JP3815511B2 - Nickel / metal hydride sealed alkaline storage battery - Google Patents

Nickel / metal hydride sealed alkaline storage battery Download PDF

Info

Publication number
JP3815511B2
JP3815511B2 JP02597496A JP2597496A JP3815511B2 JP 3815511 B2 JP3815511 B2 JP 3815511B2 JP 02597496 A JP02597496 A JP 02597496A JP 2597496 A JP2597496 A JP 2597496A JP 3815511 B2 JP3815511 B2 JP 3815511B2
Authority
JP
Japan
Prior art keywords
electrode plate
negative electrode
positive electrode
battery
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02597496A
Other languages
Japanese (ja)
Other versions
JPH09199162A (en
Inventor
克哉 七元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP02597496A priority Critical patent/JP3815511B2/en
Publication of JPH09199162A publication Critical patent/JPH09199162A/en
Application granted granted Critical
Publication of JP3815511B2 publication Critical patent/JP3815511B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、負極活物質を多孔性の電極基体の両面に担持してなる負極板と、セパレータと、正極活物質を電極基体に担持する正極板と、アルカリ電解液と電池容器を具備してなるニッケル・金属水素化物密閉形アルカリ蓄電池に関するものである。
【0002】
【従来の技術】
密閉形アルカリ蓄電池、とりわけ水素吸蔵合金やカドミウムを主体とする負極板と、水酸化ニッケルを主活物質とする正極板とを備える密閉形ニッケル・水素化物アルカリ蓄電池は、エネルギー密度が高いことから、ポータブル機器や電気自動車の電源として、近年賞用されている。
【0003】
これらの密閉形アルカリ蓄電池は、過充電時に、水素ガスが負極から発生する前に、酸素ガスが正極から発生するように、充電末期に未充電の活物質(これは「充電リザーブ」とよばれる。)が残るように電池を構成する。そして、正極から発生した酸素ガスを負極において還元吸収することによって、電池内へのガスの蓄積を防止し、密閉化を達成している。
【0004】
【発明が解決しようとする課題】
このような密閉形アルカリ蓄電池では、電池のエネルギー密度を大きくしょうとして、充放電に関与しない充電リザーブ量を少なくしょうとすると、充電末期に負極からの水素ガス発生が起こりやすくなり、電池の安全弁が開いて、電池内のガスや電解液が放出され、電解液涸れが起こって、電池寿命が短くなるという課題があった。この課題は、負極に水素吸蔵合金を用いる場合に、その水素過電圧が小さく水素が発生しやすいことから、深刻であった。
【0005】
【課題を解決するための手段】
本発明は、上記した課題を解決するために、負極活物質を耐アルカリ性金属からなるパンチングメタルである多孔性の電極基体の両面に担持してなる水素吸蔵合金を主体とした負極板と、セパレータと、水酸化ニッケルを主体とする正極活物質を電極基体に担持する正極板と、アルカリ電解液と電池容器を具備してなるニッケル・金属水素化物密閉形アルカリ蓄電池であって、前記正極板が前記セパレータを介して前記負極板と対向し、両側の面において前記正極板と対向する前記負極板の部分(A)と、片側の面において前記正極板と対向する前記負極板の部分(B)とを具備し、前記負極板の部分(A)の単位面積に担持される活物質の量が、前記負極板の部分(B)の単位面積に担持される活物質の量を100%として、10%以上多いニッケル・金属水素化物密閉形アルカリ蓄電池を提供する。
【0008】
【発明の実施の形態】
本発明の構成すなわち、ニッケル・金属水素化物密閉形アルカリ蓄電池において、負極活物質を耐アルカリ性金属からなるパンチングメタルである多孔性の電極基体の両面に担持してなる水素吸蔵合金を主体とした負極板と、セパレータと、水酸化ニッケルを主体とする正極活物質を電極基体に担持する正極板と、アルカリ電解液と電池容器を具備してなるニッケル・金属水素化物密閉形アルカリ蓄電池であって、前記正極板が前記セパレータを介して前記負極板と対向し、両側の面において前記正極板と対向する前記負極板の部分(A)と、片側の面において前記正極板と対向する前記負極板の部分(B)とを具備し、前記負極板の部分(A)の単位面積に担持される活物質の量が、前記負極板の部分(B)単位面積に担持される活物質の量よりも多くすることにより、充電時の内圧の上昇が効果的に抑制され、電池のサイクル寿命が向上する。
【0009】
具体的には、帯状電極を捲回して構成した円筒形や長円形電池では、最外周や最内周の部分の負極板が、片側の面において前記正極板と対向する前記負極板の部分(B)に相当し、平板状電極を積層して構成した角形電池では、最外側の部分の負極板が、片側の面において前記正極板と対向する前記負極板の部分(B)に相当する。
【0010】
また、電池内圧を著しく上昇させることなく、大電流の充電が可能となるので、より短時間の急速充電が可能となる。
【0011】
このような電池の内圧上昇が抑制される機構については明確ではないが、両側の面において正極板と対向する負極板は、充放電反応が良好に進むときに、充電終期に正極から発生した酸素ガスをスムーズに吸収することができる。
【0012】
しかし、片側の面において正極板と対向する負極板では、正極に対向していない側の負極活物質は、とくに負極板の電極基体がパンチングメタルの場合に、パンチングメタルの無孔部の影になる部分の面積が大きいので、その負極活物質の多くが、充電反応に関与しにくいと推定される。
【0014】
よって、両側の面において前記正極板と対向する前記負極板の部分(A)と、片側の面において前記正極板と対向する前記負極板の部分(B)とを具備し、前記負極板の部分(A)の単位面積に担持される活物質の量が、前記負極板の部分(B)の単位面積に担持される活物質の量よりも多くすることにより、前記負極板の部分(B)において、負極板の電極基体の影になる負極活物質の量が減少し、そのことによって、電池内に占める負極の体積、および見かけのリザーブ量は同じであっても、有効なリザーブ量が大きくなるためと考えられる。
【0015】
このような効果は、前記負極板の部分(A)の単位面積に担持される活物質の量が、前記負極板の部分(B)の単位面積に担持される活物質の量を100%として、10%以上多い場合に顕著である。
【0016】
【実施例】
本発明を好適な実施例によって詳しく説明する。
【0017】
負極はつぎの方法で製作した。
ミッシュメタル(原料はバストネサイト)、ニッケル、コバルト、マンガン、およびアルミニウムの金属材料をMmNi3.5 Co0.8 Mn0.3AAl0.4 のなるようにアルゴン雰囲気にした高周波誘導炉で溶解し、この溶湯をモールドに流し込んで鋳込み、この合金塊を、ジョークラッシャーで粗粉砕してからボールミルで微粉砕するという方法で機械的に粉砕し、篩掛けして、水素吸蔵合金粉末を得た。
【0018】
次に、この水素吸蔵合金粉末を主体とし、結着剤を分散した分散液ととともに混練りしてペースト状混合物を調整した。このペースト状混合物を、厚さが0.05μmで開口率が約0.5のニッケルメッキした鉄製パンチングメタルの両面に塗布し、乾燥した後プレスし、所定の寸法に切断して水素吸蔵合金電極を製作した。この際に、水素吸蔵合金の担持量を変えた同一面積の(すなわち、単位面積に担持される活物質の量を変えた)水素吸蔵合金電極A1〜A11を作成した。これらの水素吸蔵合金電極A1〜A11の合金充填量を表1に示す。
【0019】
【表1】

Figure 0003815511
図1は水素吸蔵合金電極の配置を示した模式図である。
図1において、上記の水素吸蔵合金電極が、両側の面において正極板と対向する負極板の部分(A)である内側の2枚と、片側の面において正極板と対向する負極板の部分(B)である外側の2枚とに種々組合わせた計4枚とポリアミド系不織布のセパレータ2で封筒状に包み込まれた公知の発泡メタル式ニッケル正極板3を3枚(水酸化ニッケルを主体とする活物質の容量は合計900mAh)とを交互に積層して電極群を形成し、深絞りケース1にKOHを主体とするアルカリ電解液とともに、上記の電極群を設置して、復帰式の安全弁を有する蓋板とケースとをケーザー溶接することによって、高さ67mm、幅16.4mm、厚さ6mmのニッケル・金属水素化物電池を製作した。
【0020】
水素吸蔵合金電極A6を4枚用いた従来電池をa1、水素吸蔵合金電極A5を、両側の面において正極板と対向する負極板の部分である内側の2枚(A)に、水素吸蔵合金電極A7を、片側の面において正極板と対向する負極板の部分である外側の2枚(B)に用いた比較電池をb1、水素吸蔵合金電極A4を、両側の面において正極板と対向する負極板の部分である内側の2枚(A)に、水素吸蔵合金電極A8を、片側の面において正極板と対向する負極板の部分である外側の2枚(B)に用いた本発明による実施例1の電池をb2、水素吸蔵合金電極A3を、両側の面において正極板と対向する負極板の部分である内側の2枚(A)に、水素吸蔵合金電極A9を、片側の面において正極板と対向する負極板の部分である外側の2枚(B)に用いた本発明による実施例2の電池をb3、および水素吸蔵合金電極A2を、両側の面において正極板と対向する負極板の部分である内側の2枚(A)に、水素吸蔵合金電極A10を、片側の面において正極板と対向する負極板の部分である外側の2枚(B)に用いた本発明による実施例3の電池をb4、および水素吸蔵合金電極A1を、両側の面において正極板と対向する負極板の部分である内側の2枚(A)に、水素吸蔵合金電極A11を、片側の面において正極板と対向する負極板の部分である外側の2枚(B)に用いた実施例4の電池をb5と呼ぶ。表2に製作した電池の構成をしめす。
【0021】
【表2】
Figure 0003815511
以上の電池を、圧力センサを取り付けた電池内圧測定容器に設置し、室温にて1時間率の電流にて充電し、内圧の変化を測定した。結果を表3にしめす。
【0022】
【表3】
Figure 0003815511
すなわち、すべて同じ合金重量の負極を用いた従来電池a1よりも、両側とも正極に対向している負極の合金重量が、片側のみ正極に対向する負極の合金重量に対して、10%以上多くなるように備えている本発明電池b2、b3、b4、およびb5のほうが内圧の上昇が低く抑えられていることがわかる。
【0023】
しかしながら、両側とも正極に対向している負極の合金重量が、片側のみ正極に対向する負極の合金重量に対して、110%以下である比較電池b1の場合は、内圧の上昇を低く抑える効果はほとんど認められなかった。
【0024】
つぎに、従来電池a1、比較電池b1及び本発明電池b2、b3、b4およびb5の充放電サイクル寿命試験をおこなった。このときの試験条件は、−ΔV制御方式(充電終止電圧差:5mV)で900mA(1CmA)の電流で充電し、900mAで電池電圧が1.0Vになるまで放電するものであり、容量確認試験[180mA(0.2CmA)で終止電圧1.0Vまで放電]は50サイクル毎におこなった。
【0025】
このときの各電池が寿命(初期容量の80%以下になるまで)に至るまでのサイクル数を表4に示す。すべて同じ合金重量の負極を用いた従来電池a1よりも、両側とも正極に対向している負極の合金重量が、片側のみ正極に対向する負極の合金重量に対して、10%以上多く備えている本発明電池b2、b3、b4、およびb5のほうが充放電サイクル寿命性能に優れていることがわかる。
【0026】
しかしながら、両側とも正極に対向している負極の合金重量が、片側のみ正極に対向する負極の合金重量に対して、110%以下である比較電池b1の場合、従来電池a1と同様の寿命であった。
【0027】
【表4】
Figure 0003815511
【0028】
【発明の効果】
以上述べたように、本発明によれば、ニッケル・金属水素化物密閉形アルカリ蓄電池の充電時の内圧の上昇が効果的に抑制され、サイクル寿命が向上する。
【図面の簡単な説明】
【図1】本発明による角形電池の水素吸蔵合金電極の配置を示す模式図である。
【符号の説明】
1 深絞ケース
2 セパレータ
3 正極板
A 両側の面において正極板と対向する水素吸蔵合金を主体とした負極板の部分
B 片側の面において正極板と対向する水素吸蔵合金を主体とした負極板の部分 [0001]
BACKGROUND OF THE INVENTION
The present invention comprises a negative electrode plate having a negative electrode active material supported on both sides of a porous electrode substrate, a separator, a positive electrode plate having a positive electrode active material supported on the electrode substrate, an alkaline electrolyte, and a battery container. The present invention relates to a nickel-metal hydride sealed alkaline storage battery.
[0002]
[Prior art]
Sealed alkaline storage batteries, in particular, sealed nickel / hydride alkaline storage batteries comprising a negative electrode plate mainly composed of hydrogen storage alloy or cadmium and a positive electrode plate mainly composed of nickel hydroxide, have a high energy density. In recent years, it has been used as a power source for portable equipment and electric vehicles.
[0003]
These sealed alkaline storage batteries are called uncharged active materials at the end of charging (this is called “charge reserve”) so that oxygen gas is generated from the positive electrode before hydrogen gas is generated from the negative electrode during overcharging. Configure the battery so that.) Remains. The oxygen gas generated from the positive electrode is reduced and absorbed at the negative electrode to prevent gas accumulation in the battery and achieve sealing.
[0004]
[Problems to be solved by the invention]
In such a sealed alkaline storage battery, if it is attempted to increase the energy density of the battery and reduce the amount of charge reserve not involved in charge and discharge, hydrogen gas generation from the negative electrode tends to occur at the end of charge, and the battery safety valve Opened, gas and electrolyte solution in the battery was released, electrolyte solution drowned, and the battery life was shortened. This problem has been serious when a hydrogen storage alloy is used for the negative electrode because the hydrogen overvoltage is small and hydrogen is easily generated.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a negative electrode plate mainly composed of a hydrogen storage alloy in which a negative electrode active material is supported on both surfaces of a porous electrode substrate, which is a punching metal made of an alkali-resistant metal, and a separator A positive electrode plate carrying a positive electrode active material mainly composed of nickel hydroxide on an electrode substrate; a nickel-metal hydride sealed alkaline storage battery comprising an alkaline electrolyte and a battery container, wherein the positive electrode plate comprises: The portion (A) of the negative electrode plate facing the negative electrode plate through the separator and facing the positive electrode plate on both sides, and the portion (B) of the negative electrode plate facing the positive electrode plate on one side And the amount of the active material supported on the unit area of the part (A) of the negative electrode plate is 100% of the amount of the active material supported on the unit area of the part (B) of the negative electrode plate , more than 10% multi Providing nickel-metal hydride sealed alkaline storage battery.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the structure of the present invention, that is, in a nickel-metal hydride sealed alkaline storage battery, a negative electrode mainly composed of a hydrogen storage alloy in which a negative electrode active material is supported on both surfaces of a porous electrode substrate that is a punching metal made of an alkali-resistant metal A nickel-metal hydride sealed alkaline storage battery comprising a plate, a separator, a positive electrode plate carrying a positive electrode active material mainly composed of nickel hydroxide on an electrode substrate, an alkaline electrolyte and a battery container; The positive electrode plate is opposed to the negative electrode plate with the separator interposed therebetween, the negative electrode plate portion (A) facing the positive electrode plate on both sides, and the negative electrode plate facing the positive electrode on one side. Part (B), and the amount of the active material supported on the unit area of the part (A) of the negative electrode plate is the amount of the active material supported on the part (B) unit area of the negative electrode plate By more than the increase in the internal pressure during charging can be effectively suppressed, thereby improving the cycle life of the battery.
[0009]
Specifically, the cylindrical or oval cell constituted by winding a strip-shaped electrode, a negative electrode plate of the outermost and innermost portions, the negative electrode plate of the portion facing the positive electrode plate on one side of the plane ( In the prismatic battery corresponding to B) and configured by laminating flat electrodes, the outermost portion of the negative electrode plate corresponds to the portion (B) of the negative electrode plate facing the positive electrode plate on one side .
[0010]
In addition, since a large current can be charged without significantly increasing the internal pressure of the battery, rapid charging in a shorter time is possible.
[0011]
Although it is not clear about the mechanism by which the increase in the internal pressure of the battery is suppressed, the negative electrode plate facing the positive electrode plate on both sides is oxygen generated from the positive electrode at the end of charging when the charge / discharge reaction proceeds well. Gas can be absorbed smoothly.
[0012]
However, the negative electrode plate facing the positive electrode plate in the one surface, when the anode active material on the side not facing the positive electrode includes an electrode substrate of the country negative electrode plate of punching metal, a shadow of the imperforate portion of the punching metal Since the area of the portion to be large is large, it is estimated that most of the negative electrode active material hardly participates in the charging reaction.
[0014]
Therefore, the negative electrode plate portion (A) facing the positive electrode plate on both sides and the negative electrode plate portion (B) facing the positive electrode plate on one side, the negative electrode plate portion By making the amount of the active material supported on the unit area of (A) larger than the amount of the active material supported on the unit area of the portion (B) of the negative electrode plate, the portion (B) of the negative electrode plate In this case, the amount of the negative electrode active material that becomes a shadow of the electrode base of the negative electrode plate is reduced, and thus the effective reserve amount is large even if the volume of the negative electrode in the battery and the apparent reserve amount are the same. It is thought to be.
[0015]
Such an effect is that the amount of the active material supported on the unit area of the portion (A) of the negative electrode plate is 100% of the amount of the active material supported on the unit area of the portion (B) of the negative electrode plate. This is conspicuous when the content is more than 10%.
[0016]
【Example】
The invention is explained in detail by means of preferred embodiments.
[0017]
The negative electrode was manufactured by the following method.
Melt metal (raw material is bust necite), nickel, cobalt, manganese, and aluminum are melted in a high-frequency induction furnace in an argon atmosphere such that MmNi3.5 Co0.8 Mn0.3AAl0.4. The alloy lump was mechanically pulverized by a method of coarsely pulverizing with a jaw crusher and then finely pulverizing with a ball mill, and sieved to obtain a hydrogen storage alloy powder.
[0018]
Next, a paste-like mixture was prepared by kneading this hydrogen storage alloy powder mainly with a dispersion in which a binder was dispersed. This paste-like mixture was applied to both sides of a nickel-plated iron punching metal having a thickness of 0.05 μm and an aperture ratio of about 0.5, dried, pressed, cut into a predetermined size, and a hydrogen storage alloy electrode Was made. In this case, the same area with different responsible lifting amount of the hydrogen storage alloy (i.e., changing the amount of active material to be carried per unit area) created the hydrogen absorbing alloy electrodes A1-A11. The alloy filling amounts of these hydrogen storage alloy electrodes A1 to A11 are shown in Table 1.
[0019]
[Table 1]
Figure 0003815511
FIG. 1 is a schematic view showing the arrangement of hydrogen storage alloy electrodes.
In Figure 1, the hydrogen absorbing alloy electrode, and two inner is a portion of the negative electrode plate facing the positive electrode plate in the plane of both sides (A), in terms of single-side positive electrode plate and facing the negative electrode plate Three pieces of known foam metal type nickel positive electrode plates 3 encapsulated in an envelope shape with a total of four pieces combined with the outer two pieces which are part (B) and a polyamide nonwoven fabric separator 2 (nickel hydroxide) The electrode group is formed by alternately laminating a main active material capacity of 900 mAh in total, and the electrode group is installed in the deep drawing case 1 together with an alkaline electrolyte mainly composed of KOH. A nickel-metal hydride battery having a height of 67 mm, a width of 16.4 mm, and a thickness of 6 mm was manufactured by Kaeser welding the lid plate having the safety valve and the case.
[0020]
The conventional battery using four hydrogen storage alloy electrodes A6 is a1, and the hydrogen storage alloy electrode A5 is formed on the two inner sheets (A), which are portions of the negative electrode plate facing the positive electrode plate on both sides. A comparative battery using A7 for the outer two sheets (B) which is the part of the negative electrode plate facing the positive electrode plate on one side, b1, the hydrogen storage alloy electrode A4 , the negative electrode facing the positive electrode plate on both sides Implementation according to the present invention in which the hydrogen storage alloy electrode A8 is used for the inner two sheets (A) which are the plate parts and the outer two sheets (B) which are the parts of the negative electrode plate facing the positive electrode plate on one side. The battery of Example 1 is b2, the hydrogen storage alloy electrode A3 is disposed on the inner two sheets (A) which are portions of the negative electrode plate facing the positive electrode plate on both sides, and the hydrogen storage alloy electrode A9 is disposed on the positive electrode on one side. two outer is a part of the negative electrode plate facing the plate (B) The battery of Example 2 according to the present invention using b3, and the hydrogen storage alloy electrode A2, the positive electrode plate and two inner is a portion opposing the negative electrode plate on both sides of the plane (A), the hydrogen storage alloy electrode A10 B4 and the hydrogen storage alloy electrode A1 on both sides of the battery of Example 3 according to the present invention, which is used for the outer two sheets (B) which are the parts of the negative electrode plate facing the positive electrode plate on one side surface The hydrogen storage alloy electrode A11 is placed on the inner two sheets (A) which are the parts of the negative electrode plate facing the positive electrode plate, and the outer two sheets (B) which are the parts of the negative electrode plate facing the positive electrode plate on one side. The battery of Example 4 used is called b5. Table 2 shows the configuration of the manufactured battery.
[0021]
[Table 2]
Figure 0003815511
The above battery was placed in a battery internal pressure measurement vessel equipped with a pressure sensor, charged at room temperature with a current of 1 hour, and the change in internal pressure was measured. The results are shown in Table 3.
[0022]
[Table 3]
Figure 0003815511
In other words, the alloy weight of the negative electrode facing the positive electrode on both sides is 10% or more higher than the conventional battery a1 using the negative electrode having the same alloy weight, relative to the alloy weight of the negative electrode facing the positive electrode on only one side. It can be seen that the batteries of the present invention b2, b3, b4, and b5 provided as described above have a lower increase in internal pressure.
[0023]
However, in the case of the comparative battery b1 in which the alloy weight of the negative electrode facing the positive electrode on both sides is 110% or less with respect to the alloy weight of the negative electrode facing the positive electrode on only one side, the effect of suppressing the increase in internal pressure is low. Almost not recognized.
[0024]
Next, a charge / discharge cycle life test was performed on the conventional battery a1, the comparative battery b1, and the inventive batteries b2, b3, b4, and b5. The test condition at this time is that the battery is charged with a current of 900 mA (1 CmA) with a -ΔV control method (end-of-charge voltage difference: 5 mV) and discharged until the battery voltage reaches 1.0 V at 900 mA, and a capacity confirmation test [Discharging to 180 V (0.2 CmA) to a final voltage of 1.0 V] was performed every 50 cycles.
[0025]
Table 4 shows the number of cycles until each battery reaches the end of its lifetime (until 80% or less of the initial capacity). Compared to the conventional battery a1 using negative electrodes having the same alloy weight, the weight of the negative electrode facing the positive electrode on both sides is 10% or more higher than that of the negative electrode facing the positive electrode on only one side. It turns out that this invention battery b2, b3, b4, and b5 are more excellent in charge / discharge cycle life performance.
[0026]
However, in the case of the comparison battery b1 in which the alloy weight of the negative electrode facing the positive electrode on both sides is 110% or less with respect to the alloy weight of the negative electrode facing the positive electrode on only one side, the life is the same as that of the conventional battery a1. It was.
[0027]
[Table 4]
Figure 0003815511
[0028]
【The invention's effect】
As described above, according to the present invention, the increase in internal pressure during charging of the nickel-metal hydride sealed alkaline storage battery is effectively suppressed, and the cycle life is improved.
[Brief description of the drawings]
FIG. 1 is a schematic view showing the arrangement of hydrogen storage alloy electrodes of a prismatic battery according to the present invention.
[Explanation of symbols]
1 deep draw Case 2 separator 3 positive electrode plate A negative electrode mainly composed of a positive electrode plate facing the hydrogen absorbing alloy in the plane of the portion B piece side of the negative electrode plate mainly containing hydrogen absorbing alloy which faces the positive electrode plate at both sides of the surface Piece of board

Claims (1)

負極活物質を耐アルカリ性金属からなるパンチングメタルである多孔性の電極基体の両面に担持してなる水素吸蔵合金を主体とした負極板と、セパレータと、水酸化ニッケルを主体とする正極活物質を電極基体に担持する正極板と、アルカリ電解液と電池容器を具備してなるニッケル・金属水素化物密閉形アルカリ蓄電池であって、前記正極板が前記セパレータを介して前記負極板と対向し、両側の面において前記正極板と対向する前記負極板の部分(A)と、片側の面において前記正極板と対向する前記負極板の部分(B)とを具備し、前記負極板の部分(A)の単位面積に担持される活物質の量が、前記負極板の部分(B)の単位面積に担持される活物質の量を100%として、10%以上多いことを特徴とするニッケル・金属水素化物密閉形アルカリ蓄電池。A negative electrode plate mainly composed of a hydrogen storage alloy formed by supporting a negative electrode active material on both surfaces of a porous electrode substrate that is a punching metal made of an alkali-resistant metal, a separator, and a positive electrode active material mainly composed of nickel hydroxide. A nickel-metal hydride sealed alkaline storage battery comprising a positive electrode plate supported on an electrode substrate, an alkaline electrolyte, and a battery container, wherein the positive electrode plate faces the negative electrode plate with the separator interposed therebetween. A portion (A) of the negative electrode plate facing the positive electrode plate on the surface and a portion (B) of the negative electrode plate facing the positive electrode plate on one side, the portion (A) of the negative electrode plate The amount of the active material supported on the unit area of nickel / metal hydrogen is 10% or more when the amount of the active material supported on the unit area of the portion (B) of the negative electrode plate is 100%. monster Closed-form alkaline storage battery.
JP02597496A 1996-01-18 1996-01-18 Nickel / metal hydride sealed alkaline storage battery Expired - Lifetime JP3815511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02597496A JP3815511B2 (en) 1996-01-18 1996-01-18 Nickel / metal hydride sealed alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02597496A JP3815511B2 (en) 1996-01-18 1996-01-18 Nickel / metal hydride sealed alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH09199162A JPH09199162A (en) 1997-07-31
JP3815511B2 true JP3815511B2 (en) 2006-08-30

Family

ID=12180709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02597496A Expired - Lifetime JP3815511B2 (en) 1996-01-18 1996-01-18 Nickel / metal hydride sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3815511B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2736098B1 (en) 2011-07-20 2019-01-09 GS Yuasa International Ltd. Cylindrically shaped battery
CN103474706A (en) * 2013-09-29 2013-12-25 赵云德 Nickel-cadmium alkaline dry-type storage battery
CN115117466B (en) * 2022-06-17 2023-04-07 重庆宏辰科扬能源有限责任公司 Production process of cylindrical high-voltage nickel-hydrogen battery

Also Published As

Publication number Publication date
JPH09199162A (en) 1997-07-31

Similar Documents

Publication Publication Date Title
US20130323578A1 (en) Alkaline rechargeable battery
CN103579591A (en) Nickel-metal hydride secondary cell and negative electrode therefor
KR100412625B1 (en) Nickel-hydrogen storage battery
EP0901179B1 (en) Alkaline storage battery
US6620548B1 (en) Sealed type alkaline storage battery
JP3390309B2 (en) Sealed alkaline storage battery
JP3815511B2 (en) Nickel / metal hydride sealed alkaline storage battery
US20050100789A1 (en) Nickel metal hydride storage battery
JP3209071B2 (en) Alkaline storage battery
JP3326274B2 (en) Sealed alkaline storage battery
WO1998054775A9 (en) Hydrogen storage alloy
JP3143109B2 (en) Cylindrical sealed nickel storage battery
JPH10241727A (en) Nickel-hydrogen battery assembly
JP4236399B2 (en) Alkaline storage battery
JP3343413B2 (en) Alkaline secondary battery
JPH05144432A (en) Electrode with hydrogen storage alloy
JP2594147B2 (en) Metal-hydrogen alkaline storage battery
JP3498545B2 (en) Alkaline storage battery
JPH08339821A (en) Metal-hydrogen alkaline storage battery
JP2989300B2 (en) Metal-hydrogen alkaline storage battery
JPH1040950A (en) Alkaline secondary battery
JP2004327146A (en) Alkaline storage battery
JPH044563A (en) Non-aqueous secondary battery
JP2002042802A (en) Sealed nickel-hydrogen secondary battery
JP2003173815A (en) Sealed square alkaline storage battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050708

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

EXPY Cancellation because of completion of term