JP2594147B2 - Metal-hydrogen alkaline storage battery - Google Patents

Metal-hydrogen alkaline storage battery

Info

Publication number
JP2594147B2
JP2594147B2 JP1036554A JP3655489A JP2594147B2 JP 2594147 B2 JP2594147 B2 JP 2594147B2 JP 1036554 A JP1036554 A JP 1036554A JP 3655489 A JP3655489 A JP 3655489A JP 2594147 B2 JP2594147 B2 JP 2594147B2
Authority
JP
Japan
Prior art keywords
battery
negative electrode
electrode
hydrogen
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1036554A
Other languages
Japanese (ja)
Other versions
JPH02215057A (en
Inventor
孝直 松本
修弘 古川
健次 井上
誠司 亀岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1036554A priority Critical patent/JP2594147B2/en
Publication of JPH02215057A publication Critical patent/JPH02215057A/en
Application granted granted Critical
Publication of JP2594147B2 publication Critical patent/JP2594147B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、水素を吸蔵及び放出することのできる水素
吸蔵合金電極を負極に備えた金属−水素アルカリ蓄電池
の構造に関するものである。
The present invention relates to a structure of a metal-hydrogen alkaline storage battery having a negative electrode having a hydrogen storage alloy electrode capable of storing and releasing hydrogen.

(ロ) 従来の技術 従来からよく用いられている蓄電池としては、ニッケ
ル−カドミウル蓄電池の如きアルカリ蓄電池、あるいは
鉛蓄電池などがある。近年、これらの電池より軽量且つ
高容量で高エネルギー密度となる可能性のある、水素吸
蔵合金を用いてなる水素吸蔵合金電極を負極に備えた金
属−水素アルカリ蓄電池が注目されている。
(B) Conventional technology Conventionally used storage batteries include alkaline storage batteries such as nickel-cadmium storage batteries and lead storage batteries. In recent years, attention has been paid to a metal-hydrogen alkaline storage battery having a negative electrode having a hydrogen storage alloy electrode using a hydrogen storage alloy, which is likely to be lighter, have a higher capacity, and have a higher energy density than these batteries.

この種電池の負極に用いられる水素吸蔵合金として
は、例えば、特公昭59−49671号公報に開示されている
ように、LaNi5やその改良である三元素系のLaNi4Co、La
Ni4Cu及びLaNi4.8Fe0.2などの合金が知られており、こ
れら水素吸蔵合金粉末と導電材粉末との混合物を耐電解
液性の粒子状結着剤によって電極支持体に固着させて水
素吸蔵合金電極とする方法(特公昭57−30273号公報)
などによって負極が製造されている。上記合金の他に
も、Laの代わりにMm(ミッシュメタル)を用いた各種希
土類系水素吸蔵合金も開発されている。
As the hydrogen storage alloy used for the negative electrode of this type of battery, for example, as disclosed in JP-B-59-49671, LaNi 5 or a three-element LaNi 4 Co,
Alloys such as Ni 4 Cu and LaNi 4.8 Fe 0.2 are known, and a mixture of these hydrogen storage alloy powder and conductive material powder is fixed to an electrode support with an electrolyte-resistant particulate binder to store hydrogen. Method using an alloy electrode (Japanese Patent Publication No. 57-30273)
The negative electrode is manufactured by such methods. In addition to the above alloys, various rare earth hydrogen storage alloys using Mm (mish metal) instead of La have been developed.

又、正極としては、ニッケルカドミウム蓄電池に用い
られる焼結式ニッケル極などが使用されている。
As the positive electrode, a sintered nickel electrode used for a nickel cadmium storage battery or the like is used.

そしてこの種電池の構造は、例えば特開昭60−136162
号公報に開示された如く、負極が、一枚のシート状混練
体の片側のみにネットまたはエクスバンド板、あるいは
穴あき板による集電体を圧着した構造を有し、かつ該負
極がセパレータを介し正極と渦巻状に捲回され、捲回の
最外周には集電体が被覆された面が露出する状態で円筒
形金属缶に収納されたものが開示されている。
The structure of this type of battery is described in, for example, Japanese Patent Application Laid-Open No. 60-136162.
As disclosed in the publication, the negative electrode has a structure in which a current collector by a net or an ex-band plate or a perforated plate is crimped to only one side of one sheet-shaped kneaded body, and the negative electrode has a separator. There is disclosed a coil wound in a spiral shape with a positive electrode interposed therebetween and housed in a cylindrical metal can in a state where a surface covered with a current collector is exposed on the outermost periphery of the wound.

(ハ) 発明が解決しようとする課題 この種、金属−水素アルカリ蓄電池は、保存特性と高
温トルク充電特性が悪という問題点がある。
(C) Problems to be Solved by the Invention This kind of metal-hydrogen alkaline storage battery has a problem that storage characteristics and high-temperature torque charging characteristics are poor.

そこで本発明はかかる問題点に鑑みてなされたもので
あって、この種電池の新しい構造を提案することによ
り、電池の保存特性及び高温トリクル充電特性を改良す
るものである。
Accordingly, the present invention has been made in view of such a problem, and aims to improve the storage characteristics and the high-temperature trickle charging characteristics of a battery by proposing a new structure of this type of battery.

(ニ) 課題を解決するための手段 本発明の金属−水素アルカリ蓄電池は、水素吸蔵合金
電極よりなる負極と、前記負極の容量より小なる容量を
有した正極と、セパレータを捲回した渦巻電極体を備え
るものであって、前記正極と負極とが対向する対向部分
の長さは、前記正極の長さの80%以下であることを特徴
とするものである。
(D) Means for Solving the Problems A metal-hydrogen alkaline storage battery of the present invention comprises a negative electrode comprising a hydrogen storage alloy electrode, a positive electrode having a capacity smaller than the capacity of the negative electrode, and a spiral electrode wound with a separator. A length of a facing portion where the positive electrode and the negative electrode face each other is 80% or less of the length of the positive electrode.

前記構成において、前記正極は、前記負極よりも長い
ものを用いるのが好ましい。
In the above configuration, it is preferable that the positive electrode be longer than the negative electrode.

更に、前記正極の幅は、前記負極の幅と略同等若しく
は大とするのが好適である。
Further, the width of the positive electrode is preferably substantially equal to or larger than the width of the negative electrode.

また、前記負極の最外周面が、前記正極と全て対向し
ているように構成することが好ましい。
Further, it is preferable that the outermost peripheral surface of the negative electrode is configured to face the positive electrode entirely.

(ホ) 作用 この種、金属−水素アルカリ蓄電池の自己放電のメカ
ニズムとして、次の2つの反応が考えられる。
(E) Action The following two reactions can be considered as the mechanism of self-discharge of this kind of metal-hydrogen alkaline storage battery.

充電状態の正極より発生する酸素が、負極に吸蔵さ
れている水素を酸化し、酸素及び水素が消費され、正極
及び負極容量が減少する。
Oxygen generated from the positive electrode in a charged state oxidizes hydrogen stored in the negative electrode, and oxygen and hydrogen are consumed, so that the capacity of the positive electrode and the negative electrode decreases.

負極より解離する水素が、充電状態の正極を還元
し、水素及び酸素が消費され、正極及び負極容量が減少
する。
Hydrogen dissociated from the negative electrode reduces the charged positive electrode, hydrogen and oxygen are consumed, and the capacity of the positive electrode and the negative electrode decreases.

これらの反応及びは、共にガスの移動を伴い、正
負極がセパレータを介して近接し、対向しているために
発生するものである。したがって、これらの反応を抑制
するためには、正負極の対向している対向部分を減少さ
せるのが好ましい。
Both of these reactions and gases are accompanied by the movement of gas, and occur because the positive and negative electrodes are close to each other with the separator interposed therebetween. Therefore, in order to suppress these reactions, it is preferable to reduce the facing portions of the positive and negative electrodes facing each other.

そこで、種々実験を行った結果、前記対向部分の長さ
を前記正極長さの80%以下にすることにより、前記負極
より発生する水素及び正極より発生する酸素の影響を極
めて小さく抑制しうることを見出した。そしてこのよう
に構成することで、他の電池特性を低下させることな
く、この種金属−水素アルカリ蓄電池の自己放電を抑制
しうると共に高温トリクル充電特性を向上させるという
効果を得、本発明を完成するに至ったものである。水素
吸蔵合金電極である負極は、水素吸蔵合金内における水
素拡散が早く、合金表面における反応も著しく早く進行
するので、放電時の分極が小さく、対向部分の長さを短
くしても電池電圧の降下、及び電池容量の低下もほとん
ど観察されない。したがって、前述せる本発明の構成
は、金属−水素アルカリ蓄電池においてとりうる独自の
構成であり、水素吸蔵合金電極よりなる負極の特性を利
用したものである。
Therefore, as a result of conducting various experiments, the effect of hydrogen generated from the negative electrode and oxygen generated from the positive electrode can be extremely small by setting the length of the opposed portion to 80% or less of the length of the positive electrode. Was found. With this configuration, the self-discharge of this kind of metal-hydrogen alkaline storage battery can be suppressed and the high-temperature trickle charge characteristics can be improved without deteriorating other battery characteristics, and the present invention is completed. That is what led to it. The negative electrode, which is a hydrogen storage alloy electrode, diffuses hydrogen quickly in the hydrogen storage alloy, and the reaction on the alloy surface proceeds extremely quickly.Therefore, the polarization during discharge is small, and the voltage of the battery can be reduced even if the length of the facing portion is shortened. Almost no drop and no reduction in battery capacity are observed. Therefore, the configuration of the present invention described above is a unique configuration that can be taken in a metal-hydrogen alkaline storage battery, and utilizes the characteristics of a negative electrode composed of a hydrogen storage alloy electrode.

また、一般的に、金属−水素アルカリ蓄電池を用い、
高温トリクル充電を行うと、負極に用いている水素吸蔵
合金の水素平衡圧力が上昇するので、電池内の水素ガス
分圧が高くなる。このため水素ガスによる正極の還元反
応が加速され、電池容量が減少すると共に、負極の充電
効率が低下する。しかしながら、本発明によれば前述せ
る保存特性の向上と同様に、対向部分の長さを短くして
いるので、水素ガスと正極との反応が抑制され、高温ト
リクル充電後の電池容量の低下が抑えられる。
Also, generally, using a metal-hydrogen alkaline storage battery,
When high-temperature trickle charging is performed, the hydrogen equilibrium pressure of the hydrogen storage alloy used for the negative electrode increases, so that the partial pressure of hydrogen gas in the battery increases. Therefore, the reduction reaction of the positive electrode by the hydrogen gas is accelerated, the battery capacity is reduced, and the charging efficiency of the negative electrode is reduced. However, according to the present invention, similarly to the improvement of the storage characteristics described above, since the length of the facing portion is shortened, the reaction between the hydrogen gas and the positive electrode is suppressed, and the reduction in the battery capacity after high-temperature trickle charging is prevented. Can be suppressed.

ここにおいて、負極の容量よりも正極の容量を小とし
ているのは、過充電時正極より発生せる酸素ガスを負極
に吸収させるようにするためであり、いわゆるノイマン
方式をこの種電池に適用するためのものである。その結
果、この種金属−水素アルカリ蓄電池の密閉化が可能と
なる。
Here, the reason why the capacity of the positive electrode is made smaller than the capacity of the negative electrode is to allow the negative electrode to absorb oxygen gas generated from the positive electrode during overcharge, and to apply the so-called Neumann method to this type of battery. belongs to. As a result, this kind of metal-hydrogen alkaline storage battery can be sealed.

尚、このような構成を従来のニッケル−カドミウム蓄
電池や、ニッケル−亜鉛蓄電池等の蓄電池に適用するこ
とは好ましくない。これは、カドミウム負極及び特に亜
鉛負極が、水素吸蔵合金電極からなる負極に比べて、酸
素ガスの消費速度が非常に遅く、その結果、対向部分を
短くすると過充電時に正極より発生せる酸素ガスを完全
に消費できず、電池内圧が上昇し、ついには安全弁を作
動させてしまうということに基づく。また、カドミウム
負極は放電時の分極が大きく、カドミウム負極と正極と
の対向部分の長さを単に短くすると、電池電圧の降下及
び電池容量の低下が著しく、本発明の構成をとることは
好ましくない。
In addition, it is not preferable to apply such a configuration to a storage battery such as a conventional nickel-cadmium storage battery or a nickel-zinc storage battery. This is because the cadmium negative electrode and especially the zinc negative electrode consume much less oxygen gas than the negative electrode made of a hydrogen storage alloy electrode. As a result, when the facing portion is shortened, oxygen gas generated from the positive electrode during overcharge is reduced. It is based on the fact that it cannot be completely consumed, the internal pressure of the battery rises, and eventually the safety valve is activated. In addition, the cadmium negative electrode has a large polarization at the time of discharge, and if the length of the facing portion between the cadmium negative electrode and the positive electrode is simply shortened, a drop in battery voltage and a drop in battery capacity are remarkable, and it is not preferable to adopt the configuration of the present invention. .

そして本発明の構成をとるため、具体的には、正極の
長さを、負極の長さより長い構成とするのが好ましく、
このようにすることで電池設計上極板長さの変更を除い
て何ら変更を要することなく電池を作製しうる。
And, in order to take the configuration of the present invention, specifically, it is preferable that the length of the positive electrode is configured to be longer than the length of the negative electrode,
By doing so, the battery can be manufactured without any change except for the change in the electrode plate length in battery design.

また、前記正極の幅は、前記負極の幅と略同等若しく
は大とするのが好ましく、その中でも前記正極の幅を前
記負極の幅と略同等とすることにより、電池内に余分な
空間を構成しないのでエネルギー密度上ムダの少ない電
池が得られる。
Further, the width of the positive electrode is preferably substantially equal to or larger than the width of the negative electrode. Among them, by setting the width of the positive electrode substantially equal to the width of the negative electrode, an extra space is formed in the battery. Therefore, a battery with less waste in energy density can be obtained.

また、前記負極の最外周面が、前記正極と全て対向し
ているように構成することで、電極の反応面積を最大限
利用することができ、ハイレート特性上有効な電池が得
られる。
In addition, by configuring the outermost peripheral surface of the negative electrode so as to completely face the positive electrode, the reaction area of the electrode can be maximized, and a battery effective in high-rate characteristics can be obtained.

(ヘ) 実 施 例 以下に本発明の実施例を詳述し、比較例との対比に言
及する。
(F) Working Examples Hereinafter, working examples of the present invention will be described in detail, and reference will be made to comparisons with comparative examples.

◎ 実験例1 (実施例1) 水素吸蔵合金LaNi5を粉砕して微粉化したもの95重量
部に、結着剤としてのPTFE(フッ素樹脂)粉末5重量部
を添加し、均一に混合することによりPTFEを繊維化させ
る。ここに水を加えてペースト状とし、幅40mm、長さ45
mmのニッケルメッキを施したパンチングメタル集電体の
両面に貼着し、容量1000mAhの水素吸蔵合金電極である
負極を得た。尚、以下に用いた水素吸蔵合金電極よりな
る負極は容量及び幅は一定であるが、加圧の程度を変化
させているので極板厚みが異なる。
◎ Experimental Example 1 (Example 1) 5 parts by weight of PTFE (fluororesin) powder as a binder was added to 95 parts by weight of pulverized and finely powdered hydrogen storage alloy LaNi 5 and mixed uniformly. Makes PTFE fiber. Water is added here to make a paste, width 40 mm, length 45
A negative electrode as a hydrogen-absorbing alloy electrode having a capacity of 1000 mAh was obtained by adhering to both sides of a punching metal current collector plated with mm nickel. Although the capacity and width of the negative electrode composed of the hydrogen storage alloy electrode used below are constant, the thickness of the electrode plate is different because the degree of pressurization is changed.

同様にして、水酸化ニッケル粉末にPTFEを添加し、混
練してペースト状とした後、ニッケルメッキを施した、
幅40mm、長さ65mmのパンチングメタル集電体に貼着し、
正極を得た。尚、以下に用いた正極の長さは、一定であ
る。
Similarly, PTFE was added to the nickel hydroxide powder, kneaded to form a paste, and then nickel-plated.
Adhere to a punching metal current collector with a width of 40 mm and a length of 65 mm,
A positive electrode was obtained. In addition, the length of the positive electrode used below is constant.

このようにして得られた正極及び負極を、耐アルカリ
性を有するセパレータと共に、巻き始め部分をそろえて
捲回し、渦巻電極体を得た。そして、この渦巻電極体を
電池外装缶に挿入した後、アルカリ電解液を注入し、封
口を行い、公称容量600mAhを有するAAサイズの本発明電
池Aを得た。この本発明電池Aの渦巻電極体の最外周は
セパレータが位置し、渦巻電極体を覆っており、次に正
極が位置し、負極の最外周面は正極と全て対向するよう
になっている。そして正極長さに対する、正極と負極と
が対向する対向部分の長さ、即ち対向部分の長さ比率
は、60%であった。
The positive electrode and the negative electrode thus obtained were wound together with a separator having alkali resistance, with the winding start portions aligned, to obtain a spiral electrode body. Then, after inserting this spiral electrode body into a battery outer can, an alkaline electrolyte was injected and sealed, thereby obtaining an AA-size battery A of the present invention having a nominal capacity of 600 mAh. The separator is located on the outermost periphery of the spiral electrode body of the battery A of the present invention and covers the spiral electrode body, and then the positive electrode is located, and the outermost peripheral surface of the negative electrode is entirely opposed to the positive electrode. The ratio of the length of the facing portion where the cathode and the anode face each other, that is, the length ratio of the facing portion, to the length of the cathode was 60%.

ここで、前記対向部分の長さ比率(%)というのは、
次式に基づき算出したものである。
Here, the length ratio (%) of the facing portion is
It is calculated based on the following equation.

前記式において、正極が負極と実際に対向している部
分の長さは、実測することにより知ることができる。そ
して正極において、負極と実際に対向している部分は、
対向していない部分と比して、色合いが異なるので、渦
巻電極体を分解することにより、容易に測定可能であ
る。
In the above formula, the length of the portion where the positive electrode actually faces the negative electrode can be known by actual measurement. And the part of the positive electrode that actually faces the negative electrode is
Since the color tone is different from that of the non-opposite portion, it can be easily measured by disassembling the spiral electrode body.

(実施例2) 前記実施例1で用いた負極の集電体の長さを55mmと
し、対向部分の長さ比率を70%とした以外は同様にし
て、本発明電池Bを得た。
Example 2 A battery B of the present invention was obtained in the same manner except that the length of the current collector of the negative electrode used in Example 1 was 55 mm and the length ratio of the facing portion was 70%.

(実施例3) 前記実施例1で用いた負極の集電体の長さを65mmと
し、対向部分の長さ比率を80%とした以外は同様にし
て、本発明電池Cを得た。
Example 3 A battery C of the present invention was obtained in the same manner except that the length of the current collector of the negative electrode used in Example 1 was 65 mm and the length ratio of the facing portion was 80%.

(比較例1) 前記実施例1で用いた負極集電体の長さを75mmとし、
対向部分の長さ比率を90%とした以外は同様にして、比
較電池Dを得た。
(Comparative Example 1) The length of the negative electrode current collector used in Example 1 was 75 mm,
Comparative Battery D was obtained in the same manner except that the length ratio of the facing portion was 90%.

(比較例2) 前記実施例1で用いた負極集電体の長さを85mmとし、
対向部分の長さ比率を100%とした以外は同様にして、
比較電池Eを得た。
Comparative Example 2 The length of the negative electrode current collector used in Example 1 was 85 mm,
In the same way except that the length ratio of the facing part was set to 100%,
A comparative battery E was obtained.

(比較例3) 前記実施例1において用いた水素吸蔵合金に代えて、
カドミウム活物質を使用することにより焼結式カドミウ
ム負極を作製した以外は同様にして、比較電池a(公称
容量600mAh)を得た。この電池のカドミウム負極とニッ
ケル正極との対向部分の長さ比率は、60%である。
(Comparative Example 3) Instead of the hydrogen storage alloy used in Example 1,
Comparative battery a (nominal capacity 600 mAh) was obtained in the same manner except that a sintered cadmium negative electrode was produced by using a cadmium active material. The length ratio of the facing portion of the cadmium negative electrode and the nickel positive electrode of this battery is 60%.

(比較例4) 前記実施例2において用いた水素吸蔵合金に代えて、
カドミウム活物質を用いることにより焼結式カドミウム
負極を作製した以外は同様にして、比較電池bを得た。
この電池における対向部分の長さ比率は、70%であっ
た。
(Comparative Example 4) Instead of the hydrogen storage alloy used in Example 2,
Comparative battery b was obtained in the same manner except that a sintered cadmium negative electrode was produced by using a cadmium active material.
The length ratio of the facing portion in this battery was 70%.

(比較例5) 前記実施例3において用いた水素吸蔵合金に代えて、
カドミウム活物質を用いることにより焼結式カドミウム
負極を作製した以外は同様にして、比較電池Cを得た。
この電池における対向部分の長さ比率は、80%であっ
た。
(Comparative Example 5) Instead of the hydrogen storage alloy used in Example 3,
Comparative battery C was obtained in the same manner except that a sintered cadmium negative electrode was prepared by using a cadmium active material.
The length ratio of the facing portion in this battery was 80%.

(比較例6) 前記比較例1において用いた水素吸蔵合金に代えて、
カドミウム活物質を用いることにより焼結式カドミウム
負極を作製した以外は同様にして、比較電池dを得た。
この電池における対向部分の長さ比率は、90%であっ
た。
(Comparative Example 6) Instead of the hydrogen storage alloy used in Comparative Example 1,
A comparative battery d was obtained in the same manner except that a sintered cadmium negative electrode was produced by using a cadmium active material.
The length ratio of the facing portion in this battery was 90%.

(比較例7) 前記比較例2において用いた水素吸蔵合金に代えて、
カドミウム活物質を用いることにより焼結式カドミウム
負極を作製した以外は同様にして、比較電池eを得た。
この電池におれる対向部分の長さ比率は、100%であっ
た。
(Comparative Example 7) Instead of the hydrogen storage alloy used in Comparative Example 2,
Comparative battery e was obtained in the same manner except that a sintered cadmium negative electrode was produced by using a cadmium active material.
The length ratio of the facing portion in this battery was 100%.

ここにおいて、電池A〜Eは金属−水素アルカリ蓄電
池。電池a〜eはニッケル−カドミウム蓄電池である。
また、前記電池における対向部分の長さ比率(%)を、
第1表に示す。
Here, batteries A to E are metal-hydrogen alkaline storage batteries. Batteries a to e are nickel-cadmium storage batteries.
Further, the length ratio (%) of the facing portion in the battery is
It is shown in Table 1.

このようにして得られた電池A〜E及び電池a〜eを
用い、電池の放電特性を比較した。放電特性を測定する
のに先立ち、各電池を600mAの充電電流で1.25時間充電
し、次いで、600mAの放電電池で電池電圧が1.0Vになる
迄放電するという条件で、5回充放電を行い、電池の化
成を完了した。
Using the batteries A to E and the batteries a to e thus obtained, the discharge characteristics of the batteries were compared. Prior to measuring the discharge characteristics, each battery was charged at a charging current of 600 mA for 1.25 hours, and then charged and discharged 5 times under the condition that the battery was discharged with a 600 mA discharging battery until the battery voltage reached 1.0 V. Battery formation was completed.

この放電特性の結果を、第1図(電池A〜E)及び第
2図(電池a〜e)に示す。
The results of the discharge characteristics are shown in FIG. 1 (batteries A to E) and FIG. 2 (batteries a to e).

第1図より、金属−水素アルカリ蓄電池では、放電電
圧及び放電容量共、対向部分の長さに依存するところは
ほとんどないことがわかる。
From FIG. 1, it can be seen that the discharge voltage and discharge capacity of the metal-hydrogen alkaline storage battery hardly depend on the length of the facing portion.

一方、第2図より、ニッケル−カドミウム蓄電池で
は、放電電圧及び放電容量共、負極の長さ即ち対向部分
の長さに依存するところが極めて大きいことがわかる。
したがって、本発明の構成をニッケル−カドミウム蓄電
池に適用するのは、好ましくないと言える。
On the other hand, FIG. 2 shows that in the nickel-cadmium storage battery, both the discharge voltage and the discharge capacity greatly depend on the length of the negative electrode, that is, the length of the facing portion.
Therefore, it is not preferable to apply the configuration of the present invention to a nickel-cadmium storage battery.

したがって、本発明の如く、正極の長さを負極の長さ
より長くし、負極の最外周面が正極と全て対向する構成
は、金属−水素アルカリ蓄電池だけに適用しうるもので
ある。これは、負極に用いた水素吸蔵合金、金属水素化
物共に、電気電動性が良く、金属内の水素拡散も早いの
で、放電時の分極が小さいという性質を利用したもので
ある。
Therefore, the configuration in which the length of the positive electrode is longer than the length of the negative electrode and the outermost peripheral surface of the negative electrode is entirely opposed to the positive electrode as in the present invention can be applied only to a metal-hydrogen alkaline storage battery. This utilizes the property that both the hydrogen storage alloy and the metal hydride used for the negative electrode have good electric motor properties and rapid diffusion of hydrogen in the metal, so that polarization during discharge is small.

一方、ニッケル−カドミウム蓄電池のカドミウム負極
において、充電生成物である金属カドミウムが放電され
ると電気電導性の悪い水酸化カドミウムが生成し、負極
の電気導電性が低下する。その結果、放電時における負
極の分極が大きくなり、電池電圧の低下及び電池容量の
減少が生じるので、負極を長くし対向部分の面積を大き
くしなければならない。
On the other hand, in a cadmium negative electrode of a nickel-cadmium storage battery, when metal cadmium as a charging product is discharged, cadmium hydroxide having poor electric conductivity is generated, and the electric conductivity of the negative electrode is reduced. As a result, the polarization of the negative electrode at the time of discharge increases, which causes a decrease in battery voltage and a decrease in battery capacity. Therefore, it is necessary to lengthen the negative electrode and increase the area of the facing portion.

更に、酸素ガスの消費効率を考えると、ニッケル−カ
ドミウム蓄電池に代表される従来の蓄電池においては、
正極よりも負極を長く設定していたが、本発明に係る金
属−水素アルカリ蓄電池の負極は酸素の消費効率が極め
て高く、これが、本発明の構成をとりうるもう一つの理
由である。
Furthermore, considering the oxygen gas consumption efficiency, in a conventional storage battery represented by a nickel-cadmium storage battery,
Although the negative electrode is set longer than the positive electrode, the negative electrode of the metal-hydrogen alkaline storage battery according to the present invention has a very high oxygen consumption efficiency, which is another reason that the configuration of the present invention can be adopted.

◎ 実験例 例2 電池A〜Eを用い、電池の保存特性を比較した。この
時の実験条件は、各電池を満充電した後、室温で1か月
保存した時の残存容量を調べるというものである。そし
て、対向部分の長さ比率(%)と、電池の残存容量との
関係を調べた。
実 験 Experimental example Example 2 Using batteries A to E, the storage characteristics of the batteries were compared. The experimental condition at this time is to check the remaining capacity when each battery is fully charged and stored at room temperature for one month. Then, the relationship between the length ratio (%) of the facing portion and the remaining capacity of the battery was examined.

この結果を、第3図に示す。第3図より、対向部分の
長さ比率が80%よりも大きいと、自己放電による電池の
残存容量の低下が顕著に現れており、対向部分の長さ比
率を80%以下にするのが好ましいことがわかる。
The result is shown in FIG. From FIG. 3, it is apparent that when the length ratio of the facing portion is larger than 80%, the remaining capacity of the battery is significantly reduced due to self-discharge, and the length ratio of the facing portion is preferably set to 80% or less. You can see that.

◎ 実験例3 電池A〜Eを用い、電池の高温トリクル充電後の電池
容量の比較を行った。この時の条件は、環境温度60℃に
おいて、各電池を充電電流15mAで60時間充電した後、放
電電流120mAで放電し、各電池の放電容量を測定すると
いうものである。そして、対向部分の長さ比率(%)
と、電池容量との関係を調べた。
実 験 Experimental Example 3 Using the batteries A to E, the battery capacities after the high-temperature trickle charge of the batteries were compared. The condition at this time is that each battery is charged at a charging current of 15 mA for 60 hours at an environmental temperature of 60 ° C., then discharged at a discharging current of 120 mA, and the discharge capacity of each battery is measured. And the length ratio of the facing part (%)
And the relationship with battery capacity.

この結果を、第4図に示す。第4図より、対向部分の
長さ比率が80%よりも大きいと、電池容量の減少が顕著
に現れており、高温トリクル充電特性の観点からも、対
向部分の長さ比率を80%以下にするのが好ましいことが
わかる。
The result is shown in FIG. From FIG. 4, it can be seen that when the length ratio of the facing portion is larger than 80%, the battery capacity is remarkably reduced, and from the viewpoint of the high-temperature trickle charging characteristics, the length ratio of the facing portion is reduced to 80% or less. It can be seen that it is preferable to perform

尚、実験例1〜3の傾向は、たとえば公称容量1000mA
hのAAサイズのものを組み立てた場合、即ち同じサイズ
であって容量を大きく設定した場合や、種々の電池サイ
ズのものを作製した場合であっても、同様に観察され
た。
Incidentally, the tendency of Experimental Examples 1 to 3 is, for example, that the nominal capacity is 1000 mA.
The same observations were made when assembling AA-size h, that is, when the capacity was set to be the same and large, or when various battery sizes were fabricated.

本実施例においては水素吸蔵合金としてLaNi5を用い
たが、これ以外のMmNi5、MmNi2Co3等の希土類水素吸蔵
合金、Ti−Ni系水素吸蔵合金、Ti−Mn系水素吸蔵合金、
Ti−Fe系水素吸蔵合金、Mg−Ni系水素吸蔵合金、Ti−Zr
系水素吸蔵合金、Zr−Mn系水素吸蔵合金等を用いること
ができるのは言うまでもない。
Although in this embodiment with LaNi 5 as a hydrogen absorbing alloy, other than this MmNi 5, MmNi 2 Co 3, etc. of the rare-earth hydrogen storage alloy, Ti-Ni-based hydrogen storage alloy, Ti-Mn based hydrogen-absorbing alloy,
Ti-Fe based hydrogen storage alloy, Mg-Ni based hydrogen storage alloy, Ti-Zr
It is needless to say that a system-based hydrogen storage alloy, a Zr-Mn-based hydrogen storage alloy, or the like can be used.

(ト) 発明の効果 本発明の金属−水素アルカリ蓄電池は、水素吸蔵合金
よりなる負極と、前記負極の容量より小なる容量を有し
た正極と、セパレータとを捲回した渦巻電極体を備える
ものであって、前記正極と前記負極とが対向する対向部
分の長さを、前記正極の長さの80%以下となるように構
成しているので、この種電池の保存特性及び高温トリク
ル充電特性を大幅に向上させることができ、その工業的
価値は極めて大きい。
(G) Effect of the Invention A metal-hydrogen alkaline storage battery of the present invention includes a spiral electrode body formed by winding a negative electrode made of a hydrogen storage alloy, a positive electrode having a capacity smaller than the capacity of the negative electrode, and a separator. The length of the facing portion where the positive electrode and the negative electrode face each other is set to be 80% or less of the length of the positive electrode. Can be greatly improved, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

第1図は金属−水素アルカリ蓄電池の放電特性図、第2
図はニッケル−カドミウム蓄電池の放電特性図、第3図
は保存後の電池容量比較図、第4図は高温トリクル充電
後の電池容量比較図である。A,B,C……本発明電池、D,
E,a,b,c,d,e……比較電池。
FIG. 1 is a discharge characteristic diagram of a metal-hydrogen alkaline storage battery, and FIG.
FIG. 3 is a discharge characteristic diagram of the nickel-cadmium storage battery, FIG. 3 is a battery capacity comparison diagram after storage, and FIG. 4 is a battery capacity comparison diagram after high-temperature trickle charge. A, B, C …… The battery of the present invention, D,
E, a, b, c, d, e …… Comparative battery.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水素吸蔵合金電極よりなる負極と、前記負
極の容量よりも小なる容量を有した正極と、セパレータ
とを捲回した渦巻電極体を備えるものであって、 前記正極と負極とが対向する対向部分の長さは、前記正
極の長さの80%以下であることを特徴とする金属−水素
アルカリ蓄電池。
1. A spiral electrode body comprising a negative electrode made of a hydrogen storage alloy electrode, a positive electrode having a capacity smaller than the capacity of the negative electrode, and a separator wound around the negative electrode. Wherein the length of the facing portion facing is 80% or less of the length of the positive electrode.
【請求項2】前記正極は、前記負極よりも長いことを特
徴とする請求項(1)記載の金属−水素アルカリ蓄電
池。
2. The metal-hydrogen alkaline storage battery according to claim 1, wherein said positive electrode is longer than said negative electrode.
【請求項3】前記正極の幅は、前記負極の幅と略同等若
しくは大であることを特徴とする請求項(1)記載の金
属−水素アルカリ蓄電池。
3. The metal-hydrogen alkaline storage battery according to claim 1, wherein the width of the positive electrode is substantially equal to or larger than the width of the negative electrode.
【請求項4】前記負極の最外周面が、前記正極と全て対
向していることを特徴とする請求項(1)記載の金属−
水素アルカリ蓄電池。
4. The metal alloy according to claim 1, wherein an outermost peripheral surface of said negative electrode is entirely opposed to said positive electrode.
Hydrogen alkaline storage battery.
JP1036554A 1989-02-16 1989-02-16 Metal-hydrogen alkaline storage battery Expired - Fee Related JP2594147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1036554A JP2594147B2 (en) 1989-02-16 1989-02-16 Metal-hydrogen alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1036554A JP2594147B2 (en) 1989-02-16 1989-02-16 Metal-hydrogen alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH02215057A JPH02215057A (en) 1990-08-28
JP2594147B2 true JP2594147B2 (en) 1997-03-26

Family

ID=12472979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1036554A Expired - Fee Related JP2594147B2 (en) 1989-02-16 1989-02-16 Metal-hydrogen alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2594147B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3387381B2 (en) 1997-09-04 2003-03-17 松下電器産業株式会社 Alkaline storage battery

Also Published As

Publication number Publication date
JPH02215057A (en) 1990-08-28

Similar Documents

Publication Publication Date Title
US4621034A (en) Sealed metal oxide-hydrogen storage cell
US5131920A (en) Method of manufacturing sealed rechargeable batteries
JP2595967B2 (en) Hydrogen storage electrode
JP2594147B2 (en) Metal-hydrogen alkaline storage battery
JP2792938B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2989877B2 (en) Nickel hydride rechargeable battery
JP3168623B2 (en) Prismatic metal hydride storage battery
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3070081B2 (en) Sealed alkaline storage battery
JP3266153B2 (en) Manufacturing method of sealed alkaline storage battery
JP2940952B2 (en) Method for manufacturing nickel-hydrogen alkaline storage battery
JPH06267583A (en) Spiral-shaped cell
JP2989300B2 (en) Metal-hydrogen alkaline storage battery
JP3742149B2 (en) Alkaline secondary battery
JPH1040950A (en) Alkaline secondary battery
JPH09199162A (en) Sealed alkaline storage battery
JPH05144432A (en) Electrode with hydrogen storage alloy
JP3362400B2 (en) Nickel-metal hydride storage battery
JPH1196999A (en) Sealed nickel-hydrogen secondary battery
JPH0562674A (en) Alkaline storage battery
JPH11162502A (en) Manufacture of alkaline secondary battery
JPH11260395A (en) Sealed nickel hydrogen secondary battery
JP2001307722A (en) Alkaline secondary battery
JPH0642375B2 (en) Metal-hydrogen alkaline battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees