JPH0630251B2 - Nickel-hydrogen secondary battery - Google Patents

Nickel-hydrogen secondary battery

Info

Publication number
JPH0630251B2
JPH0630251B2 JP60246672A JP24667285A JPH0630251B2 JP H0630251 B2 JPH0630251 B2 JP H0630251B2 JP 60246672 A JP60246672 A JP 60246672A JP 24667285 A JP24667285 A JP 24667285A JP H0630251 B2 JPH0630251 B2 JP H0630251B2
Authority
JP
Japan
Prior art keywords
nickel
hydrogen storage
positive electrode
battery
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60246672A
Other languages
Japanese (ja)
Other versions
JPS62108458A (en
Inventor
修弘 古川
修三 村上
孝直 松本
誠司 亀岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60246672A priority Critical patent/JPH0630251B2/en
Publication of JPS62108458A publication Critical patent/JPS62108458A/en
Publication of JPH0630251B2 publication Critical patent/JPH0630251B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は水素を吸蔵及び放出することのできる水素吸蔵
合金を備えた水素吸蔵電極を負極とし、ニツケル正極を
備えたニツケル−水素二次電池に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention uses a hydrogen storage electrode having a hydrogen storage alloy capable of storing and releasing hydrogen as a negative electrode, and a nickel-hydrogen secondary having a nickel positive electrode. Regarding batteries.

(ロ) 従来の技術 従来からよく用いられる二次電池としては鉛電池及びニ
ツケル−カドミウム電池があるが、近年これら電池より
軽量で且つ高容量となる可能性があるということで、特
に低圧で負極活物質である水素を可逆的に吸蔵及び放出
する水素吸蔵合金を備えた電極を負極に用い、水酸化ニ
ツケルからなる正極活物質を備えた電極を正極に用いた
金属−水素二次電池が注目されている。そして一般にこ
の種のニツケル−水素二次電池は特公昭58−4682
7号公報に於いて示されるように、水素吸蔵合金を備え
た水素吸蔵電極と、ニツケル正極との間にセパレータを
介して構成され、充電時や保存時に正極から発生する酸
素ガスは、充電状態の負極、すなわち水素吸蔵電極中の
水素吸蔵合金に吸蔵した水素と反応して消費される構成
となつている。ところが、酸素は水素吸蔵合金中の水素
と反応して水になると共に、水素吸蔵合金と直接反応し
て水素吸蔵合金の組成を化学的に変化させ、この化学的
変化によつて水素吸蔵合金は水素吸蔵能力を失い、負極
の容量が低下し長期にわたつて高容量を維持することが
できず、特に保存特性が悪かつた。
(B) Conventional technology There are lead batteries and nickel-cadmium batteries as rechargeable batteries that have been often used in the past. A metal-hydrogen secondary battery that uses an electrode with a hydrogen storage alloy that reversibly absorbs and desorbs hydrogen, which is an active material, as the negative electrode and an electrode with a positive electrode active material made of nickel hydroxide as the positive electrode Has been done. Generally, this type of nickel-hydrogen secondary battery is disclosed in Japanese Examined Patent Publication No.
As disclosed in Japanese Patent Publication No. 7, a hydrogen storage electrode provided with a hydrogen storage alloy and a nickel positive electrode are interposed via a separator, and oxygen gas generated from the positive electrode during charging or storage is in a charged state. Of the negative electrode, that is, the hydrogen storage alloy in the hydrogen storage electrode is consumed by reacting with the hydrogen stored therein. However, oxygen reacts with hydrogen in the hydrogen storage alloy to become water, and directly reacts with the hydrogen storage alloy to chemically change the composition of the hydrogen storage alloy. The hydrogen storage capacity was lost, the capacity of the negative electrode decreased, and the high capacity could not be maintained over a long period of time, and the storage characteristics were particularly poor.

(ハ) 発明が解決しようとする問題点 本発明は水素吸蔵合金を主体とする負極を備えたニツケ
ル−水素二次電池の容量の低下を抑制し保存特性の改良
及びサイクル寿命の向上を図つたものである。
(C) Problems to be Solved by the Invention The present invention aims to improve the storage characteristics and the cycle life by suppressing the decrease in the capacity of a nickel-hydrogen secondary battery provided with a negative electrode mainly composed of a hydrogen storage alloy. It is a thing.

(ニ) 問題点を解決するための手段 本発明のニツケル−水素二次電池は、水素吸蔵合金を主
体とする負極とニツケル正極とを備え、ニツケル正極に
鉛、銀及びカドミウムから選ばれた少なくとも一種の金
属またはその金属酸化物を含有させたものである。
(D) Means for Solving Problems The nickel-hydrogen secondary battery of the present invention includes a negative electrode mainly composed of a hydrogen storage alloy and a nickel positive electrode, and the nickel positive electrode is at least selected from lead, silver and cadmium. It contains one kind of metal or its metal oxide.

(ホ) 作 用 ニツケル正極に鉛、銀及びカドミウムから選ばれた少な
くとも一種の金属またはその金属酸化物を含有させると
酸素過電圧が上昇し、充電時及び保存時に於ける正極か
らの酸素ガス発生が抑制でき、負極の水素吸蔵合金が酸
素と反応することによる容量低下を抑えることができ
る。
(E) Operation If the nickel positive electrode contains at least one metal selected from lead, silver and cadmium, or a metal oxide thereof, the oxygen overvoltage rises and oxygen gas is generated from the positive electrode during charging and storage. Therefore, it is possible to suppress the decrease in capacity due to the reaction of the hydrogen storage alloy of the negative electrode with oxygen.

(ヘ) 実施例 水素吸蔵能力を有するLaNi5を機械的に粉砕して微
粉化し、このLaNi5粉末に小さなせん断力で粒子が
簡単に繊維化し塑性変形するポリテトラフルオロエチレ
ン粉末を、LaNi5粉末の重量に対して1〜5%添加
して混合機に均一に混合すると共にポリテトラフルオロ
エチレンを繊維化する。次いでこうして得られたポリテ
トラフルオロエチレンが繊維化した混合物に水を加えて
ペースト状とした後、ニツケルメツキを施したパンチン
グメタルからなる集電体の両面に貼り付けて水素吸蔵電
極を得る。
(F) Example LaNi5 having a hydrogen storage capacity was mechanically pulverized into fine powder, and a polytetrafluoroethylene powder in which particles were easily fiberized and plastically deformed by a small shearing force was added to the weight of the LaNi5 powder. On the other hand, 1 to 5% is added and uniformly mixed in a mixer, and polytetrafluoroethylene is made into fibers. Then, water is added to the thus obtained mixture of polytetrafluoroethylene to form a fiber to form a paste, and the mixture is attached to both sides of a nickel-plated current collector made of punching metal to obtain a hydrogen storage electrode.

また、水酸化ニツケル粉末97重量部と鉛粉末3重量部
との混合物に同様にしてポリテトラフルオロエチレン及
び水を加えてペースト状とした後、ニツケルメツキを施
したパンチングメタルからなる集電体の両面に貼り付け
てニツケル正極を得る。
In addition, after adding polytetrafluoroethylene and water to a mixture of 97 parts by weight of nickel hydroxide powder and 3 parts by weight of lead powder in the same manner to form a paste, both sides of a current collector made of punching metal subjected to nickel plating. To obtain a nickel positive electrode.

次いでこれら水素吸蔵合極とニツケル正極との間にセパ
レータを介して巻回して渦巻電極体を構成し、この電極
体を電池外装罐に挿入した後アルカリ電解液を注入し封
口を行なつて本発明のニツケル−水素二次電池(A)を作
製した。
Then, the spirally wound electrode body is constructed by winding a separator between the hydrogen storage electrode and the nickel positive electrode to form a spiral electrode body.The electrode body is inserted into the battery case, and then an alkaline electrolyte is injected to seal it. The nickel-hydrogen secondary battery (A) of the invention was produced.

また前記電池(A)に於いて、ニツケル正極に添加した鉛
を銀に代えて添加し、その他は同一の電池(B)、同様に
してカドミウムに代えて電池(C)、酸化鉛(PbO2)
に代えて電池(D)、酸化銀(AgO)に代えて電池(E)、
酸化カドミウム(CdO)に代えて電池(F)を作製する
と共に、比較としてニツケル正極に前記鉛などの金属ま
たは金属酸化物を加えず、その他は同一の比較電池(G)
を作製した。
Further, in the battery (A), the lead added to the nickel positive electrode was added instead of silver, and the other battery was the same (B). Similarly, the battery (C) was replaced with cadmium, and lead oxide (PbO2) was added.
Instead of battery (D), silver oxide (AgO) instead of battery (E),
A battery (F) was prepared in place of cadmium oxide (CdO), and the nickel positive electrode was not added with the above-mentioned metal such as lead or metal oxide for comparison, but otherwise the same battery
Was produced.

これら電池(A)乃至(G)を120mAで16時間充電し、
次いで240mAで電池電圧が1.0Vになるまで放電
する充放電サイクルを数回行なつて初期活性化を完了し
た後、120mAで16時間充電して放置し、放置時間
と残存容量との関係を調べ、初期容量を夫々100とし
てこの結果を第1図に示した。尚、残存容量は一定期間
放置後に240mAで放電して測定した。また第2図は
前記放置を1ケ月行なつた後電池(A)乃至(G)を夫々前記
充放電サイクルによつて充放電を繰り返し行なつて測定
したサイクル特性図である。
Charge these batteries (A) to (G) at 120mA for 16 hours,
Next, after completing the initial activation by performing several charging / discharging cycles of discharging at 240 mA until the battery voltage becomes 1.0 V, the battery is charged at 120 mA for 16 hours and left to stand, and the relationship between the standing time and the remaining capacity is shown. The results are shown in FIG. 1 with the initial capacity set to 100. The remaining capacity was measured by discharging at 240 mA after standing for a certain period. Further, FIG. 2 is a cycle characteristic diagram of the batteries (A) to (G) which were repeatedly charged and discharged according to the charge and discharge cycle after being left for one month.

これらの図面から明らかなように本発明電池(A)乃至(F)
は比較電池(G)に比べて放置による容量の低下が小さく
抑えられ、また放置後のサイクル寿命が長く優れたもの
であることがわかる。
As apparent from these drawings, the batteries of the present invention (A) to (F)
It can be seen that, compared with the comparative battery (G), the decrease in capacity due to leaving is suppressed to a small extent, and the cycle life after leaving is long and excellent.

負極に用いた水素吸蔵電極は、従来から用いられてきた
カドミウム負極とは異なり満充電時には極めて活性であ
り、酸素と接触すると非常に速い速度で反応して酸化す
る。そしてこの酸化に於いて酸素は水素吸蔵合金に吸蔵
された水素と反応して水になると共に、水素吸蔵合金と
反応して水素吸蔵合金をしばしば組成の異なる他の物質
に変化させる。つまり上記実施例に於いては放置した間
にLaNi5がLa203、La(OH)3や、Ni、
NiO、Ni(OH)2に変化することにより水素吸蔵
能力を失い、以後充放電を繰り返してもLaNi5に戻
ることはない。比較電池(G)では正極から充電時に酸素
が発生し易いため、充電後電池内に酸素が多量に残存
し、また放置中にも正極から酸素が発生するので、放置
期間中に容量の低下が大きく、また負極の水素吸蔵電極
中の水素吸蔵合金の組成変化も多く生じるため、放置後
は充放電サイクルの経過に伴う容量低下も大きくなつて
いる。これに対して、本発明電池では正極の酸素過電圧
が、鉛、銀、カドミウムやこれら金属の酸化物によつて
高められているので、充電時及び放置時に於ける正極か
らの酸素ガス発生が抑えられ、容量の低下が小さく、ま
た水素吸蔵合金が酸素と反応することによる組成変化で
水素吸蔵能力を喪失することも抑えられたため放置後の
サイクル劣化も少なくなつている。
Unlike the cadmium negative electrode that has been used conventionally, the hydrogen storage electrode used for the negative electrode is extremely active when fully charged, and when it contacts oxygen, it reacts and oxidizes at a very fast rate. Then, in this oxidation, oxygen reacts with hydrogen stored in the hydrogen storage alloy to become water, and also reacts with the hydrogen storage alloy to change the hydrogen storage alloy into another substance often having a different composition. That is, in the above-described embodiment, LaNi5 was replaced with La203, La (OH) 3, Ni, Ni,
By changing to NiO or Ni (OH) 2, the hydrogen storage capacity is lost, and it does not return to LaNi5 even after repeated charging and discharging. In the comparative battery (G), since oxygen is easily generated from the positive electrode during charging, a large amount of oxygen remains in the battery after charging, and oxygen is also generated from the positive electrode during standing, so that the capacity decreases during the standing period. In addition, since the composition of the hydrogen storage alloy in the hydrogen storage electrode of the negative electrode also changes a lot, the capacity decreases with the passage of the charge / discharge cycle after the storage. On the other hand, in the battery of the present invention, the oxygen overvoltage of the positive electrode is increased by lead, silver, cadmium and oxides of these metals, so that oxygen gas generation from the positive electrode during charging and leaving is suppressed. As a result, the decrease in capacity is small, and the loss of hydrogen storage capacity due to the composition change caused by the reaction of the hydrogen storage alloy with oxygen is suppressed, so that the cycle deterioration after leaving is reduced.

尚、上記実施例では非焼結式ニツケル正極を用いて説明
したが、焼結式ニツケル正極を用いる場合には、活物質
保持体となる多孔性金属焼結基板を、例えばニツケル粉
末97部と鉛粉末3部を混合し増粘剤及び水を加えて得
たスラリーを集電体の両面に塗着した後焼結して作製
し、この焼結基板中に水酸化ニツケルを含浸して焼結式
ニツケル正極を作製すると、ニツケル正極中に鉛や銀や
カドミウムを添加することができ、これにより同様の効
果を得ることができる。また実施例では水素吸蔵合金に
LaNi5を用いたが他の水素吸蔵合金を用いた場合に
も同様の効果が得られる。
Although the non-sintered nickel positive electrode is used in the above-mentioned embodiment, when the sintered nickel positive electrode is used, a porous metal sintered substrate serving as an active material holder is, for example, 97 parts of nickel powder. A slurry obtained by mixing 3 parts of lead powder and adding a thickener and water was applied on both sides of a current collector and then sintered, and this sintered substrate was impregnated with nickel hydroxide and baked. When a nickel-nickel positive electrode is produced, lead, silver, or cadmium can be added to the nickel positive electrode, and the same effect can be obtained. Further, in the embodiment, LaNi5 is used as the hydrogen storage alloy, but the same effect can be obtained when another hydrogen storage alloy is used.

(ト) 発明の効果 本発明のニツケル−水素二次電池は、水素吸蔵合金を主
体とする負極と、鉛、銀及びカドミウムから選ばれた少
なくとも一種の金属または金属酸化物を含有するニツケ
ル正極とを備えたものであり、前記金属または金属酸化
物によつて充電時及び放置時に於けるニツケル正極から
の酸素ガス発生を抑制することができ、負極が電池内で
酸素と反応することによる放置時の容量低下の抑制及び
サイクル寿命の向上を行なうことができる。
(G) Effect of the invention Nickel-hydrogen secondary battery of the present invention, a negative electrode mainly composed of a hydrogen storage alloy, and a nickel positive electrode containing at least one metal or metal oxide selected from lead, silver and cadmium. It is possible to suppress the generation of oxygen gas from the nickel positive electrode at the time of charging and standing by the metal or metal oxide by the metal or metal oxide, and at the time of standing by the negative electrode reacting with oxygen in the battery. It is possible to suppress the capacity decrease and improve the cycle life.

【図面の簡単な説明】 第1図は電池の放置日数と残存容量の関係を示す保存特
性図、第2図は1ケ月放置後のサイクル特性図である。 (A)〜(F)……本発明電池、(G)……比較電池。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a storage characteristic diagram showing the relationship between the number of days the battery is left and the remaining capacity, and FIG. 2 is a cycle characteristic diagram after being left for one month. (A) to (F) …… Invention battery, (G) …… Comparison battery.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】水素吸蔵合金を主体とする負極と、鉛、銀
及びカドミウムから選ばれた少なくとも一種の金属また
は金属酸化物を含有するニツケル正極とを備えたニツケ
ル−水素二次電池。
1. A nickel-hydrogen secondary battery comprising a negative electrode mainly composed of a hydrogen storage alloy and a nickel positive electrode containing at least one metal or metal oxide selected from lead, silver and cadmium.
JP60246672A 1985-11-01 1985-11-01 Nickel-hydrogen secondary battery Expired - Lifetime JPH0630251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60246672A JPH0630251B2 (en) 1985-11-01 1985-11-01 Nickel-hydrogen secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60246672A JPH0630251B2 (en) 1985-11-01 1985-11-01 Nickel-hydrogen secondary battery

Publications (2)

Publication Number Publication Date
JPS62108458A JPS62108458A (en) 1987-05-19
JPH0630251B2 true JPH0630251B2 (en) 1994-04-20

Family

ID=17151896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60246672A Expired - Lifetime JPH0630251B2 (en) 1985-11-01 1985-11-01 Nickel-hydrogen secondary battery

Country Status (1)

Country Link
JP (1) JPH0630251B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2752099B2 (en) * 1988-09-20 1998-05-18 三洋電機株式会社 Method for producing nickel electrode for alkaline battery
JP2001217000A (en) 1999-02-26 2001-08-10 Toshiba Battery Co Ltd Nickel-hydrogen secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045246A (en) * 1973-08-13 1975-04-23
JPS5916269A (en) * 1982-07-16 1984-01-27 Japan Storage Battery Co Ltd Manufacture of positive plate for alkaline battery
JPS5933758A (en) * 1982-08-19 1984-02-23 Matsushita Electric Ind Co Ltd Sealed nickel cadmium battery
JPS59163754A (en) * 1983-03-08 1984-09-14 Yuasa Battery Co Ltd Pasted positive plate for alkaline storage battery
JPS60212958A (en) * 1984-04-09 1985-10-25 Matsushita Electric Ind Co Ltd Hydrogen absorption electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045246A (en) * 1973-08-13 1975-04-23
JPS5916269A (en) * 1982-07-16 1984-01-27 Japan Storage Battery Co Ltd Manufacture of positive plate for alkaline battery
JPS5933758A (en) * 1982-08-19 1984-02-23 Matsushita Electric Ind Co Ltd Sealed nickel cadmium battery
JPS59163754A (en) * 1983-03-08 1984-09-14 Yuasa Battery Co Ltd Pasted positive plate for alkaline storage battery
JPS60212958A (en) * 1984-04-09 1985-10-25 Matsushita Electric Ind Co Ltd Hydrogen absorption electrode

Also Published As

Publication number Publication date
JPS62108458A (en) 1987-05-19

Similar Documents

Publication Publication Date Title
JP2730121B2 (en) Alkaline secondary battery and manufacturing method thereof
EP0284333B1 (en) Sealed type nickel-hydride battery and production process thereof
JPH0630251B2 (en) Nickel-hydrogen secondary battery
JP3113891B2 (en) Metal hydride storage battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JPH05121073A (en) Nickel-metal hydride storage battery
JP3157237B2 (en) Metal-hydrogen alkaline storage battery
JPH063740B2 (en) Nickel-hydrogen secondary battery
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2577964B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2796674B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2594147B2 (en) Metal-hydrogen alkaline storage battery
JP3362400B2 (en) Nickel-metal hydride storage battery
JPH0690922B2 (en) Sealed alkaline storage battery
JP2564176B2 (en) Cadmium negative electrode plate for sealed alkaline secondary battery and sealed alkaline secondary battery using the negative electrode plate
JP2940952B2 (en) Method for manufacturing nickel-hydrogen alkaline storage battery
JP2591986B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2591985B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH0642376B2 (en) Metal-hydrogen secondary battery
JPS6332856A (en) Closed nickel-hydrogen storage battery
JPH0582127A (en) Enclosed type nickel-metal hydride storage battery
JPS61168869A (en) Metal-hydrogen alkaline storage battery
JPS61114472A (en) Hydrogen occlusion electrode
JPH0636362B2 (en) Metal-hydrogen alkaline storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term