JP3267156B2 - Nickel hydride rechargeable battery - Google Patents
Nickel hydride rechargeable batteryInfo
- Publication number
- JP3267156B2 JP3267156B2 JP14695296A JP14695296A JP3267156B2 JP 3267156 B2 JP3267156 B2 JP 3267156B2 JP 14695296 A JP14695296 A JP 14695296A JP 14695296 A JP14695296 A JP 14695296A JP 3267156 B2 JP3267156 B2 JP 3267156B2
- Authority
- JP
- Japan
- Prior art keywords
- cobalt
- nickel
- hydroxide
- positive electrode
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ニッケル水素二次
電池に関し、特にその正極の主活物質である水酸化ニッ
ケルの利用率の向上に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel-hydrogen secondary battery, and more particularly to an improvement in the utilization of nickel hydroxide, which is the main active material of the positive electrode.
【0002】[0002]
【従来の技術】近年、ニッケル水素二次電池は、携帯機
器の普及と小型軽量化にともないその電源として小型化
と高容量化が強く要望されてきている。2. Description of the Related Art In recent years, with the spread of portable equipment and the reduction in size and weight of nickel-metal hydride secondary batteries, there has been a strong demand for miniaturization and high capacity as power sources.
【0003】以下に、従来のニッケル水素二次電池の代
表的な構成と製法について説明する。[0003] A typical configuration and manufacturing method of a conventional nickel-metal hydride secondary battery will be described below.
【0004】まず、金属製電池ケースの内部に、正極と
負極とこの両者を電気的に絶縁するセパレータとからな
る電極群が挿入され、アルカリ電解液が所定量注入され
る。そしてその後ケース上部を端子を備えた封口板で密
閉した構成となっている。ここで用いられている正極
は、ニッケル金属よりなる三次元的に連続した多孔度9
5%以上のスポンジ状多孔基板に、活物質である水酸化
ニッケルを充填した非焼結式が代表的なものであり、こ
れは現在高容量の二次電池の正極として広く用いられて
いる。この非焼結式正極に関して、特開昭60−131
765号公報には、球状の水酸化ニッケルを充填するこ
とが提案されている。この方法により基板に活物質を均
一に、高密度に充填することが可能となり、焼結式正極
に比較して高容量化が達成できる。しかしながら、スポ
ンジ状多孔基板の細孔径は、200〜500μm程度で
あり、この細孔に粒径が数μm〜数10μmの球状水酸
化ニッケルを充填するため、ニッケル金属からなる骨格
近傍の水酸化ニッケルは、導電性が確保されて充放電反
応がスムーズに進行するが、骨格から遠く離れた水酸化
ニッケルの反応は、導電性が十分でないことから、骨格
近傍程には十分に進まない。そこでこの非焼結式正極で
は充填する球状の水酸化ニッケル以外にこの球状の水酸
化ニッケル粒子間を導電性の物質で接続させる必要があ
る。一般にこの導電剤としては、水酸化コバルト、酸化
コバルトや金属コバルト等が用いられている。First, an electrode group including a positive electrode, a negative electrode, and a separator for electrically insulating both of them is inserted into a metal battery case, and a predetermined amount of an alkaline electrolyte is injected. After that, the upper part of the case is sealed with a sealing plate provided with terminals. The positive electrode used here has a three-dimensionally continuous porosity of 9 made of nickel metal.
A non-sintering type in which a sponge-like porous substrate of 5% or more is filled with nickel hydroxide as an active material is typical, and is widely used as a positive electrode of a high-capacity secondary battery at present. With respect to this non-sintered positive electrode,
No. 765 proposes filling spherical nickel hydroxide. According to this method, the active material can be uniformly and densely filled in the substrate, and a higher capacity can be achieved as compared with the sintered positive electrode. However, the pore diameter of the sponge-like porous substrate is about 200 to 500 μm, and since these pores are filled with spherical nickel hydroxide having a particle diameter of several μm to several tens μm, nickel hydroxide near the skeleton made of nickel metal is used. However, the charge / discharge reaction proceeds smoothly because the conductivity is ensured, but the reaction of nickel hydroxide far away from the skeleton does not proceed sufficiently as near the skeleton because of insufficient conductivity. Therefore, in this non-sintered positive electrode, it is necessary to connect the spherical nickel hydroxide particles with a conductive substance in addition to the spherical nickel hydroxide to be filled. Generally, cobalt hydroxide, cobalt oxide, metal cobalt, or the like is used as the conductive agent.
【0005】上記のように構成されたニッケル水素二次
電池は、アルカリ電解液が極板間に十分に浸透して、こ
の電解液に正極活物質に添加した水酸化コバルト等の溶
解析出が行われた後、初期の充放電を数サイクル行い、
次に水素吸蔵合金の活性化のために温度を上げた雰囲気
でエージングが行われる。ここで水酸化コバルトが導電
剤として用いられる場合、水酸化コバルトは、強アルカ
リの電解液にコバルト酸イオンとして溶解する。その溶
解度は100ppm程度である。このようにアルカリ電
解液中に溶解したコバルト酸イオンは、電池としての充
電過程で水酸化ニッケル粒子表面に微細な粒子状態で再
析出して水酸化コバルトとなり、さらにその後の充電に
よってオキシ水酸化コバルトに変化して水酸化ニッケル
粒子表面に薄い導電層を形成し、水酸化ニッケル粒子同
士を電気的に結合させていると考えられている。また、
電解液に溶解しなかった固体状態の水酸化コバルトも、
初期の充電により、その表面がオキシ水酸化コバルトに
変化して水酸化ニッケル粒子間を電気的に導通させる導
電剤として働くこととなる。[0005] In the nickel-hydrogen secondary battery constructed as described above, the alkaline electrolyte sufficiently penetrates between the electrodes, and the electrolytic solution dissolves and precipitates cobalt hydroxide and the like added to the positive electrode active material. After the initial charge / discharge cycle,
Next, aging is performed in an atmosphere at an increased temperature for activation of the hydrogen storage alloy. Here, when cobalt hydroxide is used as the conductive agent, the cobalt hydroxide dissolves in the strong alkaline electrolyte as cobaltate ions. Its solubility is about 100 ppm. The cobaltate ions dissolved in the alkaline electrolyte as described above are reprecipitated in the form of fine particles on the surface of the nickel hydroxide particles during the charging process as a battery to become cobalt hydroxide. It is considered that the nickel hydroxide particles are electrically coupled to each other by forming a thin conductive layer on the surface of the nickel hydroxide particles. Also,
Cobalt hydroxide in the solid state that did not dissolve in the electrolyte,
By the initial charge, the surface is changed to cobalt oxyhydroxide and acts as a conductive agent for electrically connecting the nickel hydroxide particles.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、上記の
ような構成では、正極に添加された導電剤である水酸化
コバルト等のアルカリ電解液への溶解度は、最大でも2
00ppm程度であるため、その溶解析出により水酸化
ニッケル粒子表面に形成されるオキシ水酸化コバルトの
導電層は、極めて薄く微弱である。従って、電池を高率
放電したり、高温で保存した場合には、この薄く弱い導
電層が分断して導電性のネットワークがそこなわれる。
また、アルカリ電解液に溶解しなかった固体状態の水酸
化コバルトは、初期の充電によりオキシ水酸化コバルト
に変化して導電剤となるが、この状態ではアルカリ電解
液にはほとんど溶解しないため、二度目以降の充電で、
水酸化ニッケル粒子表面に新たな導電層は形成されな
い。さらに、主活物質である水酸化ニッケルとこれに導
電剤として添加した水酸化コバルト等を混合してスポン
ジ状多孔基板に充填した時の混合物の混合組成、特に添
加物の量の大小によって活物質である水酸化ニッケルの
利用率は影響される。これらのことより、従来のニッケ
ル水素二次電池は、高率放電や高温保存した場合等に
は、水酸化ニッケルの利用率が大幅に低下したり、不安
定になるという問題点があった。However, in the above-described structure, the solubility of the conductive agent added to the positive electrode, such as cobalt hydroxide, in the alkaline electrolyte is at most 2%.
Since it is about 00 ppm, the conductive layer of cobalt oxyhydroxide formed on the surface of the nickel hydroxide particles by dissolution precipitation is extremely thin and weak. Therefore, when the battery is discharged at a high rate or stored at a high temperature, the thin and weak conductive layer is broken and the conductive network is damaged.
Also, cobalt hydroxide in a solid state not dissolved in the alkaline electrolyte is changed to cobalt oxyhydroxide by the initial charge and becomes a conductive agent. In this state, it hardly dissolves in the alkaline electrolyte. After the first charge,
No new conductive layer is formed on the surface of the nickel hydroxide particles. Further, the mixture of nickel hydroxide, which is the main active material, and cobalt hydroxide added as a conductive agent to the sponge-like porous substrate, and the mixture is filled into the sponge-like porous substrate. The utilization rate of nickel hydroxide is affected. For these reasons, the conventional nickel-metal hydride secondary battery has a problem that the utilization rate of nickel hydroxide is greatly reduced or becomes unstable when the battery is subjected to high-rate discharge or high-temperature storage.
【0007】本発明は、正極の主活物質である水酸化ニ
ッケルの粒子間の導電性を高めて、活物質利用率が高
く、安定した電池特性を発揮するニッケル水素二次電池
を提供することを目的とする。An object of the present invention is to provide a nickel-hydrogen secondary battery which has a high active material utilization rate and exhibits stable battery characteristics by enhancing the conductivity between particles of nickel hydroxide which is a main active material of a positive electrode. With the goal.
【0008】[0008]
【課題を解決するための手段】上記の課題を解決するた
めに、本発明のニッケル水素二次電池は、水酸化ニッケ
ルを主活物質とする正極と、セパレータと、水素吸蔵合
金粉末よりなる負極とアルカリ電解液とが収納された金
属製電池ケースの内部に、水酸化コバルト、酸化コバル
トおよび金属コバルトのうちの少なくともいずれかを電
極および電池ケースとは導通しない電気的に中立な状態
で、しかもアルカリ電解液には接するように位置させた
ものである。In order to solve the above-mentioned problems, a nickel-hydrogen secondary battery of the present invention comprises a positive electrode having nickel hydroxide as a main active material, a separator, and a negative electrode comprising a hydrogen storage alloy powder. Inside a metal battery case containing an alkaline electrolyte and at least one of cobalt hydroxide, cobalt oxide and metal cobalt in an electrically neutral state not conducting with the electrode and the battery case, and It is positioned so as to be in contact with the alkaline electrolyte.
【0009】これにより、電池ケース内に位置させた水
酸化コバルト等は、アルカリ電解液に溶解してコバルト
酸イオンとなり、これが電池の初充電時に正極の水酸化
ニッケル粒子表面にオキシ水酸化コバルトとして析出し
て行き、薄い導電層を形成する。初充電後もこの導電層
の供給源である水酸化コバルト等は、電極および電池ケ
ースとは電気的に隔離されていて電位のかからない中立
な状態で位置するために、充放電時の酸化還元が作用す
ることはなく、酸化されることがない。従って、水酸化
コバルト等は、アルカリ電解液に常に微量づつ溶解して
コバルト酸イオンとなり、これが充電時毎に正極の活物
質である水酸化ニッケル粒子表面にオキシ水酸化コバル
トとして析出して行き常に導電層を形成して水酸化ニッ
ケル粒子間をつなぐ導電性ネットワークを保つので、水
酸化ニッケル粒子相互の導電性を高め、活物質利用率が
高く、安定した特性の電池が得られる。As a result, cobalt hydroxide or the like located in the battery case dissolves in the alkaline electrolyte to form cobaltate ions, which are formed as cobalt oxyhydroxide on the surface of the nickel hydroxide particles of the positive electrode during the initial charge of the battery. Deposit to form a thin conductive layer. Even after the initial charge, the supply source of this conductive layer, such as cobalt hydroxide, is electrically isolated from the electrodes and the battery case, and is located in a neutral state where no potential is applied. It has no effect and is not oxidized. Therefore, cobalt hydroxide or the like always dissolves in a small amount in the alkaline electrolyte to form cobaltate ions, which are precipitated as cobalt oxyhydroxide on the surface of nickel hydroxide particles, which is the active material of the positive electrode, every time charging is performed. Since a conductive layer is formed to maintain a conductive network connecting the nickel hydroxide particles, the conductivity of the nickel hydroxide particles is increased, and a battery with high active material utilization and stable characteristics is obtained.
【0010】[0010]
【発明の実施の形態】本願の請求項1に記載の発明は、
水酸化ニッケルを主活物質とする正極と、セパレータ
と、水素吸蔵合金粉末よりなる負極と、アルカリ電解液
とが収納された金属製の電池ケースの内部に、水酸化コ
バルト、酸化コバルトおよび金属コバルトのうちの少な
くともいずれかを電極および電池ケースとは電気的に導
通しない中立な状態で、アルカリ電解液と接する状態で
位置させたものであり、ここでの水酸化コバルト等は、
電池の充放電によっては酸化されることがなく、アルカ
リ電解液に微量づつ溶解して、初充電時だけでなく充電
時毎にコバルト酸イオンになって、正極の活物質である
水酸化ニッケル粒子の表面にオキシ水酸化コバルトとし
て析出して行き、常に薄い導電層を形成して水酸化ニッ
ケル粒子間の導電性ネットワークを保つので、活物質の
導電性を高めて、活物質利用率を高く安定したものにで
きる。DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention described in claim 1 of the present application is
A positive electrode containing nickel hydroxide as a main active material, a separator, a negative electrode made of a hydrogen storage alloy powder, and a metal battery case containing an alkaline electrolyte are filled with cobalt hydroxide, cobalt oxide, and metallic cobalt. At least one of the electrodes and the battery case is located in a neutral state that is not electrically conductive, in a state in contact with the alkaline electrolyte, cobalt hydroxide and the like here,
Nickel hydroxide particles, which are active materials for the positive electrode, are not oxidized by the charge and discharge of the battery, are dissolved in a small amount in the alkaline electrolyte, and become cobaltate ions at each charge as well as at the first charge. Deposits as cobalt oxyhydroxide on the surface of the surface, constantly forming a thin conductive layer and maintaining the conductive network between the nickel hydroxide particles, increasing the conductivity of the active material and increasing the active material utilization Can be done.
【0011】請求項2に記載の発明は、正極中に水酸化
コバルト、酸化コバルトおよび金属コバルトのうちの少
なくともいずれかを添加物として含んだものであり、こ
の水酸化コバルト等が電池としての初充電時に導電性の
オキシ水酸化コバルトに変化し、正極そのものの導電性
を高めて活物質である水酸化ニッケルの利用率を一層向
上させるものである。According to a second aspect of the present invention, the positive electrode contains at least one of cobalt hydroxide, cobalt oxide and metallic cobalt as an additive. It changes to conductive cobalt oxyhydroxide at the time of charging, and enhances the conductivity of the positive electrode itself to further improve the utilization rate of nickel hydroxide as an active material.
【0012】請求項3に記載の発明は、電池の内底部に
アルカリ電解液に接しイオン拡散性のある板状あるいは
フィルム状の絶縁部材を2枚設け、その間に水酸化コバ
ルト、酸化コバルトおよび金属コバルトのうちの少なく
ともいずれかを介在させて、いわゆるサンドイッチ状に
配置したものである。ここでの水酸化コバルト等は、電
極および電池ケースとは電気的に隔離されていて、電気
的に中立な状態にあるので、充電後も電位は全く印加さ
れなく、常に電解液に溶解する。特にこの水酸化コバル
ト等は、電池ケース内底部に配置した2枚の絶縁部材間
に位置させると、特別な場所の確保は必要なく、電極群
の電池ケース内への挿入にも支障となることはなく、ア
ルカリ電解液と常に良好に接することができる。According to a third aspect of the present invention, there are provided two plate-shaped or film-shaped insulating members which are in contact with an alkaline electrolyte and have ion diffusibility, provided between the inner bottom of the battery and cobalt hydroxide, cobalt oxide and metal. It is arranged in a so-called sandwich shape with at least one of cobalt interposed. The cobalt hydroxide and the like here are electrically isolated from the electrode and the battery case and are in an electrically neutral state, so that no potential is applied even after charging, and the cobalt hydroxide or the like always dissolves in the electrolytic solution. In particular, when this cobalt hydroxide or the like is located between the two insulating members disposed at the bottom of the battery case, a special place is not required, and the insertion of the electrode group into the battery case is obstructed. And it can always be in good contact with the alkaline electrolyte.
【0013】[0013]
【実施例】次に、本発明の具体例を、図1に示した円筒
型のニッケル水素二次電池について述べる。Next, an embodiment of the present invention will be described with reference to a cylindrical nickel-metal hydride secondary battery shown in FIG.
【0014】図1において、ニッケルメッキした鉄製の
電池ケース1の内底部に微孔性を持ったポリエチレン膜
を円板状に打抜いた絶縁部材2aを置き、その上に粒径
が0.1μm〜1.0μmの水酸化コバルト粉末3を散
布し、さらにその上に2aと同様な絶縁部材2bを位置
させて、全体をサンドイッチ形状にする。このときの水
酸化コバルト粉末3の量は、正極4の主活物質である水
酸化ニッケルに対して2重量%とした。次に帯状の正極
4とポリプロピレン製のセパレータ5と水素蔵合金粉末
からなる負極6を渦巻状に巻回した電極群が、この電池
ケース1内に挿入され、絶縁部材2bの上に置かれる。
ついで電池ケース1内には、アルカリ電解液7が所定量
注入され、その後電極群上にポリエチレン製の上部絶縁
板8が配置される。なお、正極4には、正極リード9が
スポット溶接されており、この正極リード9の他端は、
安全弁10、端子キャップ11とともに封口板を構成す
る皿状の金属カバー12の下面に接続される。なお、1
3は電池ケース1と封口板とを絶縁する絶縁ガスケット
である。一方、負極6は、その最外周部分に露出させた
芯材を電池ケース1の内壁と直接接触させることで集電
構造を形成している。ここでの正極としては、水酸化ニ
ッケル粉末88重量%と水酸化コバルト粉末10重量%
と酸化亜鉛粉末2重量%を乾式混合し、さらにこの混合
物100重量部に対して純水25重量部を加えてスラリ
ー状の活物質ペーストを作成し、これをニッケル製の多
孔度95%のスポンジ状多孔基板に充填、乾燥して作成
した。これを1Aとする。同様な方法で、水酸化コバル
ト粉末を混入せず水酸化ニッケル粉末98重量%と酸化
亜鉛粉末2重量%とから作成した正極を1Bとした。負
極6としては、水素吸蔵合金粉末を主体に調整したペー
ストをニッケルメッキした鉄製シートの両面に塗着、乾
燥して作成した。前記正極1Aと負極6とポリプロピレ
ン製不織布のセパレータ5を用いて、理論容量1600
mAhの電極群を構成した。これを前記の手順に従って
電池ケース1内に挿入し、封口板で電池ケース1の開口
部を封口して4/5Aサイズの電池Aを作成した。同様
に正極1Bを用いて前記と同じ構成の電池を作成し、こ
れを電池Bとした。また、比較のために、電池ケース1
の内底部に水酸化コバルトの粉末3を位置させないで、
その他は電池Aと同じとした電池をCとし、同じく正極
1Bを用いて作成した電池をDとした。この4種類の電
池A,B,C,Dを1.6Aの電流によりそれぞれ充放
電をくり返した。このときの正極活物質である水酸化ニ
ッケルの利用率を図2に示す。この図2に示すように、
電池ケース1の内底部に水酸化コバルト粉末3を位置さ
せた本発明の電池Bは、水酸化コバルト粉末3を電池ケ
ース1の内底部に位置させなかった電池C,Dよりも活
物質である水酸化ニッケルの利用率が向上しており、し
かも電池の充放電をくり返しても安定した利用率が得ら
れることがわかる。これは、アルカリ電解液7が含浸し
た電極群と絶縁部材2bとが接しているので、この絶縁
部材2bにもアルカリ電解液7が含浸され、この絶縁部
材2bに接している水酸化コバルトがアルカリ電解液7
中に溶解し、電池の充電毎に水酸化ニッケル粒子表面に
オキシ水酸化コバルトの薄い導電層を形成するからであ
る。さらに、電池AとBを比較すると、水酸化コバルト
粉末3を電池ケース1の内底部に位置させただけの電池
Bよりも、正極中にも活物質に混在した状態で水酸化コ
バルトを含んでいる電池Aの方が2%近く活物質の利用
率が向上していることがわかる。これは、前記の水酸化
ニッケル粒子表面へのオキシ水酸化コバルトの薄い導電
層の形成だけでなく、水酸化ニッケル粒子と、この間に
位置した水酸化コバルト粒子との接触点が多くなって、
活性点が増加し、これらの確実な導電性ネットワークの
形成が、活物質利用率を高める上で有効であることを意
味している。In FIG. 1, an insulating member 2a formed by punching a polyethylene film having a microporous shape into a disk is placed on the inner bottom of a nickel-plated iron battery case 1, and a particle size of 0.1 μm is placed thereon. 1.01.0 μm of cobalt hydroxide powder 3 is sprinkled, and an insulating member 2b similar to 2a is further placed thereon to form a sandwich shape as a whole. At this time, the amount of the cobalt hydroxide powder 3 was 2% by weight based on nickel hydroxide, which is the main active material of the positive electrode 4. Next, an electrode group in which a strip-shaped positive electrode 4, a polypropylene separator 5, and a negative electrode 6 made of hydrogen storage alloy powder are spirally wound is inserted into the battery case 1 and placed on the insulating member 2b.
Next, a predetermined amount of an alkaline electrolyte 7 is injected into the battery case 1, and then an upper insulating plate 8 made of polyethylene is disposed on the electrode group. A positive electrode lead 9 is spot-welded to the positive electrode 4, and the other end of the positive electrode lead 9 is
The safety valve 10 and the terminal cap 11 are connected to the lower surface of a dish-shaped metal cover 12 which forms a sealing plate together with the terminal cap 11. In addition, 1
Reference numeral 3 denotes an insulating gasket for insulating the battery case 1 from the sealing plate. On the other hand, the negative electrode 6 forms a current collecting structure by directly contacting the core material exposed at the outermost periphery with the inner wall of the battery case 1. The positive electrode used here was 88% by weight of nickel hydroxide powder and 10% by weight of cobalt hydroxide powder.
And 2% by weight of zinc oxide powder were dry-mixed, and 25 parts by weight of pure water was further added to 100 parts by weight of this mixture to prepare a slurry-like active material paste, which was made of a sponge made of nickel and having a porosity of 95%. A porous substrate was filled and dried. This is 1A. In the same manner, a positive electrode made of 98% by weight of nickel hydroxide powder and 2% by weight of zinc oxide powder without mixing cobalt hydroxide powder was designated as 1B. The negative electrode 6 was prepared by applying a paste prepared mainly with a hydrogen storage alloy powder to both sides of a nickel-plated iron sheet and drying the paste. Using the positive electrode 1A, the negative electrode 6 and the separator 5 made of a nonwoven fabric made of polypropylene, a theoretical capacity of 1600
An electrode group of mAh was formed. This was inserted into the battery case 1 according to the above-described procedure, and the opening of the battery case 1 was sealed with a sealing plate to produce a battery A having a size of 4 / 5A. Similarly, a battery having the same configuration as described above was prepared using the positive electrode 1B, and this was designated as Battery B. For comparison, battery case 1
Do not place cobalt hydroxide powder 3 on the inner bottom of
Other than the above, the battery A was the same as the battery A, and the battery prepared using the positive electrode 1B was D. The four types of batteries A, B, C, and D were repeatedly charged and discharged with a current of 1.6 A. FIG. 2 shows the utilization rate of nickel hydroxide as the positive electrode active material at this time. As shown in FIG.
The battery B of the present invention in which the cobalt hydroxide powder 3 is located at the inner bottom of the battery case 1 is an active material more than the batteries C and D in which the cobalt hydroxide powder 3 is not located at the inner bottom of the battery case 1. It can be seen that the utilization rate of nickel hydroxide is improved, and that a stable utilization rate can be obtained even when the battery is repeatedly charged and discharged. This is because the electrode group impregnated with the alkaline electrolyte 7 is in contact with the insulating member 2b, so that the insulating member 2b is also impregnated with the alkaline electrolyte 7 and the cobalt hydroxide in contact with the insulating member 2b is alkaline. Electrolyte 7
This is because a thin conductive layer of cobalt oxyhydroxide is formed on the surface of the nickel hydroxide particles every time the battery is charged. Further, when comparing the batteries A and B, the positive electrode contains cobalt hydroxide in a state mixed with the active material more than the battery B in which the cobalt hydroxide powder 3 is merely located at the inner bottom of the battery case 1. It can be seen that the battery A has the utilization rate of the active material improved by almost 2%. This is because not only the formation of a thin conductive layer of cobalt oxyhydroxide on the surface of the nickel hydroxide particles, but also the number of contact points between the nickel hydroxide particles and the cobalt hydroxide particles located therebetween,
The number of active sites is increased, which means that formation of these reliable conductive networks is effective in increasing active material utilization.
【0015】以上のように本実施例によると、電池ケー
ス1の内底部に水酸化コバルト粉末3を位置させること
により、これをアルカリ電解液7に溶解し水酸化ニッケ
ル表面に導電性のオキシ水酸化コバルトとして析出させ
ることで、活物質の安定した、高い利用率を得ることが
できる。As described above, according to the present embodiment, the cobalt hydroxide powder 3 is located at the inner bottom of the battery case 1 and is dissolved in the alkaline electrolyte 7 so that the conductive oxyhydr By precipitating it as cobalt oxide, a stable and high utilization rate of the active material can be obtained.
【0016】なお、本実施例では、電池ケース1の内底
部に水酸化コバルト粉末3を位置させたが、水酸化コバ
ルトだけでなく酸化コバルトや金属コバルトであっても
ほぼ同様であり、これらのいずれかを単独もしくは2種
類以上を組み合わせて用いても同様の効果が得られる。
またその電池ケース1内への配置は、ケース1の内底部
だけでなく、前記のサンドイッチ形状で渦巻状電極群の
上部に、セパレータ5の上端と接してアルカリ電解液7
に溶け出しうるようにしてもよく、あるいはケース1内
周面の一部にサンドイッチ形状でライニングして設けて
もよい。In this embodiment, the cobalt hydroxide powder 3 is located at the inner bottom of the battery case 1. However, not only cobalt hydroxide but also cobalt oxide or metallic cobalt is almost the same. The same effect can be obtained by using either one of them alone or in combination of two or more.
In addition, in the battery case 1, not only the inner bottom portion of the case 1 but also the above-mentioned sandwich-shaped spiral electrode group is placed above the separator 5 in contact with the upper end of the separator 5.
May be provided, or may be provided in a part of the inner peripheral surface of the case 1 by lining in a sandwich shape.
【0017】[0017]
【発明の効果】以上のように本発明によれば、電池ケー
スの内部に、水酸化コバルト、酸化コバルトおよび金属
コバルトのうちの少なくともいずれかを電極および電池
ケースとは導通しなく電気的に中立な状態で、しかしア
ルカリ電解液には接触した状態で位置させることによ
り、電池の充電毎に導電性のオキシ水酸化コバルトを正
極の主活物質である水酸化ニッケル粒子表面に析出さ
せ、水酸化ニッケルの導電性を高め、活物質の利用率が
高いニッケル水素二次電池を提供することができる。As described above, according to the present invention, at least one of cobalt hydroxide, cobalt oxide and metal cobalt is electrically neutralized without conducting to the electrode and the battery case inside the battery case. But in contact with the alkaline electrolyte, conductive cobalt oxyhydroxide is deposited on the surface of the nickel hydroxide particles, which is the main active material of the positive electrode, every time the battery is charged. It is possible to provide a nickel-metal hydride secondary battery in which the conductivity of nickel is increased and the utilization rate of an active material is high.
【図1】本発明の実施例におけるニッケル水素二次電池
の断面図FIG. 1 is a cross-sectional view of a nickel-metal hydride secondary battery according to an embodiment of the present invention.
【図2】本発明の実施例における電池の充放電サイクル
と活物質利用率との関係を示す図FIG. 2 is a diagram showing a relationship between a charge / discharge cycle of a battery and an active material utilization rate in an example of the present invention.
1 電池ケース 2a 絶縁部材 2b 絶縁部材 3 水酸化コバルト 4 正極 5 セパレータ 6 負極 7 アルカリ電解液 8 上部絶縁板 9 正極リード 10 安全弁 11 キャップ 12 カバー 13 絶縁ガスケット DESCRIPTION OF SYMBOLS 1 Battery case 2a Insulating member 2b Insulating member 3 Cobalt hydroxide 4 Positive electrode 5 Separator 6 Negative electrode 7 Alkaline electrolyte 8 Upper insulating plate 9 Positive electrode lead 10 Safety valve 11 Cap 12 Cover 13 Insulating gasket
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−211317(JP,A) 特開 平7−135020(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/30 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-7-213317 (JP, A) JP-A-7-135020 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/30
Claims (3)
セパレータと、水素吸蔵合金粉末よりなる負極と、アル
カリ電解液とが収納された一方の極の端子を兼ねた電池
ケースの内部に、水酸化コバルト、酸化コバルトおよび
金属コバルトのうちの少なくともいずれかを前記アルカ
リ電解液と接し、前記正、負極および電池ケースとは導
通しない状態で位置させたことを特徴とするニッケル水
素二次電池。A positive electrode comprising nickel hydroxide as a main active material;
A separator, a negative electrode made of a hydrogen storage alloy powder, and an inside of a battery case that also serves as a terminal of one of the electrodes containing an alkaline electrolyte, at least one of cobalt hydroxide, cobalt oxide, and metallic cobalt. A nickel-hydrogen secondary battery, wherein the nickel-hydrogen secondary battery is located in contact with the alkaline electrolyte and not in conduction with the positive electrode, the negative electrode and the battery case.
水酸化コバルト、酸化コバルトおよび金属コバルトのう
ちの少なくともいずれかを添加物として含んでいる請求
項1記載のニッケル水素二次電池。2. The positive electrode comprises nickel hydroxide as a main active material,
2. The nickel-metal hydride secondary battery according to claim 1, further comprising at least one of cobalt hydroxide, cobalt oxide and metallic cobalt as an additive.
しかつイオン拡散性のある板状あるいはフィルム状の絶
縁部材を2枚設け、この2枚の絶縁部材間に、水酸化コ
バルト、酸化コバルトおよび金属コバルトのうちの少な
くともいずれかを介在させたことを特徴とする請求項1
または2記載のニッケル水素二次電池。3. An inner bottom portion of a battery case is provided with two plate-like or film-like insulating members which are in contact with an alkaline electrolyte and have ion diffusibility, and between these two insulating members, cobalt hydroxide and cobalt oxide are provided. And at least one of cobalt and metal cobalt.
Or the nickel-metal hydride secondary battery according to 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14695296A JP3267156B2 (en) | 1996-06-10 | 1996-06-10 | Nickel hydride rechargeable battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14695296A JP3267156B2 (en) | 1996-06-10 | 1996-06-10 | Nickel hydride rechargeable battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09330736A JPH09330736A (en) | 1997-12-22 |
JP3267156B2 true JP3267156B2 (en) | 2002-03-18 |
Family
ID=15419294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14695296A Expired - Fee Related JP3267156B2 (en) | 1996-06-10 | 1996-06-10 | Nickel hydride rechargeable battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3267156B2 (en) |
-
1996
- 1996-06-10 JP JP14695296A patent/JP3267156B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09330736A (en) | 1997-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8048566B2 (en) | Nickel hydroxide electrode for rechargeable batteries | |
JP3042043B2 (en) | Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same | |
JP4474722B2 (en) | Alkaline storage battery and positive electrode for alkaline storage battery used therefor | |
JP3267156B2 (en) | Nickel hydride rechargeable battery | |
JP3209071B2 (en) | Alkaline storage battery | |
JP3429684B2 (en) | Hydrogen storage electrode | |
JP3543601B2 (en) | Alkaline storage battery | |
JP3543607B2 (en) | Alkaline storage battery | |
JP2989877B2 (en) | Nickel hydride rechargeable battery | |
JP3156485B2 (en) | Nickel electrode for alkaline storage battery | |
JP2000012011A (en) | Manufacture of nickel-hydrogen storage battery | |
JP3625655B2 (en) | Hydrogen storage alloy electrode and nickel metal hydride storage battery | |
JP4531874B2 (en) | Nickel metal hydride battery | |
JP2000030736A (en) | Nickel hydrogen secondary battery | |
JP2003142087A (en) | Positive electrode for alkaline storage battery and alkaline storage battery using the same | |
JP3397216B2 (en) | Nickel plate, method of manufacturing the same, and alkaline storage battery using the same | |
JP2733230B2 (en) | Sealed nickel-hydrogen storage battery using hydrogen storage alloy | |
JPH103940A (en) | Nickel-metal hydride storage battery and its manufacture | |
JP2024131037A (en) | Nickel-metal hydride secondary battery | |
JPH08329936A (en) | Secondary battery and electrode preparation that is used forthis | |
JPH09213363A (en) | Manufacture of alkali storage battery | |
JP3555473B2 (en) | Method for producing positive electrode for alkaline secondary battery | |
JP2003297351A (en) | Positive electrode active material and positive electrode plate for nickel - hydrogen battery, nickel - hydrogen battery, and manufacturing method for nickel - hydrogen battery | |
JPH0251874A (en) | Alkaline zinc lead-acid battery | |
JPH0888001A (en) | Hydrogen storage alloy electrode and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |