride battery
JPH10334899A (en) Manufacture of alkaline storage battery and its electrode
JP3387763B2 (en) Manufacturing method of alkaline storage battery
JP2000200612A (en) Rectangular alkaline secondary battery
JP3267156B2 (en) Nickel hydride rechargeable battery
JPH06168719A (en) Negative electrode plate for nickel-hydrogen battery, manufacture thereof, and nickel-hydrogen battery
JP3136688B2 (en) Nickel-hydrogen storage battery
JPH1021904A (en) Alkaline storage battery
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JPH06150920A (en) Hydrogen storage alloy electrode for battery and manufacture thereof
JPH0883623A (en) Nickel-hydrogen secondary battery
JPH0888001A (en) Hydrogen storage alloy electrode and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090209

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees