JP3209071B2 - Alkaline storage battery - Google Patents

Alkaline storage battery

Info

Publication number
JP3209071B2
JP3209071B2 JP01854096A JP1854096A JP3209071B2 JP 3209071 B2 JP3209071 B2 JP 3209071B2 JP 01854096 A JP01854096 A JP 01854096A JP 1854096 A JP1854096 A JP 1854096A JP 3209071 B2 JP3209071 B2 JP 3209071B2
Authority
JP
Japan
Prior art keywords
active material
separator
weight
negative electrode
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01854096A
Other languages
Japanese (ja)
Other versions
JPH09213362A (en
Inventor
浩次 湯浅
宏樹 竹島
英男 海谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP01854096A priority Critical patent/JP3209071B2/en
Publication of JPH09213362A publication Critical patent/JPH09213362A/en
Application granted granted Critical
Publication of JP3209071B2 publication Critical patent/JP3209071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ蓄電池の
極板および渦巻状電極群の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in an electrode plate and a spiral electrode group of an alkaline storage battery.

【0002】[0002]

【従来の技術】アルカリ蓄電池の代表的なものに、ニッ
ケル・カドミウム蓄電池(以下ニカド電池と記す)が挙
げられる。ポータブル機器の電源としてニカド電池と鉛
蓄電池とを比較した場合、ニカド電池の方が、単位重量
および単位体積当たりのエネルギー密度が高く、サイク
ル寿命等の信頼性に優れているため、種々のポータブル
機器の電源として広く用いられている。
2. Description of the Related Art A typical example of an alkaline storage battery is a nickel-cadmium storage battery (hereinafter referred to as a nickel-cadmium battery). When comparing Ni-Cd batteries and lead-acid batteries as power sources for portable equipment, Ni-Cd batteries have a higher energy density per unit weight and unit volume, and are superior in reliability such as cycle life. It is widely used as a power source.

【0003】しかしながら、ニカド電池と同様な信頼性
を有し、さらに高エネルギー密度の蓄電池がポータブル
機器用の電源として切望されている。近年、従来のニカ
ド電池の1.3倍以上の電池容量を有する高容量ニカド
電池や、ニカド電池のカドミウム負極の代わりに電気化
学的に多量の水素の吸蔵・放出反応(充放電反応)が可
能な水素吸蔵合金を用いたニッケル・水素蓄電池、ある
いは亜鉛を用いたニッケル・亜鉛蓄電池が注目されてい
る。
[0003] However, a storage battery having the same reliability as that of a nickel-cadmium battery and having a high energy density has been desired as a power source for portable equipment. In recent years, high-capacity NiCd batteries with 1.3 times or more the capacity of conventional NiCad batteries, and electrochemically large amounts of hydrogen storage / release reactions (charge / discharge reactions) have become possible in place of the cadmium negative electrode of NiCad batteries. A nickel-hydrogen storage battery using a suitable hydrogen storage alloy or a nickel-zinc storage battery using zinc has attracted attention.

【0004】これらのアルカリ蓄電池のうち高容量タイ
プの電池には、ニッケル正極として主にペースト式電極
が用いられており、なかでもスポンジ状ニッケル多孔体
にニッケル酸化物を主体としたペースト状態の活物質を
均一に充填したペースト式正極では、極板の容量密度が
600mAh/cc以上に達する。
[0004] Among these alkaline storage batteries, high-capacity type batteries mainly use a paste-type electrode as a nickel positive electrode. Among them, a paste-like active material mainly composed of nickel oxide is used for a sponge-like nickel porous body. In a paste-type positive electrode uniformly filled with a substance, the capacity density of the electrode plate reaches 600 mAh / cc or more.

【0005】また、負極としては、活物質であるカドミ
ウム、水素吸蔵合金、亜鉛などをペースト状として多孔
鋼板または金属ネットの裏表両面に均一に塗着、圧延し
たものが用いられる。
As the negative electrode, a material in which cadmium, a hydrogen storage alloy, zinc, or the like, which is an active material, is paste-formed and uniformly applied to both the front and rear surfaces of a porous steel plate or a metal net and rolled is used.

【0006】[0006]

【発明が解決しようとする課題】アルカリ蓄電池を更に
高容量化し単位体積当たりのエネルギー密度を向上させ
るためには電池容量を規制している正極活物質量(占有
体積)を増やす必要がある。しかし、限られた電池容器
の内容積において正極活物質量を増やすためには、負極
活物質、正・負極の保持体、セパレータなどその他の構
成材料の占有体積を正極活物質量の増加分だけ相対的に
削減させなければならない。
In order to further increase the capacity of the alkaline storage battery and improve the energy density per unit volume, it is necessary to increase the amount of the positive electrode active material (occupied volume) that regulates the battery capacity. However, in order to increase the amount of the positive electrode active material in the limited internal volume of the battery container, the volume occupied by other constituent materials such as the negative electrode active material, the positive / negative electrode support, the separator, and the like are increased by the increased amount of the positive electrode active material. It must be relatively reduced.

【0007】この点を考慮して、活物質を均一厚さに充
填または塗着した正・負極板を用いて、従来の電池の作
成方法により電池を高容量化すると以下のような課題が
生ずることが懸念される。
In consideration of this point, when the capacity of a battery is increased by a conventional method for producing a battery using positive and negative plates filled or coated with an active material to a uniform thickness, the following problems occur. It is concerned.

【0008】すなわち、負極活物質量を削減すると、正
極活物質と負極活物質との容量割合がアンバランスにな
り電極反応を円滑に進行させることが困難になって放電
特性に支障を生じる。この傾向は放電電流値が大きい場
合により顕著となる。また、負極活物質量を削減すると
過充電時の負極のガス吸収能の低下による急速充電特
性、それに伴う寿命特性等の電池特性の低下が生じる。
また、正・負極それぞれの保持体量を削減すると、正・
負極それぞれの集電能が低下して高率放電特性、低温放
電特性などの低下を招く。さらにセパレータの占有体積
の削減はセパレータの薄型化により可能であるが、電池
を渦巻状に構成した際の正・負極の切断や折れによるバ
リ等に起因した電池の内部短絡の増加を引き起こし、生
産性が低下する。また、セパレータの単なる薄型化は電
解液の保液能力の低下につながり、放電特性、寿命特性
等の電池特性の低下が生じる。
That is, when the amount of the negative electrode active material is reduced, the capacity ratio between the positive electrode active material and the negative electrode active material becomes unbalanced, and it becomes difficult to smoothly proceed the electrode reaction, which causes a problem in the discharge characteristics. This tendency becomes more remarkable when the discharge current value is large. In addition, when the amount of the negative electrode active material is reduced, the battery characteristics such as the rapid charging characteristics due to the reduction of the gas absorption capacity of the negative electrode at the time of overcharging and the resulting life characteristics are caused.
In addition, if the amount of the positive and negative electrodes is reduced, the positive and negative
The current collecting ability of each of the negative electrodes decreases, leading to a decrease in high-rate discharge characteristics, low-temperature discharge characteristics, and the like. Furthermore, the volume occupied by the separator can be reduced by reducing the thickness of the separator.However, when the battery is formed in a spiral shape, the internal short circuit of the battery due to burrs caused by cutting and breaking of the positive and negative electrodes increases, resulting in increased production. Is reduced. Further, a mere reduction in thickness of the separator leads to a decrease in the ability to retain the electrolytic solution, resulting in a decrease in battery characteristics such as discharge characteristics and life characteristics.

【0009】本発明は、上記諸課題のうちの放電特性、
電池作成時の生産性に関する問題点を解決するもので、
正極活物質の占有体積を増やして更に高容量化し単位体
積当たりのエネルギー密度を向上させた場合にも、従来
の電池と同等以上の放電特性を有し、さらに電池構成時
の内部短絡不良の発生をも極力抑制した生産性の良いア
ルカリ蓄電池を提供することを主たる目的とする。
[0009] The present invention provides a discharge characteristic,
It solves productivity issues when creating batteries.
Even if the volume occupied by the positive electrode active material is increased to further increase the capacity and improve the energy density per unit volume, it has discharge characteristics equal to or better than that of conventional batteries, and the occurrence of internal short-circuit failure during battery construction The main object of the present invention is to provide a highly productive alkaline storage battery that suppresses as much as possible.

【0010】[0010]

【課題を解決するための手段】これらの課題を解決する
ために本発明は、極板の厚み方向の中心部を境にして、
活物質重量において一方の面が他方の面よりも1.1倍
以上多く配置された構造を有する正極板と、板状導電芯
材を境にして極板の厚み方向の活物質重量において一方
の面が他方の面よりも1.1倍以上多く配置された構造
を有する負極板を、活物質重量の多い面同士及び活物質
重量の少ない面同士をそれぞれセパレータを介して対向
させ渦巻状に捲回して電池ケースに収納したものであ
る。そして、好ましくは負極の活物質重量の少ない面が
外周面側となるように渦巻状に捲回し、活物質重量の多
い面同士の間のセパレータ部分の電解液保液量を活物質
重量の少ない面同士の間のセパレータ部分の電解液保液
量よりも1.1倍以上多くしたことを特徴とするアルカ
リ蓄電池を提供するものである。
SUMMARY OF THE INVENTION In order to solve these problems, the present invention relates to a method of manufacturing a magnetic recording medium, comprising:
A positive electrode plate having a structure in which one surface is arranged 1.1 times or more larger than the other surface in the active material weight, and one in the thickness of the active material in the thickness direction of the electrode plate with respect to the plate-shaped conductive core material A negative electrode plate having a structure in which the surfaces are arranged 1.1 times or more larger than the other surface is spirally wound with the surfaces having a large active material weight and the surfaces having a low active material weight opposed to each other via a separator. Turned and stored in the battery case. Then, preferably, the negative electrode is spirally wound so that the surface with the lower active material weight is on the outer peripheral surface side, and the electrolyte retaining amount of the separator portion between the surfaces with the higher active material weight is reduced with the lower active material weight. The present invention provides an alkaline storage battery characterized in that the amount of electrolyte retained in a separator portion between the surfaces is 1.1 times or more.

【0011】これにより、正極活物質の占有体積を増や
して更に高容量化し単位体積当たりのエネルギー密度を
向上させた場合にも、従来の電池と同等以上の放電特性
を有し、さらに電池構成時の内部短絡不良の発生をも極
力抑制した生産性の良いアルカリ蓄電池を提供すること
が可能となる。
As a result, even when the volume occupied by the positive electrode active material is increased to further increase the capacity and improve the energy density per unit volume, the battery has a discharge characteristic equal to or higher than that of a conventional battery, It is possible to provide an alkaline storage battery with high productivity in which occurrence of internal short circuit failure is suppressed as much as possible.

【0012】[0012]

【発明の実施の形態】本発明の請求項1に記載の発明
は、極板の厚み方向の中心部を境にして、活物質重量に
おいて一方の面が他方の面よりも1.1倍以上多く配置
された構造を有する正極板と、板状の導電芯材を境にし
て極板の厚み方向の活物質重量において一方の面が他方
の面よりも1.1倍以上多く配置された構造を有する負
極板を、活物質重量の多い面同士及び活物質重量の少な
い面同士をそれぞれセパレータを介して対向させ渦巻状
に捲回して電池ケースに収納したもので、正極活物質と
負極活物質とを均等に対向させることにより放電反応を
効率よく進行させることができる。また、正・負極の活
物質重量の多い面は、活物質重量の少ない面よりも相対
的に充填密度が高い状態となるため、電極中の活物質粉
末同士の接触抵抗等の放電反応を疎外する抵抗を排除で
きるようになるため、放電反応を効率よく進行させるこ
とができる。
BEST MODE FOR CARRYING OUT THE INVENTION According to the first aspect of the present invention, one side of the active material is 1.1 times or more the weight of the active material at the center of the electrode plate in the thickness direction. A positive electrode plate having a structure in which many are arranged, and a structure in which one surface is arranged to be 1.1 times or more larger than the other surface in an active material weight in a thickness direction of the electrode plate with a plate-shaped conductive core as a boundary. A negative electrode plate having a surface with a high active material weight and a surface with a low active material weight facing each other via a separator and spirally wound and housed in a battery case. And the discharge reaction can be efficiently advanced by opposing them uniformly. In addition, since the surface of the positive and negative electrodes with a large active material weight has a relatively higher packing density than the surface of a small active material weight, a discharge reaction such as contact resistance between active material powders in an electrode is alienated. Since the resistance of the discharge reaction can be eliminated, the discharge reaction can proceed efficiently.

【0013】また、請求項2に記載の発明は、極板の長
さが一定の場合、負極の活物質重量の多い面が外周面側
となるように渦巻状に捲回して電池ケースに収納した時
よりも相手極と対向する正極及び負極活物質重量を多く
できるため、放電反応特性が向上する。
According to a second aspect of the present invention, when the length of the electrode plate is constant, the negative electrode is spirally wound and housed in the battery case such that the surface of the negative electrode having a large active material weight is on the outer peripheral surface side. Since the weight of the positive electrode and the negative electrode active material opposed to the counter electrode can be increased as compared with the case of the above, the discharge reaction characteristics are improved.

【0014】請求項3に記載の発明は、主な反応場とな
る活物質重量の多い面同士の対向面の電解液量を多くで
きるため、放電反応特性を向上させることができる。
According to the third aspect of the present invention, since the amount of the electrolyte on the opposite surface between the surfaces having a large active material weight, which are the main reaction sites, can be increased, the discharge reaction characteristics can be improved.

【0015】請求項4に記載の発明は、電池を渦巻状に
構成した際の電池の内部短絡のうち、最も多い正極の外
周面の折れによるバリ等に起因するものを防止すること
ができる。
According to the fourth aspect of the present invention, it is possible to prevent the most internal short-circuit of the battery when the battery is formed in a spiral shape, which is caused by burrs or the like due to the most bent outer peripheral surface of the positive electrode.

【0016】請求項5に記載の発明は、請求項3に記載
の発明と同様に、主な反応場となる活物質重量の多い面
同士の対向面間の電解液量を多くできるため、放電反応
特性が向上できる。
According to the fifth aspect of the present invention, as in the third aspect of the present invention, since the amount of the electrolyte between the opposing surfaces having a large weight of the active material, which is the main reaction field, can be increased, the discharge can be increased. The reaction characteristics can be improved.

【0017】請求項6に記載の発明は、従来より負極の
導電芯材として用いられている鉄にニッケル鍍金をした
ようなパンチングメタルなどよりも芯材の導電性、集電
性を高めることができ、放電反応特性が向上するととも
に低コスト化ができる。
According to a sixth aspect of the present invention, the conductivity and the current collecting property of the core can be improved more than a punching metal or the like obtained by plating nickel on iron, which has been conventionally used as a conductive core of the negative electrode. As a result, the discharge reaction characteristics can be improved and the cost can be reduced.

【0018】請求項7に記載の発明は、発泡状金属多孔
体を用いることで正極の単位体積当たりの活物質重量を
多くでき、高容量化ができる。さらにニッケル被覆した
発泡状鉄を用いることによって低コスト化も図ることが
できる。
In the invention according to claim 7, the weight of the active material per unit volume of the positive electrode can be increased and the capacity can be increased by using the foamed metal porous body. Further, by using the nickel-coated foamed iron, cost reduction can be achieved.

【0019】請求項8に記載の発明は、正極及び負極の
活物質充填量の偏在状態を規定したものである。偏在状
態が2倍を越えると、活物質充填量の多い電極面側は、
多孔度の減少に伴う電解液量の減少を来たし、放電反応
が円滑に進行しなくなるため放電特性の低下を引き起こ
す。また負極の場合は、さらに、電極表面の活物質と導
電芯材との距離が遠くなり、集電能が低下するためさら
に放電特性の低下の要因となるが、上記の規定でこれら
を解消できる。
The invention according to claim 8 defines an uneven distribution state of the active material filling amounts of the positive electrode and the negative electrode. If the uneven distribution state exceeds twice, the electrode surface side with a large amount of active material filling becomes
As the porosity decreases, the amount of the electrolytic solution decreases, and the discharge reaction does not proceed smoothly, so that the discharge characteristics deteriorate. In the case of a negative electrode, the distance between the active material on the electrode surface and the conductive core material is further increased, and the current collecting ability is further reduced, which further causes a reduction in the discharge characteristics.

【0020】以下、本発明の実施の形態について、図を
用いて説明する。 (実施の形態)図1は渦巻状に捲回する以前の積層した
電極群の略図を示す。図中1は正極板、2は負極板、
3、4はセパレータである。正極板1は、点線で示した
極板の厚み方向の中心部を境にして1aの部分が1bの
部分よりも活物質重量において多くなっている。この構
成は、正極活物質の保持体である金属多孔体にペースト
状活物質を充填する時にペースト粘度を充分高くし、1
a側からのみペーストを充填し、その活物質ペーストが
容易には1bの外側面にまで抜け出ないようにして極板
を作成することによって可能となる。また、金属多孔体
の多孔度をその厚み方向において変化させても良い。負
極板2は、その導電芯材5を境にして2aの部分が2b
の部分よりも活物質重量において多くなっている。この
構成は、導電芯材5にペースト状活物質を塗着する時に
2a面及び2b面の塗着量を制御することによって作成
可能となる。正極板1と負極板2は、それぞれ活物質重
量において多い1a面と2a面とがセパレータ3を介し
て対向している。セパレータ3、4は同一のものでもよ
いが、電池を高容量化する時にはセパレータ4をセパレ
ータ3よりも厚みを薄くしてもよい。また、放電特性な
どの電池特性を向上させるためにセパレータ3の電解液
保液能力をセパレータ4のそれよりも高めてもよい。ま
た、セパレータの材質としては従来から用いられている
オレフィン系の不織布のほかにオレフィン系の微孔性フ
ィルムを用いてもよい。特に、セパレータ4は従来のそ
れの1/3〜1/4程度の厚みである50μm程度に薄
型化する時には、保液の均質性の観点からフィルム状の
ポリプロピレンもしくはポリエチレン等をスルホン化処
理等によって親水化処理したものが好ましい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. (Embodiment) FIG. 1 is a schematic view of a stacked electrode group before being spirally wound. In the figure, 1 is a positive electrode plate, 2 is a negative electrode plate,
Reference numerals 3 and 4 denote separators. In the positive electrode plate 1, the portion 1a has a larger active material weight than the portion 1b at the center of the thickness direction of the electrode plate indicated by the dotted line as a boundary. With this configuration, the paste viscosity is sufficiently increased when the paste-like active material is filled in a porous metal body that is a support for the positive electrode active material, and
This can be achieved by filling the paste only from the side a and making the electrode plate such that the active material paste does not easily come off to the outer surface of the area 1b. Further, the porosity of the porous metal body may be changed in the thickness direction. In the negative electrode plate 2, the portion 2 a is 2 b with the conductive core material 5 as a boundary.
The active material weight is larger than that of the portion. This configuration can be created by controlling the amount of application on the 2a surface and 2b surface when applying the paste active material to the conductive core material 5. In the positive electrode plate 1 and the negative electrode plate 2, surfaces 1 a and 2 a, which are large in active material weight, are opposed to each other with a separator 3 interposed therebetween. The separators 3 and 4 may be the same, but the separator 4 may be thinner than the separator 3 when increasing the capacity of the battery. Further, in order to improve battery characteristics such as discharge characteristics, the electrolyte retention capacity of the separator 3 may be higher than that of the separator 4. Further, as the material of the separator, an olefin-based microporous film may be used in addition to the olefin-based nonwoven fabric conventionally used. In particular, when the thickness of the separator 4 is reduced to about 50 μm, which is about 1/3 to 1/4 of that of the conventional separator, a film-like polypropylene or polyethylene or the like is subjected to a sulfonation treatment or the like from the viewpoint of uniformity of liquid retention. Those subjected to a hydrophilic treatment are preferred.

【0021】図2Aは図1の積層した電極群を渦巻状に
捲回して電池ケース6に収納した断面図である。尚、図
中7は正極端子キャップ、8は安全弁、9は封口板、1
0は絶縁ガスケットである。この状態では負極板2は、
図2Bに拡大して示したように、活物質重量の少ない2
b面が最外周面側となって、電池ケース6の内壁と接す
るように収納されている。
FIG. 2A is a sectional view in which the stacked electrode group of FIG. 1 is spirally wound and housed in a battery case 6. In the figure, 7 is a positive electrode terminal cap, 8 is a safety valve, 9 is a sealing plate, 1
0 is an insulating gasket. In this state, the negative electrode plate 2
As shown in an enlarged manner in FIG.
The battery case 6 is housed in such a manner that the surface b is the outermost peripheral surface side and is in contact with the inner wall of the battery case 6.

【0022】[0022]

【実施例】次に、本発明の具体例を正極活物質として水
酸化ニッケル、負極活物質として水素吸蔵合金を用いた
ニッケル・水素蓄電池を例にとり説明する。
Next, a specific example of the present invention will be described with reference to a nickel-hydrogen storage battery using nickel hydroxide as a positive electrode active material and a hydrogen storage alloy as a negative electrode active material.

【0023】(実施例1)正極は以下の手順で作成し
た。まず、活物質である平均粒子径10μmの球状水酸
化ニッケル粉末100重量部に対し、水酸化コバルト粉
末7重量部、酸化コバルト粉末3重量部を混合し、さら
にこれに水を加え、含水率が20重量%のペーストを作
成した。このペーストを、図1の1a面側より、スポン
ジ状ニッケル多孔体に充填後、乾燥、プレス、切断し、
長さ80mm、高さ36.5mm、厚みが1.2mm、
理論容量が2250mAhの極板を作成した。この時、
正極の充填容量密度は650mAh/ccであった。ま
た、図1の様に正極板の厚み方向の活物質重量を測定し
たところ、1a側が約4.4g(730mAh/c
c)、1b側が約3.4g(560mAh/cc)であ
り、1a側は1b側よりも空孔率が小さく、1.3倍程
充填密度が高かった。
(Example 1) A positive electrode was prepared in the following procedure. First, 7 parts by weight of a cobalt hydroxide powder and 3 parts by weight of a cobalt oxide powder were mixed with 100 parts by weight of a spherical nickel hydroxide powder having an average particle diameter of 10 μm as an active material, and water was added thereto. A 20% by weight paste was made. After filling this paste into the sponge-like nickel porous body from the 1a side of FIG. 1, drying, pressing, and cutting,
Length 80mm, height 36.5mm, thickness 1.2mm,
An electrode plate having a theoretical capacity of 2250 mAh was prepared. At this time,
The filling capacity density of the positive electrode was 650 mAh / cc. When the weight of the active material in the thickness direction of the positive electrode plate was measured as shown in FIG. 1, about 4.4 g (730 mAh / c
c) The side 1b was about 3.4 g (560 mAh / cc), and the side 1a had a smaller porosity than the side 1b, and the packing density was 1.3 times higher.

【0024】次に、活物質である水素を電気化学的に吸
蔵・放出する水素吸蔵合金と、それを用いた負極は、以
下の方法で作成した。
Next, a hydrogen storage alloy for electrochemically storing and releasing hydrogen as an active material and a negative electrode using the same were prepared by the following method.

【0025】セリウム約40重量%,ランタン約30重
量%,ネオジウム約13重量%を主成分とするミッシュ
メタル(以下Mmと称す)、ニッケル,コバルト,アル
ミニウムおよびマンガンをそれぞれ原子比で1:3.5
5:0.75:0.3:0.4となるように秤量して、
これを高周波溶解炉中で溶解し、CaCu5型の結晶構
造を有する、MmNi3.55Mn0.4Al0.3Co0.75の水
素吸蔵合金を作成した。この水素吸蔵合金を、試料の均
質化を図るため、真空中において1050℃で6時間熱
処理を行った後、機械的に54μm以下に粉砕し平均粒
子径30μmの微粉末とした。この合金の理論容量は2
90mAh/gであった。
A misch metal (hereinafter, referred to as Mm) mainly containing about 40% by weight of cerium, about 30% by weight of lanthanum, and about 13% by weight of neodymium, nickel, cobalt, aluminum and manganese in an atomic ratio of 1: 3. 5
5: 0.75: 0.3: 0.4
This was melted in a high-frequency melting furnace to prepare a hydrogen absorbing alloy of MmNi 3.55 Mn 0.4 Al 0.3 Co 0.75 having a CaCu 5 type crystal structure. This hydrogen storage alloy was heat-treated in vacuum at 1050 ° C. for 6 hours to homogenize the sample, and then mechanically pulverized to 54 μm or less to obtain a fine powder having an average particle diameter of 30 μm. The theoretical capacity of this alloy is 2
It was 90 mAh / g.

【0026】以上のようにして得た水素吸蔵合金粉末
を、80℃のKOH溶液中で撹拌処理し、水洗した後、
スチレン・ブタジエンゴムのディスパージョンとカルボ
キシメチルセルロースとカーボンと水とを混合してペー
スト状にし、鉄にニッケル鍍金した開孔率50%、厚み
50μmの導電芯材5としてのパンチングメタルに塗着
し、乾燥、プレス後、切断し、長さ120mm、高さ3
6.5mm、厚み0.50mmで容量3400mAhの
極板を作成した。この時、負極は極板としての多孔度が
約15%、充填容量密度は約1550mAh/ccであ
った。また、負極板の厚み方向の活物質重量を測定した
ところ、2a側が約6.6g(1920mAh)、2b
側が約5.1g(1480mAh)であり、2a側は2
b側の約1.3倍であった。
The hydrogen-absorbing alloy powder obtained as described above is stirred in a KOH solution at 80 ° C., washed with water,
A dispersion of styrene-butadiene rubber, carboxymethylcellulose, carbon and water are mixed to form a paste, which is coated on a punching metal as a conductive core material 5 having a 50% open hole ratio and a 50 μm-thick nickel-plated iron, After drying, pressing and cutting, length 120mm, height 3
An electrode plate having a capacity of 3,400 mAh and a thickness of 6.5 mm, a thickness of 0.50 mm was prepared. At this time, the negative electrode had a porosity of about 15% as an electrode plate, and the filling capacity density was about 1550 mAh / cc. Further, when the weight of the active material in the thickness direction of the negative electrode plate was measured, about 6.6 g (1920 mAh)
Side is about 5.1 g (1480 mAh) and 2a side is 2
It was about 1.3 times the b-side.

【0027】次に、図1の様に活物質充填量の多い電極
面同士を対向させて積層し、図2Aに示した要領で上記
ペースト式正極と負極とをセパレータを介して渦巻状に
捲回した。この状態では、負極の活物質充填量の少ない
電極面2bが集電体を兼ねる金属ケース6と接してい
た。この時、セパレータとしては、スルホン化処理した
ポリプロピレン製の不織布を用い、図1中のセパレータ
3は、目付重量65g/m2で長さ130mm、高さ3
8mm、厚み0.15mmとし、セパレータ4は、目付
重量45g/m2で長さ100mm、高さ38mm、厚
み0.08mmとした。この電極群を電池ケース6に挿
入し、容量2250mAhの4/5Aサイズの密閉電池
を構成した。尚、電解液には比重1.30のKOH水溶
液中にLiOH・H2Oを40g/l溶解させたものを
用い、1セル当たり2.3cc注液して電池Aを作成し
た。この電池Aの公称容量は2200mAhである。
Next, as shown in FIG. 1, the electrode surfaces having a large amount of active material are laminated so as to face each other, and the above-mentioned paste-type positive electrode and negative electrode are spirally wound via a separator in the manner shown in FIG. 2A. Turned. In this state, the electrode surface 2b of the negative electrode with a small amount of the active material was in contact with the metal case 6 also serving as a current collector. At this time, a non-woven fabric made of sulfonated polypropylene was used as the separator, and the separator 3 in FIG. 1 had a basis weight of 65 g / m 2 , a length of 130 mm, and a height of 3
The separator 4 had a weight of 45 g / m 2 , a length of 100 mm, a height of 38 mm, and a thickness of 0.08 mm. This electrode group was inserted into the battery case 6 to form a 4/5 A sealed battery having a capacity of 2250 mAh. As the electrolyte, a solution prepared by dissolving 40 g / l of LiOH.H 2 O in a KOH aqueous solution having a specific gravity of 1.30 was used, and 2.3 cc was injected per cell to prepare a battery A. The nominal capacity of this battery A is 2200 mAh.

【0028】また、電池Aの電極を用い、図1とは逆
に、活物質充填量の少ない電極面同士(1b面及び2b
面)を対向させて積層し、これを内周面側として渦巻状
に捲回して電池を構成した。これを電池Bとした。この
状態では、負極の活物質充填量の多い電極面2aが集電
体を兼ねる金属ケース6と接していた。
Also, using the electrode of the battery A, contrary to FIG. 1, the electrode surfaces with a small amount of active material filling (1b surface and 2b surface) were used.
The battery was constructed by spirally winding the laminate on the inner peripheral surface side. This was designated as Battery B. In this state, the electrode surface 2a of the negative electrode having a large amount of the active material was in contact with the metal case 6 also serving as a current collector.

【0029】次に比較電池として、以下の電池C及びD
を作製した。1a側及び1b側の活物質重量を共に約
3.9g(1125mAh/cc)とした正極、2a側
及び2b側の活物質重量を共に約5.9g(1700m
Ah)とした負極をそれぞれ用いた以外は、電池Aと同
様な方法で比較電池Cを作成した。
Next, as comparative batteries, the following batteries C and D were used.
Was prepared. The positive electrode whose active material weight on both the 1a side and 1b side was about 3.9 g (1125 mAh / cc), the active material weight on both the 2a side and 2b side was about 5.9 g (1700 m
A comparative battery C was prepared in the same manner as the battery A, except that each of the negative electrodes Ah) was used.

【0030】また、電池Aと同一の正極板1と負極板2
を、図1とは異なり、正極の活物質重量の多い1a面と
負極の活物質重量の少ない2b面とをセパレータ3を介
して対向させた以外は、電池Aと同様な方法で比較電池
Dを作成した。
Further, the same positive electrode plate 1 and negative electrode plate 2 as the battery A are used.
1 is different from FIG. 1 in that the comparative battery D is the same as the battery A except that the 1a surface of the positive electrode having a large active material weight and the 2b surface of the negative electrode having a small active material weight are opposed to each other via the separator 3. It was created.

【0031】上記4種類の電池A〜Dを20℃の環境下
で電流値1A(0.45C)で3時間充電した後、45
0mA(0.2C)〜10A(4.5C)の種々の電流
値で終止電圧1.0Vまで放電して高率放電特性を評価
した。図3に理論容量に対する放電容量比率の比較を示
した。図3から明らかなように、本発明の実施例である
電池A及びBは、比較例の電池C及び電池Dよりも放電
特性が良好であった。特に、放電電流値が大きくなる程
その傾向は顕著であった。そして、電池Dよりも電池
C、電池Cよりも電池A、Bと、正極及び負極の活物質
充填量の多い極板面同士(1a面と2a面)が対向する
ように電池構成することにより、放電電流値が大きい場
合でも良好な放電特性が得られることが分かった。この
理由は種々考えられるが、反応種である正・負両活物質
間の物理的な距離を短くすることにより反応抵抗をかな
り小さくできたのではないかと推測される。さらに、正
・負極の活物質重量の多い面(1a面と2a面)は、活
物質重量の少ない面(1b面と2b面)よりも相対的に
充填密度が高い状態となるため、電極中の活物質粉末同
士の接触抵抗等の放電反応を疎外する抵抗を排除できる
ようになるため、放電反応を効率よく進行させることが
できたのではないかと推測される。
After charging the above four types of batteries A to D at a current value of 1 A (0.45 C) for 3 hours in an environment of 20 ° C.,
The discharge was performed at various current values of 0 mA (0.2 C) to 10 A (4.5 C) to a final voltage of 1.0 V, and the high rate discharge characteristics were evaluated. FIG. 3 shows a comparison of the ratio of the discharge capacity to the theoretical capacity. As is clear from FIG. 3, the batteries A and B, which are the examples of the present invention, had better discharge characteristics than the batteries C and D of the comparative examples. In particular, the tendency was remarkable as the discharge current value increased. Then, the battery is configured such that the battery C is larger than the battery D, the batteries A and B are larger than the battery C, and the electrode plate surfaces (1a surface and 2a surface) having a larger amount of the active material of the positive electrode and the negative electrode are opposed to each other. It was also found that good discharge characteristics were obtained even when the discharge current value was large. Although various reasons may be considered, it is presumed that the reaction resistance could be considerably reduced by shortening the physical distance between the positive and negative active materials, which are reactive species. Further, the surfaces of the positive and negative electrodes with a large active material weight (1a surface and 2a surface) have a relatively higher packing density than the surfaces with a small active material weight (1b surface and 2b surface). It is presumed that the discharge reaction, such as contact resistance between the active material powders, can be eliminated, so that the discharge reaction could be efficiently advanced.

【0032】また、電池Aと電池Bとの特性差は小さい
ものの電池Aが若干良好な結果を示した。この理由は以
下のように推測した。これらの電池は極板がほぼ3周渦
巻状に捲回されており、電池Bの場合、群最外周の活物
質充填量の多い負極面は、正極と対向していない構造に
なっている。そのため、電池Bは電池Aよりも放電に関
与する活物質量が少なくなって、特性が低下したと推測
した。
Although the difference in characteristics between Battery A and Battery B was small, Battery A showed slightly better results. The reason was presumed as follows. In these batteries, the electrode plates are spirally wound substantially three times, and in the case of battery B, the negative electrode surface having the large amount of active material at the outermost periphery of the group does not face the positive electrode. Therefore, it was presumed that the battery B had a smaller amount of active material involved in discharging than the battery A, and had deteriorated characteristics.

【0033】(実施例2)次に、正極及び負極の活物質
充填量の偏在状態とそれぞれの電極の対向条件が、放電
特性にどのような影響を及ぼすかを検討した。試験条件
は実施例1の場合と同様の方法で行った。
(Example 2) Next, it was examined how the uneven distribution state of the active material filling amounts of the positive electrode and the negative electrode and the facing conditions of the respective electrodes affect the discharge characteristics. The test conditions were the same as in Example 1.

【0034】図4には実施例1と同じ正極を用い、活物
質充填量の偏在状態の異なる負極を組み合わせた場合の
5A(2.2C相当)、10A(4.5C相当)での放
電特性の結果を示した。また、図5には実施例1と同じ
負極を用い、活物質充填量の偏在状態の異なる正極を組
み合わせた場合の5A(2.2C相当)、10A(4.
5C相当)での放電特性の結果を示した。
FIG. 4 shows discharge characteristics at 5A (corresponding to 2.2C) and 10A (corresponding to 4.5C) when the same positive electrode as in Example 1 is used and negative electrodes having different active material filling amounts are combined. The result was shown. In FIG. 5, 5A (corresponding to 2.2C) and 10A (4.
(Corresponding to 5 C).

【0035】図4、図5の結果より、比較例2の電池C
の結果からも分かるように、正極または負極の活物質充
填量を単純に偏在させるだけでは、良好な放電特性を得
ることはできず、活物質充填量を偏在させた両極(1a
面と2a面)を上手く対向させることが重要であること
が明確化した。そして、活物質充填量の偏在状態として
は、正極、負極共1.1倍以上偏在させておけば良く、
なおかつ、活物質充填量の多い電極面同士(1a面と2
a面)を対向させる必要があることが分かった。さら
に、実施例1の結果から、負極の活物質充填量の少ない
電極面2b面が集電体を兼ねる金属ケース6と接するよ
うに渦巻状に捲回するのが好ましい。
From the results shown in FIGS. 4 and 5, the battery C of Comparative Example 2 was obtained.
As can be seen from the results, simply distributing the active material filling amount of the positive electrode or the negative electrode cannot obtain good discharge characteristics, and the two electrodes (1a) having the active material filling amount unevenly distributed cannot be obtained.
It has been clarified that it is important to make the surface and the 2a surface) well opposed. Then, as the uneven distribution state of the active material filling amount, both the positive electrode and the negative electrode may be unevenly distributed 1.1 times or more,
In addition, electrode surfaces with a large amount of active material filling (1a surface and 2
It has been found that it is necessary to make the (a surface) oppose. Furthermore, from the results of Example 1, it is preferable that the electrode surface 2b of the negative electrode having a small amount of active material is spirally wound so that the surface of the electrode surface 2b is in contact with the metal case 6 also serving as a current collector.

【0036】しかしながら、正極及び負極の活物質充填
量の偏在状態が2倍を越えると、活物質充填量の多い電
極面側は、多孔度の減少に伴う電解液量の減少を来た
し、放電反応が円滑に進行しなくなるため放電特性の低
下を引き起こす。また、負極の場合は、さらに、電極表
面の活物質と導電芯材との距離が遠くなり、集電能が低
下するためさらに放電特性の低下の要因となる。このこ
とから、正極及び負極とも、活物質充填量の偏在状態と
しては、1.1〜2倍が好ましい。
However, if the unevenly distributed state of the active material loading of the positive electrode and the negative electrode exceeds twice, the electrode surface side with a large active material loading will decrease in the amount of electrolyte due to the decrease in porosity, and the discharge reaction Does not proceed smoothly, causing a decrease in discharge characteristics. In addition, in the case of a negative electrode, the distance between the active material on the electrode surface and the conductive core material is further increased, and the current collecting ability is further reduced. For this reason, as for the positive electrode and the negative electrode, the uneven distribution state of the active material filling amount is preferably 1.1 to 2 times.

【0037】(実施例3)次に、セパレータ物性に関し
て検討した。電池Aのセパレータ3、4として種々の電
解液保液特性、厚み、空間体積を有するポリプロピレン
不織布を使用した4種類の電池E〜Hを作成し、実施例
1の場合と同様の方法で放電試験を行った。なお、セパ
レータの電解液保液特性は目付重量やスルホン化処理の
処理比率を変化させて制御し、空間体積は厚み及び目付
重量を変化させて制御した。また、空間体積はポリプロ
ピレンの比重を0.91g/ccとして計算した。
Example 3 Next, the physical properties of the separator were examined. Four types of batteries E to H were prepared using polypropylene nonwoven fabrics having various electrolyte retention properties, thicknesses, and space volumes as separators 3 and 4 of battery A, and a discharge test was performed in the same manner as in Example 1. Was done. The electrolyte retention characteristics of the separator were controlled by changing the basis weight and the treatment ratio of the sulfonation treatment, and the space volume was controlled by changing the thickness and the basis weight. The space volume was calculated on the assumption that the specific gravity of polypropylene was 0.91 g / cc.

【0038】(表1)に電池A及びE〜Hのセパレータ
3及びセパレータ4の物性値とその時の5A(2.2C
相当)、10A(4.5C相当)での放電特性の結果を
示した。
Table 1 shows the physical properties of the separators 3 and 4 of the batteries A and E to H, and 5A (2.2C) at that time.
The results of the discharge characteristics at 10 A (equivalent to 4.5 C) were shown.

【0039】[0039]

【表1】 表1の電解液保液量比率はセパレータ4の電解液保液量
に対するセパレータ3の電解液保液量の割合であり、保
液量はセパレータを電解液に30分間以上浸漬させた前
後の重量変化によって求めた。
[Table 1] The electrolyte retention amount ratio in Table 1 is the ratio of the electrolyte retention amount of the separator 3 to the electrolyte retention amount of the separator 4, and the liquid retention amount is the weight before and after the separator is immersed in the electrolyte for 30 minutes or more. Determined by change.

【0040】表1の結果より、保液量比率、即ち、セパ
レータ4の電解液保液量に対するセパレータ3の電解液
保液量の割合が小さくなり、活物質充填量の多い電極面
同士の間の電解液保液量が少なくなると、大電流放電、
特に、10Aという高率放電特性が低下していくことが
分かった。これは、電極反応を円滑に進行させるために
は、活物質充填量を偏在させた両極(1a面と2a面)
を上手く対向させることに加え、活物質を偏在させた両
極間に多量の電解液を存在させることが必要であること
を意味している。上記結果より、電解液保液量比率とし
てはセパレータ4よりもセパレータ3のほうが1.1倍
以上大きいことが好ましい。また、セパレータの空間体
積も電解液保液量と密接に関係する。そのため、セパレ
ータ4よりもセパレータ3の空間体積を1.1倍以上大
きくすると、2種類のセパレータを同一の目付重量及び
親水化処理条件で作成しても、活物質を偏在させた両極
間に多量の電解液を保持することができるため有効であ
る。また、セパレータの厚みは、直接電池特性には影響
を与えない。しかし、一般に、正極の外周側は電池を渦
巻状に捲回する際に極板の折れによるバリ等が発生し、
電池構成時の内部短絡不良が発生しやすい。そのため、
電池Aのようにセパレータ3が正極の外周側に位置する
時には、セパレータ3の厚みをセパレータ4よりも1.
1倍以上厚くすることが好ましい。
From the results in Table 1, it can be seen that the ratio of the amount of retained liquid, that is, the ratio of the amount of retained electrolyte in the separator 3 to the amount of retained electrolyte in the separator 4 is small, and the distance between the electrode surfaces having a large amount of active material is reduced. When the amount of retained electrolyte of the electrolyte decreases, large current discharge,
In particular, it was found that the high-rate discharge characteristics of 10 A decreased. This is because both electrodes (1a surface and 2a surface) in which the active material filling amount is unevenly distributed in order to allow the electrode reaction to proceed smoothly.
Means that it is necessary to allow a large amount of electrolyte to be present between the two electrodes on which the active material is unevenly distributed. From the above results, it is preferable that the separator 3 is 1.1 times or more larger than the separator 4 as the electrolyte solution holding amount ratio. Further, the space volume of the separator is also closely related to the amount of retained electrolyte. For this reason, if the space volume of the separator 3 is 1.1 times or more larger than that of the separator 4, even if two types of separators are formed under the same basis weight and hydrophilic treatment conditions, a large amount of active material is unevenly distributed between the two electrodes. This is effective because the electrolyte solution can be held. Further, the thickness of the separator does not directly affect the battery characteristics. However, in general, when the battery is spirally wound on the outer peripheral side of the positive electrode, burrs or the like are generated due to breakage of the electrode plate,
Internal short circuit failure easily occurs in battery configuration. for that reason,
When the separator 3 is located on the outer peripheral side of the positive electrode as in the case of the battery A, the thickness of the separator 3 is 1.
It is preferable that the thickness is at least one time.

【0041】(実施例4)次に、負極芯材の材質に関し
て検討した。
Example 4 Next, the material of the negative electrode core material was examined.

【0042】負極芯材5に同一厚みの電解銅箔を用いた
以外は、電池Aと同様な方法で電池Iを作成し、実施例
1の場合と同様の方法で放電試験を行い、比較した。そ
の結果10Aの放電容量比率が74%と、電池Aよりも
良好であった。これは銅の電気抵抗がパンチングメタル
の主成分である鉄の電気抵抗の約1/6であるためであ
ると推測される。また、銅箔は厚み10〜40μm程度
のものが、プリント基板、コンデンサ等の用途に幅広く
使用されており、また、パンングメタルの様に鉄鋼板へ
の穴あけ加工等の工程が省略できるためコスト的にも安
く好ましい。
A battery I was prepared in the same manner as the battery A, except that the same thickness of electrolytic copper foil was used for the negative electrode core material 5, and a discharge test was performed in the same manner as in Example 1 to compare. . As a result, the discharge capacity ratio of 10A was 74%, which was better than that of Battery A. This is presumed to be because the electric resistance of copper is about 1/6 of the electric resistance of iron, which is the main component of the punching metal. In addition, copper foil having a thickness of about 10 to 40 μm is widely used for applications such as printed circuit boards and capacitors, and can be omitted because a process such as drilling a steel plate like a panning metal can be omitted. Inexpensive and preferred.

【0043】また、正極の保持体である金属多孔体に関
しては従来から用いられている発泡状ニッケルが正極の
高容量密度化の観点および汎用性から好ましい。また、
さらに安価な極板を作成するために、ニッケルの代わり
に鉄を使用しても良いが、その場合は、アルカリ電解液
中での充放電時に安定に存在するために、発泡状鉄表面
に鍍金等によりニッケル被覆することが好ましい。
Regarding the porous metal as the support for the positive electrode, conventionally used foamed nickel is preferable from the viewpoint of increasing the capacity density of the positive electrode and from the versatility. Also,
Iron may be used instead of nickel in order to create a more inexpensive electrode plate. In that case, however, plating is performed on the foamed iron surface because it is stably present during charging and discharging in an alkaline electrolyte. It is preferable to coat with nickel or the like.

【0044】以上述べたように、正極活物質の占有体積
を増やして更に高容量化し単位体積当たりのエネルギー
密度を向上させた場合にも、従来の電池と同等以上の放
電特性を有し、さらに、電池構成時の内部短絡不良の発
生を極力抑制した生産性の良いアルカリ蓄電池を提供す
ることが可能である。
As described above, even when the volume occupied by the positive electrode active material is increased to further increase the capacity and improve the energy density per unit volume, the battery has a discharge characteristic equal to or higher than that of a conventional battery. In addition, it is possible to provide an alkaline storage battery with high productivity in which occurrence of internal short-circuit failure in a battery configuration is suppressed as much as possible.

【0045】尚、本発明はニッケル・水素蓄電池以外の
ニッケル・亜鉛蓄電池、二酸化マンガン・水素蓄電池な
どの、正極および負極活物質の異なる他のアルカリ蓄電
池においても同様の効果が認められることは言うまでも
ない。
It is needless to say that the same effect can be observed in the present invention in other alkaline storage batteries having different positive and negative electrode active materials, such as nickel-zinc storage batteries and manganese dioxide-hydrogen storage batteries other than nickel-hydrogen storage batteries. .

【0046】[0046]

【発明の効果】以上のように、本発明によれば、極板の
厚み方向の中心部を境にして、活物質重量において一方
の面が他方の面よりも1.1倍以上多く配置された構造
を有する正極板と、板状導電芯材を境にして極板の厚み
方向の活物質重量において一方の面が他方の面よりも
1.1倍以上多く配置された構造を有する負極板を、活
物質重量の多い面同士及び活物質重量の少ない面同士を
それぞれセパレータを介して対向させて渦巻状に捲回し
て電池ケースに収納することにより、正極活物質と負極
活物質とを均等に対向させることにより充放電反応を効
率よく進行させることができ、放電特性に優れたアルカ
リ蓄電池を提供できるという効果が得られる。
As described above, according to the present invention, one surface is arranged at least 1.1 times as large as the other surface in terms of the weight of the active material from the center in the thickness direction of the electrode plate. Plate having a structure in which one surface is disposed at least 1.1 times as large as the other surface in the thickness of the active material in the thickness direction of the electrode plate with respect to the plate-shaped conductive core material. The cathode active material and the anode active material are evenly distributed by spirally winding the surfaces having a large active material weight and the surfaces having a small active material weight facing each other via a separator and storing them in a battery case. In this case, the charge-discharge reaction can proceed efficiently, and the effect of providing an alkaline storage battery having excellent discharge characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態による電極の積層略図FIG. 1 is a schematic diagram of a stack of electrodes according to an embodiment of the present invention.

【図2】(A)図1の電極群を渦巻状に捲回して電池ケ
ースに収納した断面図 (B)同電極群の拡大断面図
2A is a cross-sectional view in which the electrode group of FIG. 1 is spirally wound and accommodated in a battery case. FIG. 2B is an enlarged cross-sectional view of the electrode group.

【図3】放電電流値と理論容量に対する放電容量比率と
の関係を示す図
FIG. 3 is a diagram showing a relationship between a discharge current value and a ratio of a discharge capacity to a theoretical capacity.

【図4】負極活物質の偏在状態と放電特性との関係を示
す図
FIG. 4 is a diagram showing the relationship between the uneven distribution state of a negative electrode active material and discharge characteristics.

【図5】正極活物質の偏在状態と放電特性との関係を示
す図
FIG. 5 is a diagram showing the relationship between the uneven distribution state of a positive electrode active material and discharge characteristics.

【符号の説明】[Explanation of symbols]

1 正極 1a 正極面 1b 正極面 2 負極 2a 負極面 2b 負極面 3 セパレータ 4 セパレータ 5 負極導電芯材 6 電池ケース 7 キャップ 8 安全弁 9 封口板 10 絶縁ガスケット DESCRIPTION OF SYMBOLS 1 Positive electrode 1a Positive electrode surface 1b Positive electrode surface 2 Negative electrode 2a Negative electrode surface 2b Negative electrode surface 3 Separator 4 Separator 5 Negative conductive core material 6 Battery case 7 Cap 8 Safety valve 9 Sealing plate 10 Insulating gasket

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭52−116839(JP,A) 特開 平9−27342(JP,A) 特開 平4−12471(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/04 H01M 10/24 - 10/34 H01M 4/24 - 4/34 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-52-116839 (JP, A) JP-A-9-27342 (JP, A) JP-A-4-12471 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01M 10/04 H01M 10/24-10/34 H01M 4/24-4/34

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】三次元的に連なる空間を有した金属多孔体
に金属酸化物を主体とする構成材料を保持させた正極
と、導電芯材に活物質を主体とする構成材料を圧着させ
た負極と、セパレータと、アルカリ電解液とからなるア
ルカリ蓄電池であって、極板の厚み方向の中心部を境に
して、活物質重量において一方の面が他方の面よりも
1.1倍以上多く配置された構造を有する正極板と、板
状の導電芯材を境にして極板の厚み方向の活物質重量に
おいて一方の面が他方の面よりも1.1倍以上多く配置
された構造を有する負極板を、活物質重量の多い面同士
及び活物質重量の少ない面同士をそれぞれセパレータを
介して対向させ渦巻状に捲回して電池ケースに収納した
ことを特徴とするアルカリ蓄電池。
1. A positive electrode in which a constituent material mainly composed of a metal oxide is held in a porous metal body having a three-dimensionally continuous space, and a constituent material mainly composed of an active material is pressed to a conductive core material. An alkaline storage battery including a negative electrode, a separator, and an alkaline electrolyte, wherein one surface is 1.1 times or more in weight of the active material as compared with the other surface with respect to a center portion in a thickness direction of the electrode plate. A positive electrode plate having a disposed structure, and a structure in which one surface is disposed at least 1.1 times greater than the other surface in the thickness of the active material in the thickness direction of the electrode plate with respect to the plate-shaped conductive core material An alkaline storage battery comprising: a negative electrode plate having a surface with a large active material weight and a surface with a small active material weight opposed to each other with a separator interposed therebetween;
【請求項2】活物質重量の多い面同士及び活物質重量の
少ない面同士をそれぞれセパレータを介して対向させ、
負極の活物質重量の少ない面が外周面側となるように渦
巻状に捲回して電池ケースに収納したことを特徴とする
請求項1記載のアルカリ蓄電池。
2. A surface having a high active material weight and a surface having a low active material weight are opposed to each other via a separator,
The alkaline storage battery according to claim 1, wherein the negative electrode is spirally wound and housed in a battery case such that a surface of the negative electrode having a small active material weight is on an outer peripheral surface side.
【請求項3】活物質重量の多い面同士の間のセパレータ
部分の電解液保液量が、活物質重量の少ない面同士の間
のセパレータ部分の電解液保液量よりも1.1倍以上多
いことを特徴とする請求項1または2記載のアルカリ蓄
電池。
3. The amount of electrolyte retained in a separator portion between surfaces having a large active material weight is 1.1 times or more the amount of electrolyte solution retained in a separator portion between surfaces having a small active material weight. 3. The alkaline storage battery according to claim 1, wherein the amount is large.
【請求項4】活物質重量の多い面同士の間のセパレータ
厚みが、活物質重量の少ない面同士の間のセパレータ厚
みよりも1.1倍以上厚いことを特徴とする請求項1ま
たは2記載のアルカリ蓄電池。
4. The separator according to claim 1, wherein the thickness of the separator between the surfaces having a large active material weight is at least 1.1 times greater than the thickness of the separator between the surfaces having a small active material weight. Alkaline storage batteries.
【請求項5】活物質重量の多い面同士の間のセパレータ
の空間体積が、活物質重量の少ない面同士の間のセパレ
ータの空間体積よりも1.1倍以上大きいことを特徴と
する請求項1または2記載のアルカリ蓄電池。
5. The separator according to claim 1, wherein the spatial volume of the separator between the surfaces having a large active material weight is at least 1.1 times larger than the spatial volume of the separator between the surfaces having a small active material weight. 3. The alkaline storage battery according to 1 or 2.
【請求項6】負極の導電芯材が銅箔であることを特徴と
する請求項1記載のアルカリ蓄電池。
6. The alkaline storage battery according to claim 1, wherein the conductive core material of the negative electrode is a copper foil.
【請求項7】正極の金属多孔体が発泡状ニッケルもしく
はニッケル被覆した発泡状鉄であることを特徴とする請
求項1項記載のアルカリ蓄電池。
7. The alkaline storage battery according to claim 1, wherein the porous metal body of the positive electrode is foamed nickel or foamed iron coated with nickel.
【請求項8】三次元的に連なる空間を有した金属多孔体
に金属酸化物を主体とする構成材料を保持させた正極
と、導電芯材に活物質を主体とする構成材料を圧着させ
た負極をセパレータを介して渦巻状に捲回した電極群
と、アルカリ電解液とからなるアルカリ蓄電池であっ
て、極板の厚み方向の中心部を境にして、活物質重量に
おいて一方の面が他方の面よりも1.1〜2倍多く配置
された構造を有する正極板と、板状導電芯材を境にして
極板の厚み方向の活物質重量において一方の面が他方の
面よりも1.1〜2倍多く配置された構造を有する負極
板とはそれぞれセパレータを介して活物質重量の多い面
同士が対向しているアルカリ蓄電池。
8. A positive electrode in which a constituent material mainly composed of a metal oxide is held in a porous metal body having a three-dimensionally continuous space, and a constituent material mainly composed of an active material is pressed to a conductive core material. An alkaline storage battery including an electrode group in which a negative electrode is spirally wound with a separator interposed therebetween, and an alkaline electrolyte, wherein one surface is the other in terms of active material weight with respect to the center in the thickness direction of the electrode plate. And a positive electrode plate having a structure arranged 1.1 to 2 times more than the surface, and one surface of the positive electrode plate is 1% smaller than the other surface in the active material weight in the thickness direction of the electrode plate with respect to the plate-shaped conductive core. An alkaline storage battery in which a surface having a large weight of active material is opposed to a negative electrode plate having a structure arranged one to two times more via a separator.
JP01854096A 1996-02-05 1996-02-05 Alkaline storage battery Expired - Fee Related JP3209071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01854096A JP3209071B2 (en) 1996-02-05 1996-02-05 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01854096A JP3209071B2 (en) 1996-02-05 1996-02-05 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH09213362A JPH09213362A (en) 1997-08-15
JP3209071B2 true JP3209071B2 (en) 2001-09-17

Family

ID=11974470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01854096A Expired - Fee Related JP3209071B2 (en) 1996-02-05 1996-02-05 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3209071B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100601561B1 (en) * 2004-07-28 2006-07-19 삼성에스디아이 주식회사 Jelly-roll type electrode assembly and Cylindrical Li Secondary battery with the same
KR100601559B1 (en) * 2004-07-28 2006-07-19 삼성에스디아이 주식회사 Jelly-roll type electrode assembly and Li Secondary battery with the same
JP2007109512A (en) * 2005-10-13 2007-04-26 Nec Tokin Corp Non-aqueous electrolytic liquid secondary battery
JP5016238B2 (en) * 2006-03-07 2012-09-05 プライムアースEvエナジー株式会社 Battery and manufacturing method thereof
JP5100718B2 (en) * 2009-08-04 2012-12-19 パナソニック株式会社 Prismatic nickel metal hydride storage battery

Also Published As

Publication number Publication date
JPH09213362A (en) 1997-08-15

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP3191752B2 (en) Nickel-hydrogen secondary battery and method for manufacturing electrode thereof
JP3351261B2 (en) Nickel positive electrode and nickel-metal hydride storage battery using it
JP3042043B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
WO2007004703A1 (en) Nickel-hydrogen battery
JP2002134161A (en) Spiral electrode group for battery and battery
JP2001319682A (en) Square alkaline storage battery, and unit battery and assembled battery using the same
JP5959003B2 (en) Nickel metal hydride secondary battery and negative electrode for nickel metal hydride secondary battery
JP3527586B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
JP3260972B2 (en) Hydrogen storage alloy electrode and sealed nickel-hydrogen storage battery using the same
JP3209071B2 (en) Alkaline storage battery
EP0901179B1 (en) Alkaline storage battery
JP3390309B2 (en) Sealed alkaline storage battery
JP2002025604A (en) Alkaline secondary battery
JP3567021B2 (en) Alkaline secondary battery
JP2000012011A (en) Manufacture of nickel-hydrogen storage battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JP3815511B2 (en) Nickel / metal hydride sealed alkaline storage battery
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3339327B2 (en) Storage battery
JP4531874B2 (en) Nickel metal hydride battery
JP2002025548A (en) Square alkaline storage battery
JP3118812B2 (en) Alkaline storage battery
JP2733230B2 (en) Sealed nickel-hydrogen storage battery using hydrogen storage alloy
JP3267156B2 (en) Nickel hydride rechargeable battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees