JPH02215057A - Metal-hydrogen alkaline storage battery - Google Patents

Metal-hydrogen alkaline storage battery

Info

Publication number
JPH02215057A
JPH02215057A JP1036554A JP3655489A JPH02215057A JP H02215057 A JPH02215057 A JP H02215057A JP 1036554 A JP1036554 A JP 1036554A JP 3655489 A JP3655489 A JP 3655489A JP H02215057 A JPH02215057 A JP H02215057A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
electrode
battery
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1036554A
Other languages
Japanese (ja)
Other versions
JP2594147B2 (en
Inventor
Takanao Matsumoto
松本 孝直
Sanehiro Furukawa
古川 修弘
Kenji Inoue
健次 井上
Seiji Kameoka
亀岡 誠司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1036554A priority Critical patent/JP2594147B2/en
Publication of JPH02215057A publication Critical patent/JPH02215057A/en
Application granted granted Critical
Publication of JP2594147B2 publication Critical patent/JP2594147B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To enhance storage performance and high temperature trickle charge performance by setting a length at an opposed portion, where a positive electrode and negative electrode are opposed each other, at 80% or less than that of the positive electrode. CONSTITUTION:A length at an opposed portion where a positive electrode and a negative electrode are opposed each other is set at 80% or less than that of the positive electrode. It is desirable that the positive electrode should be longer than the negative electrode and the positive electrode should be substantially equal to or wider than the negative electrode. Furthermore, it is preferable that all the outermost surface of the negative electrode should be opposed to the positive electrode. Accordingly, adverse effects of hydrogen generated in the negative electrode and oxygen generated in the positive electrode can be limited to the minimum. Therefore, any self-discharge can be restrained, and moreover, high temperature trickle charge performance can be enhanced.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、水素を吸蔵及び放出することのできる水素吸
蔵合金電極を負極に備えた金属−水素アルカリ蓄電池の
構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to the structure of a metal-hydrogen alkaline storage battery having a negative electrode equipped with a hydrogen storage alloy electrode capable of storing and releasing hydrogen.

(ロ)従来の技術 従来からよく用いられている蓄電池としては、ニッケル
ーカドミウム蓄電池の如きアルカリ蓄電池、あるいは鉛
蓄電池などがある。近年、これらの電池より軽量且つ高
容量で高エネルギー密度となる可能性のある、水素吸蔵
合金を用いてなる水素吸蔵合金電極を負極に備えた金属
−水素アルカリ蓄電池が注目されている。
(B) Prior Art Storage batteries that have been commonly used include alkaline storage batteries such as nickel-cadmium storage batteries, and lead storage batteries. In recent years, metal-hydrogen alkaline storage batteries, which are lighter, have higher capacity, and may have higher energy density than these batteries, have been attracting attention, and the metal-hydrogen alkaline storage batteries have a negative electrode equipped with a hydrogen-absorbing alloy electrode made of a hydrogen-absorbing alloy.

この種電池の負極に用いられる水素吸蔵合金としては、
例えば特公昭59−49671号公報に開示されている
ように、LaNi5やその改良である三元素系のLaN
 i、co、 LaN i、Cu及びLAN LlF 
eo。
Hydrogen storage alloys used in the negative electrode of this type of battery include:
For example, as disclosed in Japanese Patent Publication No. 59-49671, LaNi5 and its improved three-element LaNi5
i, co, LaN i, Cu and LAN LIF
eo.

、などの合金が知られており、これら水素吸蔵合金粉末
と導電材粉末との混合物を耐電解液性の粒子状結着剤に
よって電極支持体に固着させて水素吸蔵合金電極とする
方法(特公昭57−30273号公報)などによって負
極が製造されている。上記合金の他にも、Laの代わり
にMm(ミツシュメタル)を用いた各種希土類系水素吸
蔵合金も開発されている。
, etc. are known, and a method of making a hydrogen storage alloy electrode by fixing a mixture of these hydrogen storage alloy powders and a conductive material powder to an electrode support using an electrolyte-resistant particulate binder (in particular, A negative electrode is manufactured by, for example, Japanese Patent Publication No. 57-30273). In addition to the above-mentioned alloys, various rare earth hydrogen storage alloys using Mm (mitshu metal) in place of La have also been developed.

又、正極としては、ニッケルカドミウム蓄電池に用いら
れる焼結式ニッケル極などが使用されている。
Furthermore, as the positive electrode, a sintered nickel electrode used in nickel-cadmium storage batteries is used.

そしてこの種電池の構造は、例えば特開昭60−136
162号公報に開示された如く、負極が、−枚のシート
状混練体の片側のみにネットまたはエクスパンド板、あ
るいは穴あき板による集電体を圧着した構造を有し、か
つ該負極がセパレータを介し正極と渦巻状に捲回され、
捲回の最外周には集電体が被覆された面が露出する状態
で円筒形金属缶に収納されたものが開示されている。
The structure of this type of battery is known, for example, from Japanese Patent Application Laid-open No. 60-136.
As disclosed in Japanese Patent No. 162, the negative electrode has a structure in which a current collector made of a net, an expanded plate, or a perforated plate is crimped on only one side of a sheet-like kneaded body, and the negative electrode has a separator. The positive electrode is wound in a spiral shape,
It is disclosed that the current collector is housed in a cylindrical metal can with the surface covered with the current collector exposed at the outermost periphery of the winding.

(ハ)発明が解決しようとする課題 この種、金属−水素アルカリ蓄電池は、保存特性と高温
トリクル充電特性が悪いという問題点がある。
(c) Problems to be Solved by the Invention This type of metal-hydrogen alkaline storage battery has problems in that it has poor storage characteristics and high temperature trickle charging characteristics.

そこで本発明はかかる問題点に鑑みてなされたものであ
って、この種電池の新しい構造を提案することにより、
電池の保存特性及び高温トリクル充電特性を改良するも
のである。
The present invention has been made in view of these problems, and by proposing a new structure for this type of battery,
This improves the storage characteristics and high temperature trickle charging characteristics of the battery.

(ニ)課題を解決するための手段 本発明の金属−水素アルカリ蓄電池は、水素吸蔵合金電
極よりなる負極と、前記負極の容量より小なる容量を有
した正極と、セパレータを捲回した渦巻電極体を備える
ものであって、前記正極と負極とが対向する対向部分の
長さは、前記正極の長さの80%以下であることを特徴
とするものである。
(d) Means for Solving the Problems The metal-hydrogen alkaline storage battery of the present invention comprises a negative electrode made of a hydrogen storage alloy electrode, a positive electrode having a capacity smaller than that of the negative electrode, and a spiral electrode formed by winding a separator. The length of the facing portion where the positive electrode and the negative electrode face each other is 80% or less of the length of the positive electrode.

前記構成において、前記正極は、前記負極よりも長いも
のを用いるのが好ましい。
In the above configuration, it is preferable that the positive electrode is longer than the negative electrode.

更に、前記正極の幅は、前記負極の幅と略同等若しくは
大とするのが好適である。
Further, it is preferable that the width of the positive electrode is substantially equal to or larger than the width of the negative electrode.

また、前記負極の最外周面が、前記正極と全て対向しぞ
いるように構成することが好ましい。
Further, it is preferable that the outermost peripheral surface of the negative electrode entirely faces the positive electrode.

(ホ)作 用 この種、金属−水素アルカリ蓄電池の自己放電のメカニ
ズムとして、次の2つの反応が考えられる。
(E) Effect The following two reactions are considered as mechanisms of self-discharge in this type of metal-hydrogen alkaline storage battery.

■ 充電状態の正極より発生する酸素が、負極に吸蔵さ
れている水素を酸化し、酸素及び水素が消費され、正極
及び負極容量が減少する。
(2) Oxygen generated from the charged positive electrode oxidizes hydrogen stored in the negative electrode, oxygen and hydrogen are consumed, and the capacities of the positive and negative electrodes are reduced.

■ 負極より解離する水素が、充電状態の正極を還元し
、水素及び酸素が消費され、正極及び負極容量が減少す
る。
(2) Hydrogen dissociated from the negative electrode reduces the charged positive electrode, hydrogen and oxygen are consumed, and the capacities of the positive and negative electrodes decrease.

これらの反応■及び■は、共にガスの移動を伴い、正負
極がセパレータを介して近接し、対向しているために発
生するものである。したがって、これらの反応を抑制す
るためには、正負極の対向している対向部分を減少させ
るのが好ましい。
These reactions (1) and (2) both involve gas movement and occur because the positive and negative electrodes are close to each other with a separator in between and face each other. Therefore, in order to suppress these reactions, it is preferable to reduce the opposing portions of the positive and negative electrodes.

そこで、種々実験を行った結果、前記対向部分の長さを
前記正極長さの80%以下にすることにより、前記負極
より発生する水素及び正極より発生する酸素の影響を極
めて小さく抑制しうろことを見出した。そしてこのよう
に構成することで、他の電池特性を低下させることなく
、この種金属−水素アルカリ蓄電池の自己放電を抑制し
うると共に高温トリクル充電特性を向上させるという効
果を得、本発明を完成するに至ったものである。
Therefore, as a result of various experiments, it was found that by making the length of the opposing portion 80% or less of the length of the positive electrode, the effects of hydrogen generated from the negative electrode and oxygen generated from the positive electrode can be extremely minimized. I found out. With this configuration, the present invention was completed by achieving the effect of suppressing self-discharge of this type of metal-hydrogen alkaline storage battery and improving high-temperature trickle charging characteristics without degrading other battery characteristics. This is what I came to do.

水素吸蔵合金電極である負極は、水素吸蔵合金内におけ
る水素拡散が早く、合金表面における反応も著しく早く
進行するので、放電時の分極が小さく、対向部分の長さ
を短くしても電池電圧の降下、及び電池容量の低下もほ
とんど観察されない。したがって、前述せる本発明の構
成は、金属−水素アルカリ蓄電池においてとりうる独自
の構成であり、水素吸蔵合金電極よりなる負極の特性を
利用したものである。
In the negative electrode, which is a hydrogen-absorbing alloy electrode, hydrogen diffusion within the hydrogen-absorbing alloy is rapid, and the reaction on the alloy surface also proceeds extremely quickly. Therefore, polarization during discharge is small, and even if the length of the facing portion is shortened, the battery voltage remains unchanged. Almost no drop or decrease in battery capacity is observed. Therefore, the configuration of the present invention described above is a unique configuration that can be taken in a metal-hydrogen alkaline storage battery, and utilizes the characteristics of the negative electrode made of a hydrogen storage alloy electrode.

また、一般的に、金属−水素アルカリ蓄電池を用い、高
温トリクル充電を行うと、負極に用いている水素吸蔵合
金の水素平衡圧力が上昇するので、電池内の水素ガス分
圧が高くなる。このため水素ガスによる正極の還元反応
が加速され、電池容量が減少すると共に、負極の充電効
率が低下する。しかしながら、本発明によれば前述せる
保存特性の向上と同様に、対向部分の長さを短くしてい
るので、水素ガスと正極との反応が抑制され、高温トリ
クル充を後の!池容量の低下が抑えられる。
Furthermore, in general, when high-temperature trickle charging is performed using a metal-hydrogen alkaline storage battery, the hydrogen equilibrium pressure of the hydrogen storage alloy used in the negative electrode increases, so the hydrogen gas partial pressure within the battery increases. Therefore, the reduction reaction of the positive electrode by hydrogen gas is accelerated, the battery capacity is reduced, and the charging efficiency of the negative electrode is reduced. However, according to the present invention, as well as improving the storage characteristics described above, the length of the opposing portions is shortened, so the reaction between hydrogen gas and the positive electrode is suppressed, and the high temperature trickle charging is performed after high temperature trickle charging. Decrease in pond capacity is suppressed.

ここにおいて、負極の容量よりも正極の容量を小として
いるのは、過充電時正極より発生せる酸素ガスを負極に
吸収させるようにするためであり、いわゆるノイマン方
式をこの種電源に適用するためのものである。その結果
、この種金属−水素アルカリ蓄電池の密閉化が可能とな
る。
Here, the reason why the capacity of the positive electrode is smaller than that of the negative electrode is to allow the negative electrode to absorb oxygen gas generated from the positive electrode during overcharging, and to apply the so-called Neumann method to this type of power supply. belongs to. As a result, it becomes possible to seal this type of metal-hydrogen alkaline storage battery.

尚、このような構成を従来のニッケルーカドミウム蓄電
池や、ニッケルー亜鉛蓄電池等の蓄電池に適用すること
は好ましくない。これは、カドミウム負極及び特・に亜
鉛負極が、水素吸蔵合金電極からなる負極に比べて、酸
素ガスの消費速度が非常に遅く、その結果、対向部分を
短くすると過充電時に正極より発生せる酸素ガスを完全
に消費できず、電池内圧が上昇し、ついには安全弁を作
動させてしまうということに基づく。また、カドミウム
負極は放電時の分極が大きく、カドミウム負極と正極と
の対向部分の長さを単に短くすると、電池電圧の降下及
び電池容量の低下が著しく、本発明の構成をとることは
好ましくない。
Incidentally, it is not preferable to apply such a configuration to a storage battery such as a conventional nickel-cadmium storage battery or a nickel-zinc storage battery. This is because cadmium negative electrodes and especially zinc negative electrodes consume oxygen gas at a much slower rate than negative electrodes made of hydrogen-absorbing alloy electrodes. This is based on the fact that the gas cannot be completely consumed, and the internal pressure of the battery increases, eventually triggering the safety valve. In addition, the cadmium negative electrode has large polarization during discharge, and simply shortening the length of the opposing portion of the cadmium negative electrode and the positive electrode will cause a significant drop in battery voltage and battery capacity, so it is not preferable to adopt the configuration of the present invention. .

そして本発明の構成をとるため、具体的には、正極の長
さを、負極の長さより長い構成とするのが好ましく、こ
のようにすることで電池設計上極板長さの変更を除いて
何ら変更を要することなく電池を作製しうる。
In order to adopt the configuration of the present invention, specifically, it is preferable that the length of the positive electrode is longer than the length of the negative electrode. The battery can be manufactured without any modification.

また、前記正極の幅は、前記負極の幅と略同等若しくは
大とするのが好ましく、その中でも前記正極の幅を前記
負極の幅と路間等とすることにより、電池内に余分な空
間を構成しないのでエネルギー密度上ムダの少ない電池
が得られる。
Further, it is preferable that the width of the positive electrode is approximately equal to or larger than the width of the negative electrode, and in particular, by making the width of the positive electrode equal to the width of the negative electrode and the like, extra space can be created in the battery. Since no structure is required, a battery with less waste in terms of energy density can be obtained.

また、前記負極の最外周面が、前記正極と全て対向して
いるように構成することで、電極の反応面積を最大限利
用することができ、ハイレート特性上有効な電池が得ら
れる。
Furthermore, by configuring the negative electrode so that its outermost peripheral surface entirely faces the positive electrode, the reaction area of the electrode can be utilized to the maximum, and a battery that is effective in terms of high rate characteristics can be obtained.

(へ)実施例 以下に本発明の実施例を詳述し、比較例との対比に言及
する。
(f) Examples Examples of the present invention will be described in detail below, and comparisons with comparative examples will be mentioned.

O実験例1 (実施例1) 水素吸蔵合金LaNi5を粉砕して微粉化したもの95
重量部に、結着剤としてのPTFE (フッ素樹脂)粉
末5重量部を添加し、均一に混合することによりPTF
Eを繊維化させる。ここに水を加えてペースト状とし、
輻40■、長さ45111mのニッケルメッキを施した
パンチングメタル集重体の両面に貼着し、容量1000
m A hの水素吸蔵合金電極である負極を得た。尚、
以下に用いた水素吸蔵合金電極よりなる負極は容量及び
幅は一定であるが、加圧の程度を変化させているので極
板厚みが異なる。
O Experimental Example 1 (Example 1) Hydrogen storage alloy LaNi5 was crushed and pulverized into powder 95
Add 5 parts by weight of PTFE (fluororesin) powder as a binder to the parts by weight and mix uniformly to form PTF.
Fiberize E. Add water to make a paste,
It is attached to both sides of a nickel-plated punching metal aggregate with a radius of 40cm and a length of 45111m, and a capacity of 1000.
A negative electrode, which is a hydrogen storage alloy electrode of mA h, was obtained. still,
The capacity and width of the negative electrode made of the hydrogen storage alloy electrode used below are constant, but the thickness of the electrode plate is different because the degree of pressurization is varied.

同様にして、水酸化ニッケル粉末にPTFEを添加し、
混練してペースト状とした後、ニッケルメッキを施した
、幅40fll1m、長さ55mmのパンチングメタル
集重体に貼着し、正極を得た。尚、以下に用いた正極の
長さは、一定である。
Similarly, PTFE was added to nickel hydroxide powder,
After kneading it into a paste, it was attached to a nickel-plated punched metal aggregate with a width of 40 fl 1 m and a length of 55 mm to obtain a positive electrode. Note that the length of the positive electrode used below is constant.

このようにして得られた正極及び負極を、耐アルカリ性
を有するセパレータと共に、巻き始め部分をそろえて樽
回し、渦巻電極体を得た。そして、この渦巻電極体を電
池外装缶に挿入した後、アルカリ電解液を注入し、封口
を行い、公称容量600mAhを有するAAサイズの本
発明電池Aを得た。この本発明電池Aの渦巻電極体の最
外周はセパレータが位置し、渦巻電極体を覆っており、
次に正極が位置し、負極の最外周面は正極と全て対向す
るようになっている。そして正極長さに対する、正極と
負極とが対向する対向部分の長さ、即ち対向部分の長さ
比率は、60%であった。
The thus obtained positive and negative electrodes were rotated together with an alkali-resistant separator with their winding start portions aligned in a barrel to obtain a spiral electrode body. Then, after inserting this spiral electrode body into a battery outer can, an alkaline electrolyte was injected and the container was sealed to obtain an AA-sized battery A of the present invention having a nominal capacity of 600 mAh. A separator is located on the outermost periphery of the spiral electrode body of this invention battery A, covering the spiral electrode body,
Next, the positive electrode is located, and the outermost peripheral surface of the negative electrode is entirely opposed to the positive electrode. The length of the opposing portion where the positive electrode and the negative electrode face each other, ie, the ratio of the length of the opposing portion to the length of the positive electrode was 60%.

ここで、前記対向部分の長さ比率(%)というのは、次
式に基づき算出したものである。
Here, the length ratio (%) of the opposing portions is calculated based on the following equation.

対向部分の長さ比率(%)= 前記式において、正極が負極と実際に対向している部分
の長さは、実測することにより知ることができる。そし
て正極において、負極と実際に対向している部分は、対
向していない部分と比して、色合いが異なるので、渦巻
電極体を分解することにより、容易に測定可能である。
Length ratio (%) of opposing portion = In the above formula, the length of the portion where the positive electrode actually faces the negative electrode can be found by actual measurement. Since the part of the positive electrode that actually faces the negative electrode has a different color tone than the part that does not face the negative electrode, it can be easily measured by disassembling the spiral electrode body.

(実施例2) 前記実施例1で用いた負極の集電体の長さを55閣とし
、対向部分の長さ比率を70%とした以外は同様にして
、本発明電池Bを得た。
(Example 2) A battery B of the present invention was obtained in the same manner as in Example 1 except that the length of the negative electrode current collector used was 55 mm and the length ratio of the opposing portion was 70%.

(実施例3) 前記実施例1で用いた負極の集電体の長さを65閣とし
、対向部分の長さ比率を86%とした以外は同様にして
、本発明電池Cを得た。
(Example 3) A battery C of the present invention was obtained in the same manner as in Example 1 except that the length of the negative electrode current collector used was 65% and the length ratio of the opposing portion was 86%.

(比較例1) 前記実施例1で用いた負極集電体の長さを75閣とし、
対向部分の長さ比率を90%とした以外は同様にして、
比較電池りを得た。
(Comparative Example 1) The length of the negative electrode current collector used in Example 1 was 75 mm,
In the same manner except that the length ratio of the opposing part was set to 90%,
A comparison battery was obtained.

(比較例2)゛ 前記実施例1で用いた負極集電体の長さを85閣とし、
対向部分の長さ比率を100%とした以外は同様にして
、比較電池Eを得た。
(Comparative Example 2) ゛The length of the negative electrode current collector used in Example 1 was 85 mm,
Comparative battery E was obtained in the same manner except that the length ratio of the opposing portions was 100%.

(比較例3) 前記実施例1において用いた水素吸蔵合金に代えて、カ
ドミウム活物質を使用することにより焼結式カドミウム
負極を作製した以外は同様にして、比較電池a(公称容
量600m A h )を得た。
(Comparative Example 3) A comparative battery a (nominal capacity 600 mA h ) was obtained.

この電池のカドミウム負極とニッケル正極との対向部分
の長さ比率は、60%である。
The length ratio of the facing portion of the cadmium negative electrode and the nickel positive electrode of this battery was 60%.

(比較例4) 前記実施例2において用いた水素吸蔵合金に代えて、カ
ドミウム活物質を用いることにより焼結式カドミウム負
極を作製した以外は同様にして、比較電池すを得た。こ
の電池における対向部分の長さ比率は、70%であった
(Comparative Example 4) A comparative battery was obtained in the same manner as in Example 2, except that a sintered cadmium negative electrode was produced by using a cadmium active material instead of the hydrogen storage alloy used in Example 2. The length ratio of the opposing portions in this battery was 70%.

(比較例5) 前記実施例3において用いた水素吸蔵合金に代えて、カ
ドミウム活物質を用いることにより焼結式カドミウム負
極を作製した以外は同様にして、比較電池Cを得た。こ
の電池における対向部分の長さ比率は、80%であった
(Comparative Example 5) Comparative battery C was obtained in the same manner as in Example 3, except that a sintered cadmium negative electrode was produced by using a cadmium active material instead of the hydrogen storage alloy used in Example 3. The length ratio of the facing portions in this battery was 80%.

(比較例6) 前記比較例1において用いた水素吸蔵合金に代えて、カ
ドミウム活物質を用いることにより焼結式カドミウム負
極を作製した以外は同様にして、比較電池dを得た。こ
の電池における対向部分の長さ比率は、90%であった
(Comparative Example 6) Comparative battery d was obtained in the same manner as in Comparative Example 1 except that a sintered cadmium negative electrode was produced by using a cadmium active material instead of the hydrogen storage alloy used in Comparative Example 1. The length ratio of the facing portions in this battery was 90%.

(比較例7) 前記比較例2において用いた水素吸蔵合金に代えて、カ
ドミウム活物質を用いることにより焼結式カドミウム負
極を作製した以外は同様にして、第   1 表 ここにおいて、電池A−Eは金属−水素アルカリ蓄電池
。電池a−eはニッケルーカドミウム蓄電池である。ま
た、前記電池における対向部分の長さ比率(%)を、第
1表に示す。
(Comparative Example 7) A sintered cadmium negative electrode was produced in the same manner as above, except that a cadmium active material was used instead of the hydrogen storage alloy used in Comparative Example 2. is a metal-hydrogen alkaline storage battery. Batteries a-e are nickel-cadmium storage batteries. Table 1 also shows the length ratio (%) of the facing portions of the batteries.

以下余白 このようにして得られた電池A−E及び電池a〜eを用
い、電池の放電特性を比較した。放電持性を測定するの
に先立ち、各電池を600m Aの充電電流で1.25
時間充電し、次いで、600m Aの放電電流で電池電
圧が1.Ovになる迄放電するという条件で、5回充放
電を行い、電池の化成を完了した。
In the following, the discharge characteristics of the batteries were compared using the thus obtained batteries AE and batteries a to e. Prior to measuring the discharge life, each battery was charged at a charging current of 600 mA to 1.25 mA.
Charge for an hour, then discharge at a discharge current of 600 mA until the battery voltage reaches 1. Charging and discharging were performed five times under the condition that the battery was discharged until it reached Ov, and the formation of the battery was completed.

この放電特性の結果を、第1図(電池A−E)及び第2
図(電池a−e)に示す。
The results of this discharge characteristic are shown in Figure 1 (Batteries A-E) and Figure 2.
As shown in the figure (Batteries ae).

第1図より、金属−水素アルカリ蓄電池では、放電電圧
及び放電容量共、対向部分の長さに依存するところはほ
とんどないことがわかる。
From FIG. 1, it can be seen that in the metal-hydrogen alkaline storage battery, both the discharge voltage and the discharge capacity have almost no dependence on the length of the opposing portions.

一方、第2図より、ニッケルーカドミウム蓄電池では、
放電電圧及び放電容量共、負極の長さ即ち対向部分の長
さに依存するところが極めて大きいことがわかる。した
がって、本発明の構成をニッケルーカドミウム蓄電池に
適用するのは、好ましくないと言える。
On the other hand, from Figure 2, in a nickel-cadmium storage battery,
It can be seen that both the discharge voltage and the discharge capacity greatly depend on the length of the negative electrode, that is, the length of the facing portion. Therefore, it can be said that it is not preferable to apply the configuration of the present invention to a nickel-cadmium storage battery.

したがって、本発明の如く、正極の長さを負極の長さよ
り長くし、負極の最外周面が正極と全て対向する構成は
、金属−水素アルカリ蓄電池だけに適用しうるちのであ
る。これは、負極に用いた水素吸蔵合金、金属水素化物
共に、電気電導性が良く、金属内の水素拡散も早いので
、放電時の分極が小さいという性質を利用したものであ
る。
Therefore, the configuration of the present invention, in which the length of the positive electrode is made longer than the length of the negative electrode and the outermost peripheral surface of the negative electrode is entirely opposed to the positive electrode, can be applied only to metal-hydrogen alkaline storage batteries. This takes advantage of the properties of both the hydrogen storage alloy and metal hydride used in the negative electrode, which have good electrical conductivity and rapid hydrogen diffusion within the metal, resulting in small polarization during discharge.

一方、ニッケルーカドミウム蓄電池のカドミウム負極に
おいて、充電生成物である金属カドミウムが放電される
と電気電導性の悪い水酸化カドミウムが生成し、負極の
電気電導性が低下する。その結果、放電時における負極
の分極が大きくなり、電池電圧の低下及び電池容量の減
少が生じるので、負極を長くし対向部分の面積を大きく
しなければならない。
On the other hand, in the cadmium negative electrode of a nickel-cadmium storage battery, when metal cadmium, which is a charging product, is discharged, cadmium hydroxide, which has poor electrical conductivity, is generated, and the electrical conductivity of the negative electrode decreases. As a result, the polarization of the negative electrode increases during discharge, resulting in a decrease in battery voltage and battery capacity, so the negative electrode must be made longer and the area of the facing portion must be increased.

更に、酸素ガスの消費効率を考えると、ニッケルーカド
ミウム蓄電池に代表される従来の蓄電池においては、正
極よりも負極を長く設定していたが、本発明に係る金属
−水素アルカリ蓄電池の負極は酸素の消費効率が極めて
高く、これが、本発明の構成をとりうるもう一つの理由
である。
Furthermore, considering the consumption efficiency of oxygen gas, in conventional storage batteries such as nickel-cadmium storage batteries, the negative electrode is set longer than the positive electrode, but the negative electrode of the metal-hydrogen alkaline storage battery according to the present invention has a longer negative electrode than the positive electrode. The consumption efficiency is extremely high, and this is another reason why the configuration of the present invention can be adopted.

◎ 実験fN2 電池A−Eを用い、電池の保存特性を比較した。この時
の実験条件は、各電池を満充電した後、室温で1か月保
存した時の残存容量を調べるというものである。そして
、対向部分の長さ比率(%)と、電池の残存容量との関
係を調べた。
◎ Experiment fN2 Batteries A to E were used to compare the storage characteristics of the batteries. The experimental conditions at this time were to check the remaining capacity when each battery was fully charged and stored at room temperature for one month. Then, the relationship between the length ratio (%) of the opposing portions and the remaining capacity of the battery was investigated.

この結果を、第3図に示す。第3図より、対向部分の長
さ比率が80%よりも大きいと、自己放電による電池の
残存容量の低下が顕著に現れており、対向部分の長さ比
率を80%以下にするのが好ましいことがわかる。
The results are shown in FIG. From Figure 3, when the length ratio of the facing portion is greater than 80%, the remaining capacity of the battery decreases significantly due to self-discharge, so it is preferable to keep the length ratio of the facing portion below 80%. I understand that.

O実験例3 電池A−Eを用い、電池の高温トリクル充電後の電池容
量の比較を行った。この時の条件は、環境温度60℃に
おいて、各電池を充電電流15m Aで60時間充電し
た後、放電電流120m Aで放電し、各電池の放電容
量を測定するというものである。
Experimental Example 3 Batteries A to E were used to compare the battery capacities after high-temperature trickle charging. The conditions at this time were that each battery was charged at a charging current of 15 mA for 60 hours at an environmental temperature of 60°C, then discharged at a discharge current of 120 mA, and the discharge capacity of each battery was measured.

そして、対向部分の長さ比率(%)と、電池容量との関
係を調べた。
Then, the relationship between the length ratio (%) of the opposing portions and the battery capacity was investigated.

この結果を、第4図に示す。第4図より、対向部分の長
さ比率が80%よりも大きいと、電池容量の減少が顕著
に現れており、高温トリクル充電特性の観点からも、対
向部分の長さ比率を80%以下にするのが好ましいこと
がわかる。
The results are shown in FIG. From Figure 4, when the length ratio of the opposing parts is greater than 80%, the battery capacity decreases significantly, and from the viewpoint of high temperature trickle charging characteristics, the length ratio of the opposing parts should be set to 80% or less. It turns out that it is preferable to do so.

尚、実験例1〜3の傾向は、たとえば公称容量1000
m A hのAAサイズのものを組み立てた場合、即ち
同じサイズであって容量を大きく設定した場合や、種々
の電池サイズのものを作製した場合であっても、同様に
観察された。
Incidentally, the tendency of Experimental Examples 1 to 3 is, for example, when the nominal capacity is 1000
Similar observations were made even when AA-sized batteries of mA h were assembled, that is, when the batteries were the same size but had a larger capacity, or when batteries of various sizes were fabricated.

本実施例においては水素吸蔵合金としてLaNi5を用
いたが、これ以外のMmNi5.MmNLCo、等金、
M g −N i系水素吸蔵合金、Ti−Zr系水素吸
蔵合金、Zr−Mn系水素吸蔵合金等を用いることがで
きるのは言うまでもない。
In this example, LaNi5 was used as the hydrogen storage alloy, but other MmNi5. MmNLCo, etc.
Needless to say, Mg-Ni hydrogen storage alloys, Ti-Zr hydrogen storage alloys, Zr-Mn hydrogen storage alloys, etc. can be used.

(ト)発明の効果 本発明の金属−水素アルカリ蓄電池は、水素吸蔵合金よ
りなる負極と、前記負極の容量より小なる容量を有した
正極と、セパレータとを捲回した渦巻電極体を備えるも
のであって、前記正極と前記負極とが対向する対向部分
の長さを、前記正極の長さの80%以下となるように構
成しているので、この種電源の保存特性及び高温トリク
ル充電特性を大幅に向上させることができ、その工業的
価値は極めて大きい。
(G) Effects of the Invention The metal-hydrogen alkaline storage battery of the present invention includes a spiral electrode body formed by winding a negative electrode made of a hydrogen storage alloy, a positive electrode having a capacity smaller than the capacity of the negative electrode, and a separator. Since the length of the facing portion where the positive electrode and the negative electrode face each other is configured to be 80% or less of the length of the positive electrode, the storage characteristics and high temperature trickle charging characteristics of this type of power source are improved. can be significantly improved, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は金属−水素アルカリ蓄電池の放電特性図、第2
図はニッケルーカドミウム蓄電池の放電特性図、第3図
は保存後の電池容量比較図、第4図は高温トリクル充電
後の電池容量比較図である。A、B、C−・・本発明電
池、D、 E、  a、  b。 c、d、e・・・比較電池。
Figure 1 is a discharge characteristic diagram of a metal-hydrogen alkaline storage battery, Figure 2
Figure 3 shows a discharge characteristic diagram of a nickel-cadmium storage battery, Figure 3 shows a comparison diagram of battery capacity after storage, and Figure 4 shows a comparison diagram of battery capacity after high-temperature trickle charging. A, B, C---Battery of the present invention, D, E, a, b. c, d, e...comparison batteries.

Claims (4)

【特許請求の範囲】[Claims] (1)水素吸蔵合金電極よりなる負極と、前記負極の容
量よりも小なる容量を有した正極と、セパレータとを捲
回した渦巻電極体を備えるものであって、 前記正極と負極とが対向する対向部分の長さは、前記正
極の長さの80%以下であることを特徴とする金属−水
素アルカリ蓄電池。
(1) A spiral electrode body comprising a negative electrode made of a hydrogen storage alloy electrode, a positive electrode having a capacity smaller than that of the negative electrode, and a separator, the positive electrode and the negative electrode facing each other. A metal-hydrogen alkaline storage battery characterized in that the length of the opposing portion is 80% or less of the length of the positive electrode.
(2)前記正極は、前記負極よりも長いことを特徴とす
る請求項(1)記載の金属−水素アルカリ蓄電池。
(2) The metal-hydrogen alkaline storage battery according to claim (1), wherein the positive electrode is longer than the negative electrode.
(3)前記正極の幅は、前記負極の幅と略同等若しくは
大であることを特徴とする請求項(1)記載の金属−水
素アルカリ蓄電池。
(3) The metal-hydrogen alkaline storage battery according to claim (1), wherein the width of the positive electrode is approximately equal to or larger than the width of the negative electrode.
(4)前記負極の最外周面が、前記正極と全て対向して
いることを特徴とする請求項(1)記載の金属−水素ア
ルカリ蓄電池。
(4) The metal-hydrogen alkaline storage battery according to claim (1), wherein the outermost peripheral surface of the negative electrode entirely faces the positive electrode.
JP1036554A 1989-02-16 1989-02-16 Metal-hydrogen alkaline storage battery Expired - Fee Related JP2594147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1036554A JP2594147B2 (en) 1989-02-16 1989-02-16 Metal-hydrogen alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1036554A JP2594147B2 (en) 1989-02-16 1989-02-16 Metal-hydrogen alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH02215057A true JPH02215057A (en) 1990-08-28
JP2594147B2 JP2594147B2 (en) 1997-03-26

Family

ID=12472979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1036554A Expired - Fee Related JP2594147B2 (en) 1989-02-16 1989-02-16 Metal-hydrogen alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2594147B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268083B1 (en) 1997-09-04 2001-07-31 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268083B1 (en) 1997-09-04 2001-07-31 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery

Also Published As

Publication number Publication date
JP2594147B2 (en) 1997-03-26

Similar Documents

Publication Publication Date Title
WO1989006865A1 (en) Alkaline secondary battery and process for its production
CN103579591B (en) Nickel-metal hydride secondary cell and negative electrode therefor
JP4475840B2 (en) Nickel metal hydride storage battery and assembly thereof
KR100210502B1 (en) Separator for spiral electrode
JPH02215057A (en) Metal-hydrogen alkaline storage battery
JP2962326B1 (en) Nickel-hydrogen storage battery for backup power supply
JP2989877B2 (en) Nickel hydride rechargeable battery
JP2003257425A (en) Nickel hydrogen storage battery and manufacturing method thereof
JP3070081B2 (en) Sealed alkaline storage battery
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPS63131472A (en) Metal-hydrogen alkaline storage battery
JP3266153B2 (en) Manufacturing method of sealed alkaline storage battery
JPH05144432A (en) Electrode with hydrogen storage alloy
JPH044574A (en) Secondary battery
JPH0630251B2 (en) Nickel-hydrogen secondary battery
JP2940952B2 (en) Method for manufacturing nickel-hydrogen alkaline storage battery
JPH03274676A (en) Nickel-hydrogen battery
JPH05290835A (en) Rectangular nickel-hydrogen storage battery
JPH09259919A (en) Manufacture for nickel-hydrogen cell
JP2001068146A (en) Nickel hydrogen storage battery
JPH11260395A (en) Sealed nickel hydrogen secondary battery
JPH0636362B2 (en) Metal-hydrogen alkaline storage battery
JP2002075349A (en) Alkaline secondary battery
JPS62117274A (en) Nickel-hydrogen secondary cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees