JPH0582127A - Enclosed type nickel-metal hydride storage battery - Google Patents

Enclosed type nickel-metal hydride storage battery

Info

Publication number
JPH0582127A
JPH0582127A JP3270252A JP27025291A JPH0582127A JP H0582127 A JPH0582127 A JP H0582127A JP 3270252 A JP3270252 A JP 3270252A JP 27025291 A JP27025291 A JP 27025291A JP H0582127 A JPH0582127 A JP H0582127A
Authority
JP
Japan
Prior art keywords
battery
hydrogen storage
negative electrode
electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3270252A
Other languages
Japanese (ja)
Other versions
JP3141141B2 (en
Inventor
Toshio Murata
利雄 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP03270252A priority Critical patent/JP3141141B2/en
Publication of JPH0582127A publication Critical patent/JPH0582127A/en
Application granted granted Critical
Publication of JP3141141B2 publication Critical patent/JP3141141B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To reduce a quantity of hydrogen occluding alloy out of relation to discharging reaction, and also eliminate an increase in internal resistance caused by a decrease in a quantity of electrolyte by utilizing reducing reaction of a metallic compound added to a negative electrode when a battery is formed of a positive electrode held by a three dimensional porous body and the negative electrode mainly composed of the hydrogen occluding alloy. CONSTITUTION:A positive electrode is formed as follows. That is, mainly, nickel hydroxide 94 pts.wt. and metallic cobalt powder 6 pts.wt. are mixed with each other, and purified water is added to this, and it is kneaded, and is made into paste like mixture. Next, this is foamed, and is filled in a nickel porous body, and is dried up, and is pressurized, and is cut into a prescribed size. A negative electrode is formed as follows. That is, by pulverizing ingot obtained by melting so that a composition of alloy has LmNi3.8Co0.7Al0.5(here, Lm is rare earth metal mixture containing La), hydrogen storage alloy having an average grain diameter of 30m is formed. Next, this allay 100 pts.wt., Bi2O3 17 pts.wt. and carbon black 3 pts.wt. are mixed with each other, and after it is applied to a nickel metal plating steel plate, the cutting is carried out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素の可逆的な吸蔵お
よび放出が可能な水素吸蔵合金を備えて、その水素の電
気化学的な酸化還元反応を起電反応に用いる負極と、水
酸化ニッケルを主たる活物質とする正極とを備える密閉
形ニッケル−金属水素化物蓄電池に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a hydrogen storage alloy capable of reversibly storing and releasing hydrogen, and a negative electrode using an electrochemical redox reaction of the hydrogen for an electromotive reaction, and a hydrogenation alloy. The present invention relates to a sealed nickel-metal hydride storage battery including a positive electrode containing nickel as a main active material.

【0002】[0002]

【従来の技術】ニッケル−金属水素化物蓄電池は、水素
の可逆的な吸蔵および放出が可能な水素吸蔵合金を備え
て、その水素の電気化学的な酸化還元反応を起電反応に
用いる負極と、水酸化ニッケルを活物質とする正極と、
水酸化カリウム水溶液などのアルカリ電解液とを備えて
いる。
2. Description of the Related Art A nickel-metal hydride storage battery is provided with a hydrogen storage alloy capable of reversibly storing and releasing hydrogen, and a negative electrode using an electrochemical redox reaction of the hydrogen in an electromotive reaction. A positive electrode using nickel hydroxide as an active material,
It is provided with an alkaline electrolyte such as an aqueous solution of potassium hydroxide.

【0003】この負極は水素吸蔵電極と呼ばれ、この電
極に用いられる水素吸蔵合金には、LaNi5 、ZrNi2 、Ti
NiおよびTi2 Niなどの金属間化合物や、これらの金属間
化合物の構成元素を他の元素で置換したものがある。こ
れらの水素吸蔵合金は、その組成が異なると、水素吸蔵
量、平衡水素圧力、アルカリ電解液中で充放電を繰り返
す場合の保持容量特性などの性質が変化するので、合金
の組成を変えて、水素吸蔵電極の性能の改良が試みられ
ている。
This negative electrode is called a hydrogen storage electrode, and hydrogen storage alloys used for this electrode include LaNi 5 , ZrNi 2 and Ti.
There are intermetallic compounds such as Ni and Ti 2 Ni, and those in which the constituent elements of these intermetallic compounds are replaced with other elements. These hydrogen storage alloys, if the composition is different, the hydrogen storage amount, the equilibrium hydrogen pressure, the properties such as the retention capacity characteristics when repeating charge and discharge in the alkaline electrolyte changes, so by changing the composition of the alloy, Attempts have been made to improve the performance of hydrogen storage electrodes.

【0004】この水素吸蔵電極を、同じアルカリ電解液
中で作動するカドミウム電極と比較すると、これらの電
極の作動電位はほぼ同じであり、電極の体積当たりの放
電容量は、水素吸蔵電極がカドミウム電極の2〜3倍の
大きさになる。したがって、カドミウム電極を用いてい
た従来のアルカリ蓄電池の負極に水素吸蔵電極を用いる
場合には、正極と負極との放電容量の比が一定になるよ
うに負極の体積を小さくし、正極の体積を大きくするこ
とができるので、カドミウム電極を用いる蓄電池と作動
電圧が同じで、しかも、1.5倍以上の放電容量を有す
るアルカリ蓄電池が得られる。
Comparing this hydrogen storage electrode with a cadmium electrode that operates in the same alkaline electrolyte, the operating potentials of these electrodes are almost the same, and the discharge capacity per volume of the electrode is that the hydrogen storage electrode is a cadmium electrode. 2 to 3 times the size. Therefore, when the hydrogen storage electrode is used as the negative electrode of the conventional alkaline storage battery that uses the cadmium electrode, the volume of the negative electrode is reduced so that the ratio of the discharge capacity between the positive electrode and the negative electrode is constant, and the volume of the positive electrode is reduced. Since the size can be increased, an alkaline storage battery having the same operating voltage as the storage battery using the cadmium electrode and having a discharge capacity of 1.5 times or more can be obtained.

【0005】この電池の正極の水酸化ニッケル電極の1
つとして、発泡ニッケルやニッケル繊維の焼結体などか
らなる耐アルカリ性導電性の3次元多孔体に、水酸化ニ
ッケルを主体とする活物質粉末と、金属コバルト、水酸
化コバルト、および酸化コバルトとからなる群から選択
した少なくとも1つの添加物からなる添加物とを充填し
たものが用いられてきた。
One of the nickel hydroxide electrodes of the positive electrode of this battery
As an example, an alkali-resistant conductive three-dimensional porous body made of foamed nickel, a sintered body of nickel fibers, or the like, is provided with an active material powder mainly containing nickel hydroxide, and metallic cobalt, cobalt hydroxide, and cobalt oxide. Filled with at least one additive selected from the group has been used.

【0006】この正極は、焼結式の水酸化ニッケル電極
と異なって、ニッケルのネットワークが疎であるので、
電極内の集電性が高くなく、その結果、正極活物質の利
用率が低い。そこで、正極内の導電性を高くするため
に、金属コバルト、水酸化コバルト、および酸化コバル
トとからなる群から選択した少なくとも1つの添加物が
必須になる。これらの添加物は、この正極を充電する際
に酸化されて、それ自体が導電性を帯びるか、もしくは
活物質の導電性を高くする作用があり、正極活物質であ
る水酸化ニッケルの放電が容易になって、正極の活物質
利用率を高くするという効果が大きい。
Unlike the sintered nickel hydroxide electrode, this positive electrode has a sparse nickel network.
The current collecting ability in the electrode is not high, and as a result, the utilization rate of the positive electrode active material is low. Therefore, in order to increase the conductivity in the positive electrode, at least one additive selected from the group consisting of metallic cobalt, cobalt hydroxide, and cobalt oxide is essential. These additives are oxidized when the positive electrode is charged, and either have conductivity themselves or have the effect of increasing the conductivity of the active material, and the discharge of nickel hydroxide that is the positive electrode active material occurs. This is easy and has a great effect of increasing the utilization rate of the active material of the positive electrode.

【0007】密閉形のニッケル−金属水素化物蓄電池で
は、正極の充電可能な電気容量を負極の充電可能な電気
容量よりも大きくしておくことによって、電池を過充電
する際に、負極から水素ガスが発生する前に正極から酸
素ガスが発生し、この酸素ガスが負極において電気化学
的に還元される。すなわち、過充電時には、充電電流
は、正極においては酸素ガスの発生に用いられ、負極に
おいては酸素ガスの電解還元に用いられる。それゆえ、
過充電時には電池内における充電反応およびガスの蓄積
が停止し、電池に流れる過充電電流の電気エネルギは電
池の化学エネルギとして蓄積されずに熱エネルギに変換
されるので電池が発熱する。
In the sealed nickel-metal hydride storage battery, the chargeable electric capacity of the positive electrode is made larger than the chargeable electric capacity of the negative electrode, so that when the battery is overcharged, hydrogen gas is discharged from the negative electrode. Oxygen gas is generated from the positive electrode before is generated, and this oxygen gas is electrochemically reduced in the negative electrode. That is, during overcharging, the charging current is used for generating oxygen gas in the positive electrode and used for electrolytic reduction of oxygen gas in the negative electrode. therefore,
During overcharging, the charging reaction and gas accumulation in the battery are stopped, and the electric energy of the overcharging current flowing in the battery is converted into heat energy without being stored as chemical energy of the battery, so that the battery generates heat.

【0008】したがって、この電池では、過充電時に、
酸素ガスの蓄積および負極からの水素ガスの発生が防止
されて電池の内圧上昇が抑制されるとともに、電気分解
による電解液の枯渇を防止することができる。この原理
は、密閉形ニッケル−カドミウム蓄電池と同じである。
Therefore, in this battery, when overcharged,
It is possible to prevent the accumulation of oxygen gas and the generation of hydrogen gas from the negative electrode to suppress the increase in the internal pressure of the battery, and to prevent the depletion of the electrolytic solution due to electrolysis. This principle is the same as in a sealed nickel-cadmium storage battery.

【0009】しかるに、正極の充電可能な電気容量が負
極の充電可能な電気容量よりも小さい場合には、次のよ
うな不都合が起こる。
However, when the chargeable electric capacity of the positive electrode is smaller than the chargeable electric capacity of the negative electrode, the following problems occur.

【0010】すなわち、正極から酸素ガスが発生する前
に負極から水素ガスが発生する。そして、正極の水酸化
ニッケル電極における水素ガスの電解酸化反応の速度
は、負極の水素吸蔵電極における酸素ガスの電解還元反
応の速度よりも著しく小さい。従って、正極から酸素ガ
スが発生する前に負極から水素ガスが発生すると、水素
ガスを正極において電解酸化して吸収消費することが困
難になり、電池内に水素ガスが蓄積して電池の内圧が著
しく上昇する。そして、安全弁が作動して、電池内の水
素ガスが電池系外へ放出される。
That is, hydrogen gas is generated from the negative electrode before oxygen gas is generated from the positive electrode. The rate of electrolytic oxidation reaction of hydrogen gas at the positive electrode nickel hydroxide electrode is significantly lower than the rate of electrolytic reduction reaction of oxygen gas at the negative electrode hydrogen storage electrode. Therefore, if hydrogen gas is generated from the negative electrode before oxygen gas is generated from the positive electrode, it becomes difficult to electrolytically oxidize and absorb the hydrogen gas in the positive electrode, and hydrogen gas accumulates in the battery to increase the internal pressure of the battery. It rises significantly. Then, the safety valve operates, and the hydrogen gas in the battery is released to the outside of the battery system.

【0011】このように水素ガスを放出しながら、さら
に充電を続行すると、やがて正極からも酸素ガスが発生
する。この場合にも、電池内には相当高圧の水素ガスが
存在している。そして、負極における酸素ガスの吸収反
応は、酸素分圧に比例して大きくなるのであるが、電池
内に水素ガスが存在する場合には、酸素分圧が充分高く
なる前に、電池内の全ガス圧が安全弁の作動圧に到達し
て、安全弁が開き、酸素ガスおよび水素ガスが共に放出
される。このようなことが起こると、電池内の酸素分圧
は、酸素ガス吸収反応が充分大きい速度で起こる値に到
達する前に、電池内のガスが電池系外へ放出され続ける
ことになる。そして、これらの電池内のガスは電解液の
電気分解によって発生したものであるから、このような
ことが起こると電解液量が減少して、電池の内部抵抗が
著しく高くなり、電池の充放電が著しく困難になる。
When the charging is further continued while releasing the hydrogen gas as described above, oxygen gas is also generated from the positive electrode. In this case as well, hydrogen gas of considerably high pressure exists in the battery. The absorption reaction of oxygen gas in the negative electrode increases in proportion to the oxygen partial pressure. However, when hydrogen gas is present in the battery, the total oxygen content in the battery must be increased before the oxygen partial pressure becomes sufficiently high. The gas pressure reaches the operating pressure of the safety valve, the safety valve is opened, and both oxygen gas and hydrogen gas are released. When this occurs, the gas in the battery continues to be released to the outside of the battery system before the oxygen partial pressure in the battery reaches a value at which the oxygen gas absorption reaction occurs at a sufficiently high rate. Since the gas in these batteries is generated by electrolysis of the electrolytic solution, when this happens, the amount of electrolytic solution decreases and the internal resistance of the battery becomes extremely high, which results in charging and discharging of the battery. Becomes extremely difficult.

【0012】従って、密閉形ニッケル・金属水素化物蓄
電池は、負極から水素ガスが発生する前に、正極から酸
素ガスが発生するように構成しておく必要がある。
Therefore, the sealed nickel metal hydride storage battery must be constructed so that oxygen gas is generated from the positive electrode before hydrogen gas is generated from the negative electrode.

【0013】密閉形ニッケル−金属水素化物電池では、
さらに放電可能な正極の電気容量を負極の放電可能な電
気容量よりも小さくして、いわゆる正極容量規制の状態
にしておくと、電池を過放電した場合に、負極から酸素
ガスが発生する前に正極か水素ガスが発生し、この酸素
ガスが負極において電気化学的に酸化される。したがっ
て、この電池では、過放電時に、水素ガスの蓄積および
負極からの酸素ガスの発生が防止されて、電池の内圧上
昇が抑制されるとともに、電気分解による電解液の枯渇
を防止することができる。さらに、負極の陽分極が抑制
されるので、水素吸蔵合金の酸化を抑制することができ
る。
In a sealed nickel-metal hydride battery,
Furthermore, by setting the electric capacity of the positive electrode that can be discharged to be smaller than the electric capacity that can be discharged of the negative electrode, and keeping it in the state of so-called positive electrode capacity regulation, when the battery is over-discharged, oxygen gas is generated from the negative electrode. Hydrogen gas is generated from the positive electrode, and this oxygen gas is electrochemically oxidized at the negative electrode. Therefore, in this battery, accumulation of hydrogen gas and generation of oxygen gas from the negative electrode are prevented at the time of overdischarging, an increase in internal pressure of the battery is suppressed, and depletion of the electrolytic solution due to electrolysis can be prevented. .. Further, since the anodic polarization of the negative electrode is suppressed, it is possible to suppress the oxidation of the hydrogen storage alloy.

【0014】金属コバルト、水酸化コバルト、および酸
化コバルトとからなる群から選択した少なくとも1つを
添加した正極を、充電しないで、この密閉形ニッケル−
金属水素化物蓄電池に用いると、電池を充電する際に、
正極のこれらの添加物に含まれるコバルトは3価に酸化
され、このコバルトの3価の酸化物は容易に還元されな
い。したがって、この電池を放電する際には、正極では
水酸化ニッケルの充電生成物の放電反応しか利用できな
い。それゆえ、正極の金属コバルトの酸化反応に要する
電気量に相当する量の負極の水素吸蔵合金は、充電され
るが放電に関与しないことになり、電池の放電が正極の
放電容量で規制された電池が得られる。
The positive electrode to which at least one selected from the group consisting of metallic cobalt, cobalt hydroxide, and cobalt oxide is added is not charged and the sealed nickel
When used for metal hydride storage batteries, when charging the battery,
The cobalt contained in these additives of the positive electrode is oxidized to trivalent, and the trivalent oxide of cobalt is not easily reduced. Therefore, when discharging this battery, only the discharge reaction of the nickel hydroxide charge product can be utilized at the positive electrode. Therefore, the hydrogen storage alloy of the negative electrode in an amount equivalent to the amount of electricity required for the oxidation reaction of the metallic cobalt of the positive electrode is charged but does not participate in the discharge, and the discharge of the battery is regulated by the discharge capacity of the positive electrode. A battery is obtained.

【0015】[0015]

【発明が解決しようとする課題】上述のように、従来の
ニッケル−金属水素化物蓄電池の正極に用いている金属
コバルト、水酸化コバルト、および酸化コバルトとから
なる群から選択した少なくとも1つの添加物に含まれる
コバルトは、正極を充電する際に3価に酸化される。そ
して、このように酸化されたコバルトが2価のコバルト
酸化物や水酸化物あるいは金属コバルトに還元される反
応はきわめて遅いので、電池を放電する際には水酸化ニ
ッケルの放電反応しか利用できない。
As described above, at least one additive selected from the group consisting of metallic cobalt, cobalt hydroxide, and cobalt oxide used in the positive electrode of the conventional nickel-metal hydride storage battery. The cobalt contained in is oxidized to trivalent when the positive electrode is charged. Since the reaction of reducing the cobalt thus oxidized to divalent cobalt oxide, hydroxide or metallic cobalt is extremely slow, only the discharge reaction of nickel hydroxide can be utilized when discharging the battery.

【0016】したがって、上述の正極および負極を、ど
ちらも充電しないまま用いる密閉形のニッケル−金属水
素化物蓄電池を充電すると、正極のコバルトの酸化反応
に要する電気量に相当する量の負極の水素吸蔵合金は、
充電されても放電に関与しないことになる。そして、放
電に関与しないこの水素吸蔵合金は、それ自体の放電が
不可能なのではなく、正極の放電反応が先に終わる結
果、それ以上電池の放電を続行しても正極の放電電位が
著しく卑になるので、負極に放電可能な容量が多量に残
っていても、電池の電圧として利用可能な高い放電電圧
が得られないのである。
Therefore, when a sealed nickel-metal hydride storage battery is used in which the positive electrode and the negative electrode described above are used without being charged, an amount of hydrogen storage of the negative electrode corresponding to the amount of electricity required for the oxidation reaction of cobalt of the positive electrode is charged. Alloy
Even if it is charged, it does not participate in discharging. This hydrogen storage alloy, which is not involved in discharge, does not mean that it is impossible to discharge itself, and as a result of the discharge reaction of the positive electrode ending first, the discharge potential of the positive electrode is extremely low even if the battery is further discharged. Therefore, even if a large amount of dischargeable capacity remains in the negative electrode, a high discharge voltage usable as the battery voltage cannot be obtained.

【0017】そして、このような正極を用いる密閉形ニ
ッケル−金属水素化物蓄電池では、正極に添加した金属
コバルト、水酸化コバルト、および酸化コバルトとから
なる群から選択した少なくとも1つの酸化に要する電気
量だけ余分の未充電の水素吸蔵合金を負極に添加してお
く必要がある。このことを行わないと、負極の未充電の
活物質量が不足して、水素ガスが充電末期に負極から発
生し、電池の内圧が著しく上昇して安全弁が開放され、
電池の密閉性が損なわれる不都合が起こる。
In the sealed nickel-metal hydride storage battery using such a positive electrode, the amount of electricity required for oxidation selected from the group consisting of metallic cobalt, cobalt hydroxide and cobalt oxide added to the positive electrode. However, it is necessary to add an extra uncharged hydrogen storage alloy to the negative electrode. If you do not do this, the amount of uncharged active material in the negative electrode will be insufficient, hydrogen gas will be generated from the negative electrode at the end of charging, the internal pressure of the battery will rise significantly, and the safety valve will open.
The inconvenience of impairing the airtightness of the battery occurs.

【0018】そして、この余分の水素吸蔵合金を負極に
坦持させると、負極の体積が大きくなるので、電池の発
電要素の体積が大きくなるという不都合が生ずる。
When this extra hydrogen storage alloy is carried on the negative electrode, the volume of the negative electrode becomes large, which causes a disadvantage of increasing the volume of the power generation element of the battery.

【0019】負極の体積を増加させることなく水素吸蔵
合金の坦持量を増加させるためには、平均粒径が小さい
水素吸蔵合金粉末を混入することが有効である。しか
し、平均粒径が小さい水素吸蔵合金粉末は、電池に用い
た場合の充放電サイクルの進行にともなう劣化速度が大
きい。そして、この劣化反応には、吸蔵された水素の放
出、および、その水素吸蔵合金の腐食にともなう水素ガ
スの放出が起こる。このようにして放出された水素は、
結局はまだ劣化していない負極の未充電の水素吸蔵合金
に吸蔵されて、未充電の水素吸蔵合金の量が減少し、過
充電時の負極からの水素ガスの発生の原因になる。従っ
て、この構成の電池では、充放電サイクルが進行すると
過充電時に負極から水素ガスが発生し、安全弁が作動し
て電池内の電解液量が減少するという不都合がある。
In order to increase the carried amount of the hydrogen storage alloy without increasing the volume of the negative electrode, it is effective to mix the hydrogen storage alloy powder having a small average particle size. However, the hydrogen storage alloy powder having a small average particle size has a large deterioration rate with the progress of charge / discharge cycles when used in a battery. Then, in this deterioration reaction, the release of the stored hydrogen and the release of hydrogen gas accompanying the corrosion of the hydrogen storage alloy occur. The hydrogen released in this way is
Eventually, it will be absorbed by the uncharged hydrogen storage alloy of the negative electrode that has not deteriorated yet, and the amount of uncharged hydrogen storage alloy will decrease, causing the generation of hydrogen gas from the negative electrode during overcharge. Therefore, in the battery having this configuration, when the charge / discharge cycle progresses, hydrogen gas is generated from the negative electrode during overcharge, the safety valve operates, and the amount of the electrolytic solution in the battery decreases.

【0020】そこで、主として水酸化ニッケルからなる
活物質と、金属コバルト、水酸化コバルト、および酸化
コバルトとからなる群から選択した少なくとも1つの添
加物とを3次元多孔体に保持してなる正極と、水素吸蔵
合金を主体とする負極とを備える密閉形ニッケル−金属
水素化物蓄電池において、負極の体積の増加を招くこと
なく、放電反応に関与しない負極の水素吸蔵合金の量を
少なくする手段が望まれていた。
Therefore, a positive electrode in which a three-dimensional porous body holds an active material mainly composed of nickel hydroxide and at least one additive selected from the group consisting of metallic cobalt, cobalt hydroxide and cobalt oxide. In a sealed nickel-metal hydride storage battery provided with a negative electrode mainly composed of a hydrogen storage alloy, a means for reducing the amount of the hydrogen storage alloy of the negative electrode that does not participate in the discharge reaction without increasing the volume of the negative electrode is desired. It was rare.

【0021】[0021]

【課題を解決するための手段】本発明は、上記の課題を
解決するために、主として水酸化ニッケルからなる活物
質と、金属コバルト、水酸化コバルト、および酸化コバ
ルトとからなる群から選択した少なくとも1つの添加物
とを3次元多孔体に保持してなる正極と、水素吸蔵合金
を主体とする負極とを備える密閉形ニッケル−金属水素
化物蓄電池において、該水素吸蔵合金の放電反応の主体
が起こる電位よりも貴な電位で金属に還元される金属化
合物を負極に備える密閉形ニッケル−金属水素化物電池
を提供する。
In order to solve the above-mentioned problems, the present invention comprises at least an active material mainly composed of nickel hydroxide and at least one selected from the group consisting of metallic cobalt, cobalt hydroxide and cobalt oxide. In a sealed nickel-metal hydride storage battery including a positive electrode having one additive held in a three-dimensional porous body and a negative electrode mainly composed of a hydrogen storage alloy, the main discharge reaction of the hydrogen storage alloy occurs. Provided is a sealed nickel-metal hydride battery in which a negative electrode is provided with a metal compound that is reduced to a metal at a potential nobler than the potential.

【0022】[0022]

【作用】本発明において、負極に備える金属化合物が金
属に還元される電位が、負極が備える水素吸蔵合金の放
電反応が起こる電位よりも貴であると、電池を充電する
際に、負極では、この金属化合物が金属に還元されてか
ら水素吸蔵合金の充電反応が起こり、放電の際には、こ
の金属は水素吸蔵合金の放電反応が終わるまで酸化され
ない。したがって、負極の水素吸蔵合金のうちで正極の
金属コバルトの酸化反応に要する電気量だけ充電され
て、放電に関与しない水素吸蔵合金の量を少なくするこ
とができる。
In the present invention, when the potential at which the metal compound provided in the negative electrode is reduced to a metal is nobler than the potential at which the discharge reaction of the hydrogen storage alloy provided in the negative electrode occurs, when the battery is charged, the negative electrode is A charge reaction of the hydrogen storage alloy occurs after the metal compound is reduced to a metal, and during discharge, the metal is not oxidized until the discharge reaction of the hydrogen storage alloy ends. Therefore, of the hydrogen storage alloy of the negative electrode, the amount of the hydrogen storage alloy that is not involved in the discharge by being charged by the amount of electricity required for the oxidation reaction of the metallic cobalt of the positive electrode can be reduced.

【0023】そして、この金属化合物を負極に具備させ
るに際して、負極の体積を増加させない手段としては、
種々のものが適用できる。
When the negative electrode is provided with this metal compound, a means for preventing the negative electrode from increasing in volume is as follows.
Various things can be applied.

【0024】たとえば、この金属化合物を負極の水素吸
蔵電極の細孔に充填することによって、負極の体積を実
質的に増加させることなく、この金属化合物を負極に備
えさせることが可能になる。この金属化合物を水素吸蔵
電極の細孔に充填する手段としては、その金属塩の溶液
を水素吸蔵電極の細孔に含浸してから、別の溶液と反応
させて、金属塩を難溶性の金属化合物に変換して沈澱さ
せる手段や、水素吸蔵電極の細孔よりも微細な金属化合
物の粉末を直接充填する手段がある。
For example, by filling the pores of the hydrogen storage electrode of the negative electrode with this metal compound, the metal compound can be provided in the negative electrode without substantially increasing the volume of the negative electrode. As means for filling the pores of the hydrogen storage electrode with this metal compound, a solution of the metal salt is impregnated into the pores of the hydrogen storage electrode and then reacted with another solution to make the metal salt hardly soluble in the metal. There are means for converting to a compound for precipitation, and means for directly filling powder of a metal compound finer than the pores of the hydrogen storage electrode.

【0025】あるいは、水素吸蔵合金粉末を導電性支持
体に坦持させて圧粉体とした水素吸蔵電極の場合には、
平均粒径が水素吸蔵合金の粉末よりも小さいこの金属化
合物と水素吸蔵合金粉末とを混合しておくと、この金属
化合物の粉末が水素吸蔵合金の粉末の隙間に入って、圧
粉体の体積を実質的に増加させることなく、この金属化
合物を負極に備えさせることが可能になる。
Alternatively, in the case of a hydrogen storage electrode in which a hydrogen storage alloy powder is carried on a conductive support to form a green compact,
If this metal compound having an average particle size smaller than that of the hydrogen storage alloy powder and the hydrogen storage alloy powder are mixed, the powder of this metal compound enters the gap of the hydrogen storage alloy powder, and the volume of the green compact is reduced. It becomes possible to equip the negative electrode with this metal compound without substantially increasing.

【0026】密閉形ニッケル−金属水素化物電池に用い
られる水素吸蔵合金の代表的なものには、LaNi5 合金の
組成を変化させたMmNi5-x-y-z Mnx Aly Coz (Mm: 種種
の組成の稀土類金属の混合物たるミッシュメタル,0<x
≦0.5,0<y ≦0.3, 0<z ≦1.0)や、MmNi5-x-y-z Mnx C
uy Coz (0<x ≦0.5, 0<y ≦1.0, 0<z ≦1.0)や、TiN
iの組成のものやLaves 相の合金がある。これらの水素
吸蔵合金は、アルカリ電解液中で、その放電が酸化第2
水銀電極の平衡電位を基準として -0.7Vよりも卑な電位
における放電反応が電池に利用される。
A typical hydrogen storage alloy used in a sealed nickel-metal hydride battery is MmNi 5-xyz Mn x Al y Co z (Mm: various compositions in which the composition of the LaNi 5 alloy is changed. Mixture of rare earth metals, misch metal, 0 <x
≤0.5,0 <y ≤0.3, 0 <z ≤1.0) and MmNi 5-xyz Mn x C
u y Co z (0 <x ≤0.5, 0 <y ≤1.0, 0 <z ≤1.0), TiN
There are alloys of composition i and Laves phase. The discharge of these hydrogen storage alloys is oxidized secondarily in alkaline electrolyte.
The discharge reaction is applied to the cell at a potential less than -0.7V relative to the equilibrium potential of the mercury electrode.

【0027】そして、アルカリ電解液中において金属へ
還元される反応の平衡電位が、酸化第2水銀電極の平衡
電位を基準として -0.7Vよりも貴な金属酸化物には、具
体的には、たとえば、酸化第1銅 (Cu2 O)、酸化第2銅
(CuO) 、水酸化銅 (Cu(OH)2 ) 、1酸化鉛(PbO) 、四三
酸化鉛 (Pb3 O4 ) 、過酸化鉛(PbO2 ) 、酸化ビスマス
(Bi2 O3 ) 、水酸化ビスマス (Bi(OH)3 ) 、酸化第一
銀(Ag2 O)、酸化第二銀 (Ag2 O2 ) 、水酸化タリウム
(Tl(OH)3 ) 、酸化第二水銀(HgO) などがある。あるい
は、これらの金属の塩でもよい。
The metal oxide whose equilibrium potential for the reaction to be reduced to the metal in the alkaline electrolyte is nobler than -0.7 V with respect to the equilibrium potential of the mercuric oxide electrode is, specifically, For example, cuprous oxide (Cu 2 O), cupric oxide
(CuO), copper hydroxide (Cu (OH) 2 ), lead monoxide (PbO), lead trioxide (Pb 3 O 4 ), lead peroxide (PbO 2 ), bismuth oxide
(Bi 2 O 3 ), bismuth hydroxide (Bi (OH) 3 ), first silver oxide (Ag 2 O), second silver oxide (Ag 2 O 2 ), thallium hydroxide
(Tl (OH) 3 ) and mercuric oxide (HgO). Alternatively, salts of these metals may be used.

【0028】なお、これらの金属化合物から生成した金
属を、水素吸蔵合金の充放電反応が起こる際に、負極の
導電助剤として利用する発明は既に開示されている(特
開平2-306539号および特開平3-122969号)。
An invention has already been disclosed in which a metal produced from these metal compounds is used as a conductive auxiliary agent for a negative electrode when a charge-discharge reaction of a hydrogen storage alloy occurs (Japanese Patent Laid-Open No. 306539/1990). JP-A-3-12969).

【0029】これらに開示された発明は、正極に水酸化
ニッケルを用いる場合のほかに、酸化銀や、二酸化マン
ガンを用いる場合にも作用効果を奏し、また水素吸蔵電
極を負極に用いる電池が、密閉形に限らず開放形の場合
にも負極の導電助剤としての作用効果を奏することを確
認している。
The inventions disclosed in these publications are effective not only when nickel hydroxide is used for the positive electrode but also when silver oxide or manganese dioxide is used, and a battery using a hydrogen storage electrode for the negative electrode is It has been confirmed that not only the closed type but also the open type can exert the action and effect as the conductive additive of the negative electrode.

【0030】一方、本発明は、正極のコバルトやコバル
ト化合物の酸化にともなっておこる負極の水素吸蔵合金
の余分な充電を防止するために、負極に添加したこれら
の金属化合物の還元反応を利用するものである。本発明
の手段が奏するこのような作用効果は、前記の開示され
た発明には記載されていないものである。
On the other hand, the present invention utilizes the reduction reaction of these metal compounds added to the negative electrode in order to prevent the extra charge of the hydrogen storage alloy of the negative electrode caused by the oxidation of cobalt or the cobalt compound of the positive electrode. It is a thing. Such operational effects achieved by the means of the present invention are not described in the above disclosed invention.

【0031】そして、本発明の手段が作用効果を奏する
のは、上記の説明から明らかなとおり、主として水酸化
ニッケルからなる活物質と、金属コバルト、水酸化コバ
ルト、および酸化コバルトとからなる群から選択した少
なくとも1つの添加物とを3次元多孔体に保持してなる
正極と、水素吸蔵合金を主体とする負極とを備える密閉
形ニッケル−金属水素化物蓄電池においてである。そし
て、正極に金属コバルト、水酸化コバルト、あるいは酸
化コバルトを備えない場合や、開放形電池の場合には、
上述の作用効果を奏することがない。
And, as is clear from the above description, the means of the present invention exerts its function and effect from the group consisting of an active material mainly composed of nickel hydroxide, and metallic cobalt, cobalt hydroxide and cobalt oxide. A sealed nickel-metal hydride storage battery comprising: a positive electrode having at least one selected additive held in a three-dimensional porous body; and a negative electrode mainly composed of a hydrogen storage alloy. When the positive electrode does not include metallic cobalt, cobalt hydroxide, or cobalt oxide, or in the case of an open battery,
The above-mentioned action and effect are not exhibited.

【0032】すなわち、本発明は、従来は全く認識され
てこなかった特定の構成の電池に固有の課題を、従来は
認識されていなかった特有の作用効果を奏する手段によ
って解決する全く新規なものである。
That is, the present invention is a completely novel one which solves a problem peculiar to a battery having a specific structure, which has never been recognized in the past, by means which has a unique action and effect which has not been recognized in the past. is there.

【0033】[0033]

【実施例】本発明を好適な実施例によって説明する。 [電池(A)](本発明実施例) 電池(A)は、次のように構成した。EXAMPLES The present invention will be described by way of preferred examples. [Battery (A)] (Example of the present invention) The battery (A) was configured as follows.

【0034】正極は、次のようにして製作した。すなわ
ち、主として水酸化ニッケルからなる活物質粉末94重量
部および金属コバルト粉末6 重量部を混合し、これに精
製水を加えて混練しペースト状混合物を調製した。次
に、多孔度が約98% で厚さが約0.7mm の発泡状ニッケル
多孔体に、このペースト状混合物を充填し、乾燥し、加
圧し、切断して、活物質充填部の厚さが0.55mm、巾が14
mm、長さが57mmの水酸化ニッケル電極を得た。
The positive electrode was manufactured as follows. That is, 94 parts by weight of an active material powder mainly composed of nickel hydroxide and 6 parts by weight of a metal cobalt powder were mixed, and purified water was added thereto and kneaded to prepare a paste-like mixture. Next, a foamed nickel porous body having a porosity of about 98% and a thickness of about 0.7 mm was filled with this paste-like mixture, dried, pressed, and cut, and the thickness of the active material filled portion was reduced. 0.55mm, width 14
A nickel hydroxide electrode having a length of 57 mm and a length of 57 mm was obtained.

【0035】負極は、次のようにして製作した。すなわ
ち、合金の組成がLmNi3.8 Co0.7 Al0.5 (ここにLmは、
約90重量% のLaを含有する稀土類金属混合物たるランタ
ンリッチミッシュメタルである。)になるように、各成
分元素を真空にした高周波誘導加熱炉で融解し、これを
鋳造して得た鋳塊を粉砕し、平均粒径が約30μm の水素
吸蔵合金粉末を得た。次に、この合金粉末100 重量部、
平均粒径が約5 μm の酸化ビスマス (Bi2 O3 ) の粉末
17重量部、およびカーボンブラック3 重量部とを混合
し、これに3 重量% のポリビニルアルコール水溶液40重
量部を加えてペースト状混合物(あ)を調製した。そし
て、鉄板にニッケルメッキを施した厚さが約0.08mmの穿
孔鋼板(開口率は約50% )に、このペースト状混合物
(あ)を塗着し、ドクターブレードで厚さを調節してか
ら、乾燥し、加圧し、切断して、活物質坦持部の厚さが
0.30mm、巾が15mm、長さが58mmの水素吸蔵電極(あ’)
を得た。
The negative electrode was manufactured as follows. That is, the composition of the alloy is LmNi 3.8 Co 0.7 Al 0.5 (where Lm is
It is a lanthanum rich misch metal which is a rare earth metal mixture containing about 90 wt% La. ), Each component element was melted in a high-frequency induction heating furnace in a vacuum, and the resulting ingot was crushed to obtain a hydrogen storage alloy powder having an average particle size of about 30 μm. Next, 100 parts by weight of this alloy powder,
Bismuth oxide (Bi 2 O 3 ) powder with an average particle size of about 5 μm
17 parts by weight and 3 parts by weight of carbon black were mixed, and 40 parts by weight of a 3% by weight aqueous solution of polyvinyl alcohol were added thereto to prepare a paste-like mixture (A). Then, apply this paste mixture (a) to a perforated steel plate (having an aperture ratio of about 50%) with a thickness of about 0.08 mm, which is obtained by nickel-plating an iron plate, and adjust the thickness with a doctor blade. The thickness of the active material supporting part is
0.30mm, width 15mm, length 58mm hydrogen storage electrode (a ')
Got

【0036】電池1個には、上記の正極板4 枚と負極板
(あ’)5 枚とを、界面活性剤で親水性を賦与した厚さ
が0.10mmのポリプロピレン製のセパレータ1枚を介して
積層して用いた。この積層体を、ニッケルメッキを施し
た厚さが約0.4mm の鉄製の角形電池ケースに収納し、7M
の水酸化カリウム水溶液に10g/l の水酸化リチウムを溶
解した電解液を注入し、電極の端子を兼ねる安全弁を備
えた金属製蓋体の周縁部をこの電池ケースの周縁部と溶
接して電池を封口した。このようにして、本発明の密閉
形ニッケル−金属水素化物蓄電池を製作した。
For one battery, the above four positive electrode plates and five negative electrode plates (a ') were placed through one polypropylene separator having a thickness of 0.10 mm, which was made hydrophilic with a surfactant. It was laminated and used. This stack is stored in a nickel-plated iron prismatic battery case with a thickness of about 0.4 mm, and
Inject the electrolyte solution in which 10g / l of lithium hydroxide is dissolved into the above potassium hydroxide solution, and weld the peripheral edge of the metal lid equipped with the safety valve that doubles as the terminal of the electrode with the peripheral edge of this battery case. Was sealed. Thus, the sealed nickel-metal hydride storage battery of the present invention was manufactured.

【0037】この電池1個の正極には、約3.0gの水酸化
ニッケルと、約0.20g の金属コバルトとが充填されてい
る。従って、この電池を充電する場合に、金属コバルト
が3価に酸化されるための充電電気量は、約270mAhであ
る。
One positive electrode of this battery was filled with about 3.0 g of nickel hydroxide and about 0.20 g of metallic cobalt. Therefore, when this battery is charged, the amount of electricity charged for trivalent oxidation of metallic cobalt is about 270 mAh.

【0038】そして、水酸化ニッケルが1電子反応に従
うことを仮定すると、この電池1個の正極に含まれる水
酸化ニッケルの理論容量は、約870mAh(=289 ×3.0)であ
る。水酸化ニッケルの充電可能な容量および放電可能な
容量は、電解液の組成、温度等の影響を受けて変化する
が、この電池の構成では、通常の充放電の条件では、活
物質のニッケルが約3.2 価になるまで充電され、約2.25
価になるまで放電される。従って、充電していない正極
を用いて、この電池を充電した場合に、正極に含まれる
水酸化ニッケルの充電に必要な電気量は、約1040mAh
(=870×(3.2-2.0) )であり、正極の放電容量は、約82
0mAh(=870×(3.2-2.25))であり、放電に関与しないで
充電状態で残留するニッケルの高級酸化物の電気量は、
約220mAh(=870×(2.25-2.0))である。
Assuming that nickel hydroxide follows a one-electron reaction, the theoretical capacity of nickel hydroxide contained in the positive electrode of one battery is about 870 mAh (= 289 × 3.0). The rechargeable capacity and the rechargeable capacity of nickel hydroxide change under the influence of the composition of the electrolyte solution, temperature, etc. However, in this battery configuration, under normal charging and discharging conditions, nickel as the active material is Charged until it reaches about 3.2 value, about 2.25
It is discharged until the value is reached. Therefore, when this battery is charged using an uncharged positive electrode, the amount of electricity required to charge nickel hydroxide contained in the positive electrode is approximately 1040 mAh.
(= 870 × (3.2-2.0)), and the discharge capacity of the positive electrode is about 82.
It is 0mAh (= 870 × (3.2-2.25)), and the electric quantity of the higher nickel oxide remaining in the charged state without being involved in the discharge is
It is about 220mAh (= 870 × (2.25-2.0)).

【0039】それゆえ、この電池を充電した場合に、正
極の金属コバルトが3価に酸化され、水酸化ニッケルが
3.2 価に酸化されるまでに、約1310mAh(=270+1040)の電
気量が充電される。
Therefore, when this battery is charged, the metallic cobalt of the positive electrode is oxidized to trivalent and nickel hydroxide is changed.
About 1310mAh (= 270 + 1040) of electricity is charged by the time it is oxidized to 3.2 valence.

【0040】一方、この電池1個の負極には、約4.6gの
水素吸蔵合金と、約0.78g の酸化ビスマスが含有されて
いる。この水素吸蔵合金を充放電する場合に、水素ガス
を放出することなく充電される電気量は、この水素吸蔵
合金1g当たり約270mAhであり、この充電電気量は、ほぼ
そのまま放電される。従って、この電池1個の負極の水
素吸蔵合金は、充電電気量が約1240mAh(=270×4.6)にな
るまで水素ガスを発生することなく充電される。また、
酸化ビスマスのビスマスは3価であるから、この電池1
個の負極に含まれる酸化ビスマスを金属ビスマスに還元
するために必要な充電電気量は、約270mAhである。
On the other hand, the negative electrode of one of the batteries contained about 4.6 g of hydrogen storage alloy and about 0.78 g of bismuth oxide. When charging and discharging this hydrogen storage alloy, the amount of electricity charged without releasing hydrogen gas is about 270 mAh per 1 g of this hydrogen storage alloy, and this charged amount of electricity is discharged almost as it is. Therefore, the hydrogen storage alloy of the negative electrode of this single battery is charged without generating hydrogen gas until the charge electricity amount becomes about 1240 mAh (= 270 × 4.6). Also,
Since bismuth of bismuth oxide is trivalent, this battery 1
The amount of charge electricity required to reduce the bismuth oxide contained in each negative electrode to metallic bismuth is about 270 mAh.

【0041】従って、この電池を充電すると、1510mAh
(=270+1240)の電気量が充電されるまで、負極の水素吸
蔵電極から水素ガスが発生しないことになる。
Therefore, when this battery is charged, 1510mAh
Until the electric charge of (= 270 + 1240) is charged, hydrogen gas will not be generated from the negative hydrogen storage electrode.

【0042】すなわち、この電池を充電すると、負極が
満充電になって水素ガスが発生する充電電気量(1510mA
h) に到達する前に、正極が満充電になる充電電気量(13
10mAh) に到達して、正極から酸素ガスが発生する。そ
して、この電池は密閉形であるから、正極が満充電にな
ってから過充電して発生する酸素ガスは、負極において
電解還元されて消費される。従って、電池の密閉性が損
なわれることがない。
In other words, when this battery is charged, the negative electrode is fully charged and hydrogen gas is generated.
before reaching (h), the amount of charge (13
Reaches 10 mAh) and oxygen gas is generated from the positive electrode. Since this battery is of a sealed type, the oxygen gas generated by overcharging after the positive electrode is fully charged is electrolytically reduced and consumed in the negative electrode. Therefore, the hermeticity of the battery is not impaired.

【0043】また、電池を放電する際には、正極の放電
可能な容量820mAhは、負極の放電可能な容量1040mAh(=1
310-270)よりも小さいので、電池の放電が正極の放電容
量で制限されることもわかる。 [電池(B)](従来例) 電池(B)は、次のように構成した。
When the battery is discharged, the dischargeable capacity of the positive electrode is 820 mAh and the dischargeable capacity of the negative electrode is 1040 mAh (= 1
It is also understood that the discharge capacity of the battery is limited by the discharge capacity of the positive electrode since the discharge capacity is smaller than that of (310-270). [Battery (B)] (Conventional Example) The battery (B) was configured as follows.

【0044】すなわち、電池(A)におけるペースト状
混合物(あ)に、酸化ビスマスを混合することなく、そ
のほかの構成はペースト状混合物(あ)と同じにして、
ペースト状混合物(い)を調製した。そして、ペースト
状混合物(あ)を用いることなく、その代わりに、ペー
スト状混合物(い)を用い、そのほかの構成は水素吸蔵
電極(あ’)と同じにして、水素吸蔵電極(い’)を製
作した。従って、水素吸蔵電極(い’)は酸化ビスマス
を含有していない。
That is, the paste-like mixture (A) in the battery (A) was not mixed with bismuth oxide, and the other constitution was the same as that of the paste-like mixture (A).
A pasty mixture (II) was prepared. Instead of using the paste mixture (a), the paste mixture (i) was used instead of the paste mixture (a), and the other configurations were the same as those of the hydrogen storage electrode (a '). I made it. Therefore, the hydrogen storage electrode (i ') does not contain bismuth oxide.

【0045】水素吸蔵電極(い’)は、水素吸蔵電極
(あ’)と同じ寸法にして製作したところ、同じ量の水
素吸蔵合金粉末が含有されていた。ペースト状混合物
(あ)にはペースト状混合物(い)の成分のほかに酸化
ビスマスが含有されているにもかかわらず、製作した同
じ寸法の水素吸蔵電極(あ’)および(い’)に含有さ
れる水素吸蔵合金の量が同じである理由は、ペースト状
混合物(あ)に含有される酸化ビスマス粉末の平均粒径
が水素吸蔵合金粉末の平均粒径よりも著しく小さく、か
つ酸化ビスマスの含有率が小さいので、酸化ビスマスの
粉末が水素吸蔵合金粉末の圧粉体構造の空隙に配置され
て、水素吸蔵電極中の水素吸蔵合金の体積占有率を低下
させなかったことにあるものと解釈できる。
When the hydrogen storage electrode (i ') was made to have the same size as the hydrogen storage electrode (a'), it contained the same amount of hydrogen storage alloy powder. Although the pasty mixture (a) contains bismuth oxide in addition to the components of the pasty mixture (i), it is contained in the manufactured hydrogen storage electrodes (a ') and (i') of the same size. The reason for the same amount of hydrogen storage alloy is that the average particle size of the bismuth oxide powder contained in the pasty mixture (a) is significantly smaller than the average particle size of the hydrogen storage alloy powder, and the content of bismuth oxide is Since the ratio is small, it can be interpreted that the bismuth oxide powder did not reduce the volume occupancy ratio of the hydrogen storage alloy in the hydrogen storage electrode by being arranged in the void of the green compact structure of the hydrogen storage alloy powder. ..

【0046】電池Bは、負極に水素吸蔵電極(あ’)を
用いることなく、その代わりに、水素吸蔵電極(い’)
を用い、そのほかの構成は電池(A)と同じにして、電
池(B)を製作した。
Battery B does not use the hydrogen storage electrode (a ') as the negative electrode, but instead uses the hydrogen storage electrode (i').
A battery (B) was manufactured in the same manner as the battery (A) except for the above.

【0047】電池(B)の負極は、水素吸蔵合金を約4.
6g含有していて、酸化ビスマスを含有していない。従っ
て、この電池を充電すると、充電電気量が1240mAh にな
ると負極が満充電になって、水素ガスが発生する。一
方、正極は充電電気量が1310mAh になって満充電にな
る。従って、電池(B)では、正極が満充電になる前に
負極の充電が終わって、負極から水素ガスが発生する構
成である。 [電池(C)](従来例) 電池(C)は、次のように構成した。
For the negative electrode of the battery (B), a hydrogen storage alloy of about 4.
It contains 6g and does not contain bismuth oxide. Therefore, when this battery is charged, the negative electrode is fully charged and hydrogen gas is generated when the amount of electricity charged is 1240 mAh. On the other hand, the positive electrode is fully charged when the amount of electricity charged is 1310 mAh. Therefore, in the battery (B), charging of the negative electrode is completed before the positive electrode is fully charged, and hydrogen gas is generated from the negative electrode. [Battery (C)] (Conventional Example) The battery (C) was configured as follows.

【0048】すなわち、電池(A)におけるペースト状
混合物(あ)に、酸化ビスマスを混合することなく、そ
のほかの構成はペースト状混合物(あ)と同じにして、
ペースト状混合物(い)を調製した。そして、ペースト
状混合物(あ)を用いることなく、その代わりに、ペー
スト状混合物(い)を用い、電極1枚の活物質坦持部の
厚さが0.354mm 、巾が15mm、長さが58mmであり、酸化ビ
スマスを含有しないこと、およびペースト状混合物の坦
持量が異なることのほかの構成は水素吸蔵電極(あ’)
と同じにして、水素吸蔵電極(う’)を製作した。水素
吸蔵電極(う’)の1枚が含有する水素吸蔵合金の量
は、水素吸蔵電極(あ’)1枚の約1.21倍である。
That is, the paste-like mixture (A) in the battery (A) was not mixed with bismuth oxide, and the other constitution was the same as that of the paste-like mixture (A).
A pasty mixture (II) was prepared. Then, without using the paste mixture (a), instead of using the paste mixture (i), the thickness of the active material carrying part of one electrode is 0.354 mm, the width is 15 mm, and the length is 58 mm. Other than that it does not contain bismuth oxide and the amount of paste-like mixture carried is different, the other configurations are hydrogen storage electrodes (a ').
A hydrogen storage electrode (u ') was manufactured in the same manner as in (1). The amount of the hydrogen storage alloy contained in one hydrogen storage electrode (u ') is about 1.21 times that in one hydrogen storage electrode (a').

【0049】電池(C)は、次のように構成した。The battery (C) was constructed as follows.

【0050】電池(C)は、負極に水素吸蔵電極
(あ’)を用いることなく、その代わりに、水素吸蔵電
極(う’)を用い、そのほかの構成は、電池(A)と同
じにした。
In the battery (C), the hydrogen storage electrode (a ') was not used as the negative electrode, but instead the hydrogen storage electrode (u') was used, and the other structure was the same as that of the battery (A). ..

【0051】電池(C)の負極は、水素吸蔵合金を約5.
55g 含有していて、酸化ビスマスを含有していない。従
って、この電池を充電して充電電気量が約1500mAh にな
ると、負極が満充電になって水素ガスが発生する。一
方、正極は充電電気量が1310mAh になって満充電にな
る。従って、電池(C)では、負極が満充電になる前に
正極の充電が終わって、負極から水素ガスが発生する前
に正極から酸素ガスが発生する構成である。それゆえ、
電池(C)では、過充電時に正極から発生する酸素ガス
が負極で吸収され、電池の密閉性が維持される構成であ
る。この電池(C)で、正極が満充電になってから負極
が満充電になるまでの余裕となる負極の過剰な充電電気
量は、電池(A)とほぼ同じ約200mAhである。
For the negative electrode of the battery (C), a hydrogen storage alloy of about 5.
It contains 55g and does not contain bismuth oxide. Therefore, when this battery is charged and the amount of electricity charged reaches about 1500 mAh, the negative electrode is fully charged and hydrogen gas is generated. On the other hand, the positive electrode is fully charged when the amount of electricity charged is 1310 mAh. Therefore, in the battery (C), charging of the positive electrode is completed before the negative electrode is fully charged, and oxygen gas is generated from the positive electrode before hydrogen gas is generated from the negative electrode. therefore,
In the battery (C), the oxygen gas generated from the positive electrode at the time of overcharge is absorbed by the negative electrode, and the hermeticity of the battery is maintained. In this battery (C), the excess charge electricity of the negative electrode, which is a margin from the full charge of the positive electrode to the full charge of the negative electrode, is about 200 mAh, which is almost the same as that of the battery (A).

【0052】しかし、電池(C)は、電池(A)と比較
すると、負極1枚の厚さが約0.054mm 厚く、電池全体で
は、正極、負極、およびセパレータをあわせた発電要素
全体の厚さが約0.27mmだけ増加する。すなわち、電池
(C)は、ガス発生が起こるまでの負極の過剰な充電電
気量が電池(A)と同じであるものの、負極が厚くなっ
て、電池全体の体積が大きくなってしまう。 [電池(D)](本発明実施例) 電池(D)は、負極の水素吸蔵電極(え’)を次の方法
で製作した。すなわち、前記のペースト状混合物(あ)
の酸化ビスマス粉末17重量部の代わりに、平均粒径が約
5μm の酸化第1銅 (Cu2 O)粉末15.7重量部を用いるペ
ースト状混合物(え)を、ペースト状混合物(あ)の代
わりに用い、活物質の坦持部分の寸法および水素吸蔵合
金の坦持量を水素吸蔵電極(あ’)と同じにし、そのほ
かの構成を水素吸蔵電極(あ’)と同じにして、水素吸
蔵電極(え’)を製作した。
However, in the battery (C), the thickness of one negative electrode is about 0.054 mm thicker than that of the battery (A), and the thickness of the entire power generation element including the positive electrode, the negative electrode, and the separator in the whole battery is large. Increases by about 0.27 mm. That is, although the battery (C) has the same amount of excess charge electricity of the negative electrode as that of the battery (A) until gas generation occurs, the negative electrode becomes thick and the volume of the entire battery becomes large. [Battery (D)] (Example of the present invention) In the battery (D), a negative electrode hydrogen storage electrode (e ') was manufactured by the following method. That is, the pasty mixture (a)
Instead of 17 parts by weight of bismuth oxide powder, 15.7 parts by weight of cuprous oxide (Cu 2 O) powder having an average particle size of about 5 μm was used, instead of the pasty mixture (a). The size of the active material carrying part and the carrying amount of the hydrogen storage alloy are the same as those of the hydrogen storage electrode (a '), and other configurations are the same as those of the hydrogen storage electrode (a'). Eh ').

【0053】電池(D)は、負極として、電池(A)に
おける水素吸蔵電極(あ)の代わりに、水素吸蔵電極
(え’)を用い、そのほかの構成を電池(A)と同じに
して製作した。
The battery (D) was manufactured by using, as the negative electrode, the hydrogen storage electrode (E ') in place of the hydrogen storage electrode (A) in the battery (A), and the other structure was the same as that of the battery (A). did.

【0054】電池(D)1個の負極には、約4.6gの水素
吸蔵合金および約0.72g の酸化第1銅粉末が含有されて
いるので、この電池を充電する場合に、負極の酸化第1
銅を金属銅に還元するための電気量約270mAh、および水
素吸蔵合金のを満充電する充電電気量約1240mAh との合
計は、約1510mAh である。一方、この電池の正極の充電
が完了するまでの充電電気量は1310mAh である。従っ
て、この電池では、正極が満充電になるまでに負極から
の水素ガスの発生が起こらない。しかも、従来の電池
(C)よりも負極5枚の合計の厚さが約0.27mmだけ小さ
い。 [電池(E)](本発明実施例) 電池(E)は、負極の水素吸蔵電極(お’)を次の方法
で製作した。すなわち、前記のペースト状混合物(あ)
の酸化ビスマス粉末17重量部の代わりに、平均粒径が約
5μm の酸化第2銅(CuO) 粉末8.71重量部を用いるペー
スト状混合物(お)を、ペースト状混合物(あ)の代わ
りに用い、活物質の坦持部分の寸法および水素吸蔵合金
の坦持量を水素吸蔵電極(あ’)と同じにし、そのほか
の構成を水素吸蔵電極(あ’)と同じにして、水素吸蔵
電極(お’)を製作した。
Battery (D) One negative electrode contained about 4.6 g of hydrogen storage alloy and about 0.72 g of cuprous oxide powder. 1
A total of about 270 mAh for reducing copper to metallic copper and about 1240 mAh for charging hydrogen storage alloy to full charge is about 1510 mAh. On the other hand, the amount of electricity required to charge the positive electrode of this battery is 1310 mAh. Therefore, in this battery, hydrogen gas is not generated from the negative electrode until the positive electrode is fully charged. Moreover, the total thickness of the five negative electrodes is smaller than that of the conventional battery (C) by about 0.27 mm. [Battery (E)] (Example of the present invention) In the battery (E), a negative electrode hydrogen storage electrode (O ') was manufactured by the following method. That is, the pasty mixture (a)
In place of 17 parts by weight of the bismuth oxide powder, the paste-like mixture (o), which uses 8.71 parts by weight of cupric oxide (CuO) powder having an average particle size of about 5 μm, is used instead of the paste-like mixture (a), The size of the active material carrying part and the carrying amount of the hydrogen storage alloy are the same as those of the hydrogen storage electrode (a '), and other configurations are the same as those of the hydrogen storage electrode (a'), and the hydrogen storage electrode (a ' ) Was produced.

【0055】電池(E)は、負極として、電池(A)に
おける水素吸蔵電極(あ)の代わりに、水素吸蔵電極
(お’)を用い、そのほかの構成を電池(A)と同じに
して製作した。
The battery (E) was manufactured by using the hydrogen storage electrode (O ') as the negative electrode instead of the hydrogen storage electrode (A) in the battery (A) and making the other constitutions the same as the battery (A). did.

【0056】電池(E)1個の負極には、約4.6gの水素
吸蔵合金および約0.40g の酸化第2銅粉末が含有されて
いるので、この電池を充電する場合に、負極の酸化第2
銅を金属銅に還元するための電気量約270mAh、および水
素吸蔵合金のを満充電する充電電気量約1240mAh との合
計は、約1510mAh である。一方、この電池の正極の充電
が完了するまでの充電電気量は1310mAh である。従っ
て、この電池では、正極が満充電になるまでに負極から
の水素ガスの発生が起こらない。しかも、従来の電池
(C)よりも負極5枚の合計の厚さが約0.27mmだけ小さ
い。 [電池(F)](本発明実施例) 電池(F)は、負極の水素吸蔵電極(か’)を次の方法
で製作した。すなわち、前記のペースト状混合物(あ)
の酸化ビスマス粉末17重量部の代わりに、平均粒径が約
5μm の水酸化銅 (Cu(OH)2 ) 粉末10.7重量部を用いる
ペースト状混合物(か)を、ペースト状混合物(あ)の
代わりに用い、活物質の坦持部分の寸法および水素吸蔵
合金の坦持量を水素吸蔵電極(あ’)と同じにし、その
ほかの構成を水素吸蔵電極(あ’)と同じにして、水素
吸蔵電極(か’)を製作した。
Battery (E) Since one negative electrode contained about 4.6 g of hydrogen storage alloy and about 0.40 g of cupric oxide powder, when the battery was charged, the negative oxide Two
A total of about 270 mAh for reducing copper to metallic copper and about 1240 mAh for charging hydrogen storage alloy to full charge is about 1510 mAh. On the other hand, the amount of electricity required to charge the positive electrode of this battery is 1310 mAh. Therefore, in this battery, hydrogen gas is not generated from the negative electrode until the positive electrode is fully charged. Moreover, the total thickness of the five negative electrodes is smaller than that of the conventional battery (C) by about 0.27 mm. [Battery (F)] (Example of the present invention) In the battery (F), a negative electrode hydrogen storage electrode (or ') was manufactured by the following method. That is, the pasty mixture (a)
In place of 17 parts by weight of the bismuth oxide powder of 1 ), 10.7 parts by weight of copper hydroxide (Cu (OH) 2 ) powder having an average particle size of about 5 μm was used. Used for the same, the size of the active material carrying part and the carrying amount of the hydrogen storage alloy are the same as those of the hydrogen storage electrode (a '), and the other configurations are the same as those of the hydrogen storage electrode (a'). I made (ka ').

【0057】電池(F)は、負極として、電池(A)に
おける水素吸蔵電極(あ)の代わりに、水素吸蔵電極
(か’)を用い、そのほかの構成を電池(A)と同じに
して製作した。
The battery (F) was manufactured by using, as the negative electrode, the hydrogen storage electrode (or ') in place of the hydrogen storage electrode (a) in the battery (A), and the other structure was the same as that of the battery (A). did.

【0058】電池(F)1個の負極には、約4.6gの水素
吸蔵合金および約0.49g の水酸化銅粉末が含有されてい
るので、この電池を充電する場合に、負極の水酸化銅を
金属銅に還元するための電気量約270mAh、および水素吸
蔵合金のを満充電する充電電気量約1240mAh との合計
は、約1510mAh である。一方、この電池の正極の充電が
完了するまでの充電電気量は1310mAh である。従って、
この電池では、正極が満充電になるまでに負極からの水
素ガスの発生が起こらない。しかも、従来の電池(C)
よりも負極5枚の合計の厚さが約0.27mmだけ小さい。 [電池(G)](本発明実施例) 電池(G)は、負極の水素吸蔵電極(き’)を次の方法
で製作した。すなわち、前記のペースト状混合物(あ)
の酸化ビスマス粉末17重量部の代わりに、平均粒径が約
5μm の一酸化鉛(PbO) 粉末24.4重量部を用いるペース
ト状混合物(き)を、ペースト状混合物(あ)の代わり
に用い、活物質の坦持部分の寸法および水素吸蔵合金の
坦持量を水素吸蔵電極(あ’)と同じにし、そのほかの
構成を水素吸蔵電極(あ’)と同じにして、水素吸蔵電
極(き’)を製作した。
Battery (F) Since one negative electrode contains about 4.6 g of hydrogen storage alloy and about 0.49 g of copper hydroxide powder, when charging this battery, the copper hydroxide of the negative electrode A total of about 270mAh for reducing electricity to metallic copper and about 1240mAh for charging hydrogen storage alloy to full charge is about 1510mAh. On the other hand, the amount of electricity required to charge the positive electrode of this battery is 1310 mAh. Therefore,
In this battery, generation of hydrogen gas from the negative electrode does not occur until the positive electrode is fully charged. Moreover, the conventional battery (C)
The total thickness of the five negative electrodes is smaller by about 0.27 mm. [Battery (G)] (Example of the present invention) In the battery (G), a negative electrode hydrogen storage electrode (ki ') was manufactured by the following method. That is, the pasty mixture (a)
Instead of 17 parts by weight of the bismuth oxide powder, 24.4 parts by weight of lead monoxide (PbO) powder having an average particle size of about 5 μm was used, and the pasty mixture (a) was used instead of the pasty mixture (a). The size of the material-carrying part and the carrying amount of the hydrogen storage alloy are made the same as those of the hydrogen storage electrode (a '), and other configurations are made the same as those of the hydrogen storage electrode (a'), and the hydrogen storage electrode (ki '). Was produced.

【0059】電池(G)は、負極として、電池(A)に
おける水素吸蔵電極(あ)の代わりに水素吸蔵電極
(き’)を用い、そのほかの構成を電池(A)と同じに
して製作した。
The battery (G) was manufactured by using the hydrogen storage electrode (ki ') in place of the hydrogen storage electrode (a) in the battery (A) as the negative electrode, and making the other constitutions the same as the battery (A). ..

【0060】電池(G)1個の負極には、約4.6gの水素
吸蔵合金および約1.12g の一酸化鉛粉末が含有されてい
るので、この電池を充電する場合に、負極の一酸化鉛を
金属鉛に還元するための電気量約270mAh、および水素吸
蔵合金のを満充電する充電電気量約1240mAh との合計
は、約1510mAh である。一方、この電池の正極の充電が
完了するまでの充電電気量は1310mAh である。従って、
この電池では、正極が満充電になるまでに負極からの水
素ガスの発生が起こらない。しかも、従来の電池(C)
よりも負極5枚の合計の厚さが約0.27mmだけ小さい。 [電池(H)](本発明実施例) 電池(H)は、負極の水素吸蔵電極(く’)を次の方法
で製作した。すなわち、前記のペースト状混合物(あ)
の酸化ビスマス粉末17重量部の代わりに、平均粒径が約
5μm の四三酸化鉛 (Pb3 O4 ) 粉末18.8重量部を用い
るペースト状混合物(く)を、ペースト状混合物(あ)
の代わりに用い、活物質の坦持部分の寸法および水素吸
蔵合金の坦持量を水素吸蔵電極(あ’)と同じにし、そ
のほかの構成を水素吸蔵電極(あ’)と同じにして、水
素吸蔵電極(く’)を製作した。
Battery (G) One negative electrode contains about 4.6 g of hydrogen storage alloy and about 1.12 g of lead monoxide powder. The total of about 270mAh for reducing hydrogen to metallic lead and about 1240mAh for fully charging the hydrogen storage alloy is about 1510mAh. On the other hand, the amount of electricity required to charge the positive electrode of this battery is 1310 mAh. Therefore,
In this battery, generation of hydrogen gas from the negative electrode does not occur until the positive electrode is fully charged. Moreover, the conventional battery (C)
The total thickness of the five negative electrodes is smaller by about 0.27 mm. [Battery (H)] (Example of the present invention) In the battery (H), a negative electrode hydrogen storage electrode (H ') was manufactured by the following method. That is, the pasty mixture (a)
In place of 17 parts by weight of the bismuth oxide powder of No. 1, 18.8 parts by weight of lead trioxide (Pb 3 O 4 ) powder having an average particle size of about 5 μm was used, and the pasty mixture (A) was added to the pasty mixture (A).
Instead of the hydrogen storage electrode, the dimensions of the active material carrying portion and the hydrogen storage alloy carrying amount are made the same as those of the hydrogen storage electrode (a '), and the other configurations are made the same as those of the hydrogen storage electrode (a'). A storage electrode (ku ') was manufactured.

【0061】電池(H)は、負極として、電池(A)に
おける水素吸蔵電極(あ)の代わりに水素吸蔵電極
(く’)を用い、そのほかの構成を電池(A)と同じに
して製作した。
The battery (H) was manufactured by using the hydrogen storage electrode (K ') instead of the hydrogen storage electrode (A) in the battery (A) as the negative electrode and making the other constitutions the same as the battery (A). ..

【0062】電池(H)1個の負極には、約4.6gの水素
吸蔵合金および約0.86g の四三酸化鉛粉末が含有されて
いるので、この電池を充電する場合に、負極の四三酸化
鉛を金属鉛に還元するための電気量約270mAh、および水
素吸蔵合金のを満充電する充電電気量約1240mAh との合
計は、約1510mAh である。一方、この電池の正極の充電
が完了するまでの充電電気量は1310mAh である。従っ
て、この電池では、正極が満充電になるまでに負極から
の水素ガスの発生が起こらない。しかも、従来の電池
(C)よりも負極5枚の合計の厚さが約0.27mmだけ小さ
い。 [電池(I)](本発明実施例) 電池(I)は、負極の水素吸蔵電極(け’)を次の方法
で製作した。すなわち、前記のペースト状混合物(あ)
の酸化ビスマス粉末17重量部の代わりに、平均粒径が約
5μm の過酸化鉛(PbO2 ) 粉末13.1重量部を用いるペー
スト状混合物(け)をペースト状混合物(あ)の代わり
に用い、活物質の坦持部分の寸法および水素吸蔵合金の
坦持量を水素吸蔵電極(あ’)と同じにし、そのほかの
構成を水素吸蔵電極(あ’)と同じにして、水素吸蔵電
極(け’)を製作した。
Battery (H) One negative electrode contains about 4.6 g of hydrogen storage alloy and about 0.86 g of lead trioxide powder. Therefore, when charging this battery, the negative electrode A total of about 270 mAh for reducing lead oxide to metallic lead and about 1240 mAh for fully charging the hydrogen storage alloy is about 1510 mAh. On the other hand, the amount of electricity required to charge the positive electrode of this battery is 1310 mAh. Therefore, in this battery, hydrogen gas is not generated from the negative electrode until the positive electrode is fully charged. Moreover, the total thickness of the five negative electrodes is smaller than that of the conventional battery (C) by about 0.27 mm. [Battery (I)] (Example of the present invention) In the battery (I), a negative electrode hydrogen storage electrode (ke ') was manufactured by the following method. That is, the pasty mixture (a)
In place of 17 parts by weight of the bismuth oxide powder of No. 1, 13.1 parts by weight of lead peroxide (PbO 2 ) powder having an average particle size of about 5 μm, a paste-like mixture (ke) was used instead of the paste-like mixture (a). The size of the substance-carrying portion and the amount of hydrogen storage alloy carried are the same as those of the hydrogen storage electrode (a '), and the other configurations are the same as those of the hydrogen storage electrode (a'), and the hydrogen storage electrode (ke ') Was produced.

【0063】電池(I)は、負極として、電池(A)に
おける水素吸蔵電極(あ)の代わりに水素吸蔵電極
(け’)を用い、そのほかの構成を電池(A)と同じに
して製作した。
The battery (I) was manufactured by using the hydrogen storage electrode (ke ') in place of the hydrogen storage electrode (a) in the battery (A) as the negative electrode and making the other constitutions the same as the battery (A). ..

【0064】電池(I)1個の負極には、約4.6gの水素
吸蔵合金および約0.60g の過酸化鉛粉末が含有されてい
るので、この電池を充電する場合に、負極の過酸化鉛を
金属鉛に還元するための電気量約270mAh、および水素吸
蔵合金のを満充電する充電電気量約1240mAh との合計
は、約1510mAh である。一方、この電池の正極の充電が
完了するまでの充電電気量は1310mAh である。従って、
この電池では、正極が満充電になるまでに負極からの水
素ガスの発生が起こらない。しかも、従来の電池(C)
よりも負極5枚の合計の厚さが約0.27mmだけ小さい。 [電池(J)](本発明実施例) 電池(J)は、負極の水素吸蔵電極(こ’)を次の方法
で製作した。すなわち、前記のペースト状混合物(あ)
の酸化ビスマス粉末17重量部の代わりに、平均粒径が約
5μm の水酸化ビスマス (Bi(OH)3 ) 粉末19.0重量部を
用いるペースト状混合物(か)を、ペースト状混合物
(あ)の代わりに用い、活物質の坦持部分の寸法および
水素吸蔵合金の坦持量を水素吸蔵電極(あ’)と同じに
し、そのほかの構成を水素吸蔵電極(あ’)と同じにし
て、水素吸蔵電極(こ’)を製作した。 電池(J)
は、負極として、電池(A)における水素吸蔵電極
(あ)の代わりに水素吸蔵電極(こ’)を用い、そのほ
かの構成を電池(A)と同じにして製作した。
Battery (I) One negative electrode contained about 4.6 g of hydrogen storage alloy and about 0.60 g of lead peroxide powder. Therefore, when charging this battery, the lead peroxide of the negative electrode was The total of about 270mAh for reducing hydrogen to metallic lead and about 1240mAh for fully charging the hydrogen storage alloy is about 1510mAh. On the other hand, the amount of electricity required to charge the positive electrode of this battery is 1310 mAh. Therefore,
In this battery, generation of hydrogen gas from the negative electrode does not occur until the positive electrode is fully charged. Moreover, the conventional battery (C)
The total thickness of the five negative electrodes is smaller by about 0.27 mm. [Battery (J)] (Example of the present invention) In the battery (J), a negative electrode hydrogen storage electrode (this) was manufactured by the following method. That is, the pasty mixture (a)
Instead of 17 parts by weight of bismuth oxide powder, 19.0 parts by weight of bismuth hydroxide (Bi (OH) 3 ) powder having an average particle size of about 5 μm was used instead of the pasty mixture (a). Used for the same, the size of the active material carrying part and the carrying amount of the hydrogen storage alloy are the same as those of the hydrogen storage electrode (a '), and the other configurations are the same as those of the hydrogen storage electrode (a'). I made this. Battery (J)
Was manufactured in the same manner as the battery (A) except that the hydrogen storage electrode (a ') in the battery (A) was used as the negative electrode instead of the hydrogen storage electrode (a).

【0065】電池(J)1個の負極には、約4.6gの水素
吸蔵合金および約0.87g の水酸化ビスマス粉末が含有さ
れているので、この電池を充電する場合に、負極の水酸
化ビスマスを金属ビスマスに還元するための電気量約27
0mAh、および水素吸蔵合金のを満充電する充電電気量約
1240mAh との合計は、約1510mAh である。一方、この電
池の正極の充電が完了するまでの充電電気量は1310mAh
である。従って、この電池では、正極が満充電になるま
でに負極からの水素ガスの発生が起こらない。しかも、
従来の電池(C)よりも負極5枚の合計の厚さが約0.27
mmだけ小さい。 [電池(K)](本発明実施例) 電池(K)は、負極の水素吸蔵電極(さ’)を次の方法
で製作した。すなわち、前記のペースト状混合物(あ)
の酸化ビスマス粉末17重量部の代わりに、平均粒径が約
5μm の酸化第1銀 (Ag2 O)粉末25.4重量部を用いるペ
ースト状混合物(さ)を、ペースト状混合物(あ)の代
わりに用い、活物質の坦持部分の寸法および水素吸蔵合
金の坦持量を水素吸蔵電極(あ’)と同じにし、そのほ
かの構成を水素吸蔵電極(あ’)と同じにして、水素吸
蔵電極(さ’)を製作した。
Battery (J) One negative electrode contains about 4.6 g of hydrogen storage alloy and about 0.87 g of bismuth hydroxide powder. Therefore, when charging this battery, the negative electrode bismuth hydroxide was used. Electricity for reducing hydrogen to metal bismuth 27
0mAh, and the amount of electricity charged to fully charge the hydrogen storage alloy
The total with 1240mAh is about 1510mAh. On the other hand, the amount of electricity required to charge the positive electrode of this battery is 1310 mAh.
Is. Therefore, in this battery, hydrogen gas is not generated from the negative electrode until the positive electrode is fully charged. Moreover,
The total thickness of the five negative electrodes is about 0.27 compared to the conventional battery (C).
mm smaller. [Battery (K)] (Example of the present invention) In the battery (K), a negative electrode hydrogen storage electrode (a ') was manufactured by the following method. That is, the pasty mixture (a)
Instead of 17 parts by weight of bismuth oxide powder, 25.4 parts by weight of silver (Ag 2 O) oxide powder having an average particle size of about 5 μm was used. The size of the active material carrying part and the carrying amount of the hydrogen storage alloy are the same as those of the hydrogen storage electrode (a '), and other configurations are the same as those of the hydrogen storage electrode (a'). Sa ') was produced.

【0066】電池(K)は、負極として、電池(A)に
おける水素吸蔵電極(あ)の代わりに水素吸蔵電極
(さ’)を用い、そのほかの構成を電池(A)と同じに
して製作した。
The battery (K) was manufactured by using the hydrogen storage electrode (a ') in place of the hydrogen storage electrode (a) in the battery (A) as the negative electrode and making the other configurations the same as the battery (A). ..

【0067】電池(K)1個の負極には、約4.6gの水素
吸蔵合金および約1.17g の酸化第1銀粉末が含有されて
いるので、この電池を充電する場合に、負極の酸化第1
銀を金属銀に還元するための電気量約270mAh、および水
素吸蔵合金のを満充電する充電電気量約1240mAh との合
計は、約1510mAh である。一方、この電池の正極の充電
が完了するまでの充電電気量は1310mAh である。従っ
て、この電池では、正極が満充電になるまでに負極から
の水素ガスの発生が起こらない。しかも、従来の電池
(C)よりも負極5枚の合計の厚さが約0.27mmだけ小さ
い。 [電池(L)](本発明実施例) 電池(L)は、負極の水素吸蔵電極(し’)を次の方法
で製作した。すなわち、前記のペースト状混合物(あ)
の酸化ビスマス粉末17重量部の代わりに、平均粒径が約
5μm の酸化第2銀 (Ag2 O2 ) 粉末13.6重量部を用い
るペースト状混合物(し)を、ペースト状混合物(あ)
の代わりに用い、活物質の坦持部分の寸法および水素吸
蔵合金の坦持量を水素吸蔵電極(あ’)と同じにし、そ
のほかの構成を水素吸蔵電極(あ’)と同じにして、水
素吸蔵電極(し’)を製作した。
Since one negative electrode of the battery (K) contained about 4.6 g of hydrogen storage alloy and about 1.17 g of first silver oxide powder, when the battery was charged, the negative electrode oxidation 1
A total of about 270mAh for reducing silver to metallic silver and about 1240mAh for charging hydrogen storage alloy to full charge is about 1510mAh. On the other hand, the amount of electricity required to charge the positive electrode of this battery is 1310 mAh. Therefore, in this battery, hydrogen gas is not generated from the negative electrode until the positive electrode is fully charged. Moreover, the total thickness of the five negative electrodes is smaller than that of the conventional battery (C) by about 0.27 mm. [Battery (L)] (Example of the present invention) In the battery (L), a negative electrode hydrogen storage electrode (shi ') was manufactured by the following method. That is, the pasty mixture (a)
Instead of 17 parts by weight of bismuth oxide powder, 13.6 parts by weight of silver (Ag 2 O 2 ) oxide powder having an average particle size of about 5 μm was used to prepare a paste mixture (a).
Instead of the hydrogen storage electrode, the dimensions of the active material carrying portion and the hydrogen storage alloy carrying amount are made the same as those of the hydrogen storage electrode (a '), and the other configurations are made the same as those of the hydrogen storage electrode (a'). A storage electrode (shi ') was manufactured.

【0068】電池(L)は、負極として、電池(A)に
おける水素吸蔵電極(あ)の代わりに水素吸蔵電極
(し’)を用い、そのほかの構成を電池(A)と同じに
して製作した。
The battery (L) was manufactured by using the hydrogen storage electrode (shi ') in place of the hydrogen storage electrode (a) in the battery (A) as the negative electrode, and making the other constitutions the same as the battery (A). ..

【0069】電池(L)1個の負極には、約4.6gの水素
吸蔵合金および約0.62g の酸化第2銀粉末が含有されて
いるので、この電池を充電する場合に、負極の酸化第2
銀を金属銀に還元するための電気量約270mAh、および水
素吸蔵合金のを満充電する充電電気量約1240mAh との合
計は、約1510mAh である。一方、この電池の正極の充電
が完了するまでの充電電気量は1310mAh である。従っ
て、この電池では、正極が満充電になるまでに負極から
の水素ガスの発生が起こらない。しかも、従来の電池
(C)よりも負極5枚の合計の厚さが約0.27mmだけ小さ
い。 [電池(M)](本発明実施例) 電池(M)は、負極の水素吸蔵電極(す’)を次の方法
で製作した。すなわち、前記のペースト状混合物(あ)
の酸化ビスマス粉末17重量部の代わりに、平均粒径が約
5μm の水酸化タリウム (Tl(OH)3 ) 粉末18.6重量部を
用いるペースト状混合物(す)を、ペースト状混合物
(あ)の代わりに用い、活物質の坦持部分の寸法および
水素吸蔵合金の坦持量を水素吸蔵電極(あ’)と同じに
し、そのほかの構成を水素吸蔵電極(あ’)と同じにし
て、水素吸蔵電極(す’)を製作した。 電池(M)
は、負極として、電池(A)における水素吸蔵電極
(あ)の代わりに水素吸蔵電極(す’)を用い、そのほ
かの構成を電池(A)と同じにして製作した。
Since one negative electrode of the battery (L) contained about 4.6 g of hydrogen storage alloy and about 0.62 g of second silver oxide powder, when the battery was charged, the negative electrode of the negative electrode was oxidized. Two
A total of about 270mAh for reducing silver to metallic silver and about 1240mAh for charging hydrogen storage alloy to full charge is about 1510mAh. On the other hand, the amount of electricity required to charge the positive electrode of this battery is 1310 mAh. Therefore, in this battery, hydrogen gas is not generated from the negative electrode until the positive electrode is fully charged. Moreover, the total thickness of the five negative electrodes is smaller than that of the conventional battery (C) by about 0.27 mm. [Battery (M)] (Example of the present invention) In the battery (M), a negative electrode hydrogen storage electrode (s') was manufactured by the following method. That is, the pasty mixture (a)
Instead of 17 parts by weight of bismuth oxide powder, 18.6 parts by weight of thallium hydroxide (Tl (OH) 3 ) powder having an average particle size of about 5 μm was used, instead of the pasty mixture (a). Used for the same, the size of the active material carrying part and the carrying amount of the hydrogen storage alloy are the same as those of the hydrogen storage electrode (a '), and the other configurations are the same as those of the hydrogen storage electrode (a'). I made (su '). Battery (M)
Was manufactured by using a hydrogen storage electrode (s ′) as the negative electrode instead of the hydrogen storage electrode (a) in the battery (A), and making the other configurations the same as the battery (A).

【0070】電池(M)1個の負極には、約4.6gの水素
吸蔵合金および約0.86g の水酸化タリウム粉末が含有さ
れているので、この電池を充電する場合に、負極の水酸
化タリウムを金属タリウムに還元するための電気量約27
0mAh、および水素吸蔵合金のを満充電する充電電気量約
1240mAh との合計は、約1510mAh である。一方、この電
池の正極の充電が完了するまでの充電電気量は1310mAh
である。従って、この電池では、正極が満充電になるま
でに負極からの水素ガスの発生が起こらない。しかも、
従来の電池(C)よりも負極5枚の合計の厚さが約0.27
mmだけ小さい。 [電池(O)](本発明実施例) 電池(O)は、負極の水素吸蔵電極(せ’)を次の方法
で製作した。すなわち、前記のペースト状混合物(あ)
の酸化ビスマス粉末17重量部の代わりに、平均粒径が約
5μm の酸化第2水銀(HgO) 粉末23.7重量部を用いるペ
ースト状混合物(せ)を、ペースト状混合物(あ)の代
わりに用い、活物質の坦持部分の寸法および水素吸蔵合
金の坦持量を水素吸蔵電極(あ’)と同じにし、そのほ
かの構成を水素吸蔵電極(あ’)と同じにして、水素吸
蔵電極(せ’)を製作した。
Battery (M) Since one negative electrode contains about 4.6 g of hydrogen storage alloy and about 0.86 g of thallium hydroxide powder, when charging this battery, the negative electrode of thallium hydroxide is used. Electricity for reducing hydrogen to thallium
0mAh, and the amount of electricity charged to fully charge the hydrogen storage alloy
The total with 1240mAh is about 1510mAh. On the other hand, the amount of electricity required to charge the positive electrode of this battery is 1310 mAh.
Is. Therefore, in this battery, hydrogen gas is not generated from the negative electrode until the positive electrode is fully charged. Moreover,
The total thickness of the five negative electrodes is about 0.27 compared to the conventional battery (C).
mm smaller. [Battery (O)] (Examples of the present invention) In the battery (O), a negative hydrogen storage electrode (se ') was manufactured by the following method. That is, the pasty mixture (a)
Instead of 17 parts by weight of bismuth oxide powder, 23.7 parts by weight of mercuric oxide (HgO) powder having an average particle size of about 5 μm was used instead of the pasty mixture (a). The size of the active material carrying portion and the carrying amount of the hydrogen storage alloy are the same as those of the hydrogen storage electrode (a '), and the other configurations are the same as those of the hydrogen storage electrode (a'), and the hydrogen storage electrode (se ') ) Was produced.

【0071】電池(O)は、負極として、電池(A)に
おける水素吸蔵電極(あ)の代わりに水素吸蔵電極
(せ’)を用い、そのほかの構成を電池(A)と同じに
して製作した。
The battery (O) was manufactured by using the hydrogen storage electrode (se ') in place of the hydrogen storage electrode (a) in the battery (A) as the negative electrode and making the other constitutions the same as the battery (A). ..

【0072】電池(O)1個の負極には、約4.6gの水素
吸蔵合金および約1.09g の酸化水銀粉末が含有されてい
るので、この電池を充電する場合に、負極の酸化第2水
銀を金属水銀に還元するための電気量約270mAh、および
水素吸蔵合金のを満充電する充電電気量約1240mAh との
合計は、約1510mAh である。一方、この電池の正極の充
電が完了するまでの充電電気量は1310mAh である。従っ
て、この電池では、正極が満充電になるまでに負極から
の水素ガスの発生が起こらない。しかも、従来の電池
(C)よりも負極5枚の合計の厚さが約0.27mmだけ小さ
い。 [電池(P)](従来例) 電池(P)は、負極の水素吸蔵電極(そ’)を次の方法
で製作した。すなわち、前記のペースト状混合物(あ)
の酸化ビスマス粉末17重量部の代わりに、合金組成が水
素吸蔵電極(あ’)に用いたものと同じで、平均粒径が
約5μmの水素吸蔵合金粉末約21.7重量部を用いるペー
スト状混合物(そ)を、ペースト状混合物(あ)の代わ
りに用い、活物質の坦持部分の寸法および水素吸蔵合金
の坦持量を水素吸蔵電極(あ’)と同じにし、そのほか
の構成を水素吸蔵電極(あ’)と同じにして、水素吸蔵
電極(そ’)を製作した。
Since one negative electrode of the battery (O) contains about 4.6 g of hydrogen storage alloy and about 1.09 g of mercury oxide powder, when charging this battery, the second mercury oxide of the negative electrode is charged. The total of about 270mAh for reducing hydrogen to metallic mercury and about 1240mAh for fully charging the hydrogen storage alloy is about 1510mAh. On the other hand, the amount of electricity required to charge the positive electrode of this battery is 1310 mAh. Therefore, in this battery, hydrogen gas is not generated from the negative electrode until the positive electrode is fully charged. Moreover, the total thickness of the five negative electrodes is smaller than that of the conventional battery (C) by about 0.27 mm. [Battery (P)] (Conventional example) In the battery (P), a negative electrode hydrogen storage electrode (so ') was manufactured by the following method. That is, the pasty mixture (a)
Instead of 17 parts by weight of bismuth oxide powder of No. 2, a paste-like mixture (about 21.7 parts by weight of hydrogen storage alloy powder having the same alloy composition as the hydrogen storage electrode (a ') and an average particle size of about 5 μm ( S) is used instead of the pasty mixture (A), the size of the active material carrying portion and the amount of hydrogen storage alloy carried are the same as those of the hydrogen storage electrode (A '), and other configurations are used. A hydrogen storage electrode (so ') was manufactured in the same manner as (a').

【0073】電池(P)は、負極として、電池(A)に
おける水素吸蔵電極(あ)の代わりに水素吸蔵電極
(そ’)を用い、そのほかの構成を電池(A)と同じに
して製作した。
The battery (P) was manufactured by using the hydrogen storage electrode (so ') as the negative electrode instead of the hydrogen storage electrode (a) in the battery (A) and making the other constitutions the same as the battery (A). ..

【0074】電池(P)1個の負極には、約4.6gの水素
吸蔵合金および約1.0gの水酸化銅粉末が含有されている
ので、この電池を充電する場合に、負極の水酸化銅を金
属銅に還元するための電気量約270mAh、および水素吸蔵
合金のを満充電する充電電気量約1240mAh との合計は、
約1510mAh である。一方、この電池の正極の充電が完了
するまでの充電電気量は1310mAh である。従って、この
電池では、正極が満充電になるまでに負極からの水素ガ
スの発生が起こらない。しかも、従来の電池(C)より
も負極5枚の合計の厚さが約0.27mmだけ小さい。
Battery (P) Since one negative electrode contained about 4.6 g of hydrogen storage alloy and about 1.0 g of copper hydroxide powder, when charging this battery, the copper hydroxide of the negative electrode Is about 270mAh to reduce copper to metallic copper, and about 1240mAh is the total amount of charge to fully charge the hydrogen storage alloy,
It is about 1510mAh. On the other hand, the amount of electricity required to charge the positive electrode of this battery is 1310 mAh. Therefore, in this battery, hydrogen gas is not generated from the negative electrode until the positive electrode is fully charged. Moreover, the total thickness of the five negative electrodes is smaller than that of the conventional battery (C) by about 0.27 mm.

【0075】以上の16種類の密閉形ニッケル・金属水
素化物蓄電池を、次に示す条件で充放電サイクル試験を
おこなって、電池の内部抵抗が充放電サイクルの10サ
イクル目の値の2倍に到達するまでの充放電サイクル数
を調べた。 <化成の条件> 充電:80mA 16時間。 放電:160mA 端子電圧が1.0Vになるまで。 この条件で、充放電を2回おこなった。 <充放電サイクル試験の条件> 充電:800mA 1.2 時間 放電:800mA 端子電圧が1.0Vになるまで。
The above 16 types of sealed nickel metal hydride storage batteries were subjected to a charge / discharge cycle test under the following conditions, and the internal resistance of the battery reached twice the value at the 10th cycle of the charge / discharge cycle. The number of charging / discharging cycles up to was examined. <Conditions for formation> Charging: 80mA for 16 hours. Discharge: 160mA until the terminal voltage becomes 1.0V. Under this condition, charging / discharging was performed twice. <Conditions of charge / discharge cycle test> Charge: 800mA for 1.2 hours Discharge: 800mA Until the terminal voltage reaches 1.0V.

【0076】なお、この試験は、25℃の雰囲気におい
ておこなった。この試験の結果、および製造時の電池の
厚さを表1に示す。
This test was conducted in an atmosphere of 25 ° C. The results of this test and the battery thickness at the time of manufacture are shown in Table 1.

【0077】[0077]

【表1】 表1から次のことがわかる。[Table 1] The following can be seen from Table 1.

【0078】すなわち、本発明の電池(A)、(D)、
(E)、(F)、(G)、(H)、(I)、(J)、
(K)、(L)、(M)、(N)、(O)は、従来の電
池(B)および(P)と比較して、製造時の電池の厚さ
は、同じであるが、電池の内部抵抗が増加するにいたる
までの充放電サイクル数が大きい。これは、本発明の電
池が、従来の電池(B)や(P)の水素吸蔵電極と同じ
厚さの負極板を用いて負極における充電可能な容量を増
加させ、しかも従来の電池(P)のように、充放電サイ
クルの進行にともなう負極の充電可能な容量の著しい減
少を伴わないからである。
That is, the batteries (A), (D) of the present invention,
(E), (F), (G), (H), (I), (J),
(K), (L), (M), (N), and (O) have the same battery thickness at the time of manufacture as compared with the conventional batteries (B) and (P), The number of charge / discharge cycles until the internal resistance of the battery increases is large. This is because the battery of the present invention uses a negative electrode plate having the same thickness as the hydrogen storage electrode of the conventional batteries (B) and (P) to increase the chargeable capacity of the negative electrode, and the conventional battery (P) As described above, the chargeable capacity of the negative electrode is not significantly reduced as the charge / discharge cycle proceeds.

【0079】そして、これらの本発明の電池は、従来の
電池(C)と比較して、内部抵抗が増加するにいたるま
での充放電サイクル数が同じ程度に大きいが、製造時の
電池の厚さが小さい。これは、本発明の電池では、従来
の電池(C)のように負極の水素吸蔵合金の量を増加さ
せて負極板の厚さを大きくすることなく、負極の充電可
能な容量が大きくなったことによるものである。
These batteries of the present invention have the same number of charge / discharge cycles until the internal resistance increases as compared with the conventional battery (C), but the thickness of the battery at the time of manufacture is large. Is small. This is because in the battery of the present invention, unlike the conventional battery (C), the chargeable capacity of the negative electrode was increased without increasing the amount of the hydrogen storage alloy of the negative electrode and increasing the thickness of the negative electrode plate. This is due to the fact.

【0080】なお、上述の本発明の電池の構成と従来の
電池の構成との差異をいっそう理解しやすくするため
に、本発明の電池(A)と、従来の電池(B)、
(C)、および(P)との正極および負極の容量を図1
に図解して示す。
In order to make it easier to understand the difference between the structure of the battery of the present invention and the structure of the conventional battery, the battery (A) of the present invention and the conventional battery (B),
The capacities of the positive electrode and the negative electrode with (C) and (P) are shown in FIG.
It shows in figure.

【0081】図1から、次のことがわかる。The following can be seen from FIG.

【0082】すなわち、電池(A)、(B)、(C)、
および(P)の正極の構成は同じである。
That is, the batteries (A), (B), (C),
The configurations of the positive electrodes of (P) and (P) are the same.

【0083】そして、電池(A)では、金属コバルトの
酸化に必要な充電電気量で金属ビスマスに還元される量
の酸化ビスマスが含有されている。そして、負極の酸化
ビスマスの還元および水素吸蔵合金の充電に必要な電気
量は、正極のコバルトの酸化および水酸化ニッケルの充
電に必要な電気量よりも大きい。従って、この電池を充
電する場合に、負極の充電が完了する前に正極の充電が
完了することがわかる。
Then, the battery (A) contains an amount of bismuth oxide that can be reduced to metallic bismuth by the amount of charge electricity required for oxidizing metallic cobalt. The amount of electricity required to reduce bismuth oxide of the negative electrode and charge the hydrogen storage alloy is larger than the amount of electricity required to oxidize cobalt of the positive electrode and charge nickel hydroxide. Therefore, when charging this battery, it can be seen that the charging of the positive electrode is completed before the charging of the negative electrode is completed.

【0084】電池(B)では、負極の水素吸蔵合金を充
電して水素ガスが発生するまでの充電電気量が電池
(A)と同じであるが、正極の金属コバルトの酸化に必
要な充電電気量に相当する還元反応を起こす物質が負極
に存在しないので、正極のコバルトの酸化と水酸化ニッ
ケルの充電が完了する前に負極の充電が完了することが
わかる。すなわち、電池(B)では、充電すると、正極
の充電が完了して、正極の主反応が活物質の充電反応か
ら酸素ガス発生反応に移行する前に、負極の充電が完了
して、負極の主反応が、水素吸蔵合金の充電反応から、
水素ガス発生反応に移行することがわかる。
In the battery (B), the amount of charge electricity until the hydrogen storage alloy of the negative electrode is charged and hydrogen gas is generated is the same as that of the battery (A), but the charge electricity required for oxidation of the metallic cobalt of the positive electrode is the same. Since there is no substance corresponding to the amount that causes a reduction reaction in the negative electrode, it can be seen that charging of the negative electrode is completed before the oxidation of cobalt in the positive electrode and the charging of nickel hydroxide are completed. That is, in the battery (B), when the battery is charged, the charging of the positive electrode is completed, and the charging of the negative electrode is completed before the main reaction of the positive electrode shifts from the charging reaction of the active material to the oxygen gas generation reaction. The main reaction is the charging reaction of the hydrogen storage alloy,
It turns out that it shifts to the hydrogen gas generation reaction.

【0085】電池(C)および電池(P)では、電池
(A)の酸化ビスマスの還元および水素吸蔵合金の充電
反応に必要な電気量に相当する量の水素吸蔵合金を負極
に備えていることがわかる。従って、電池(C)および
電池(P)では、電池(A)と同様に、負極の充電が完
了する前に、正極の充電が完了する。
In the batteries (C) and (P), the negative electrode is provided with an amount of hydrogen storage alloy corresponding to the amount of electricity required for the reduction of bismuth oxide and the charging reaction of the hydrogen storage alloy of the battery (A). I understand. Therefore, in the batteries (C) and (P), similarly to the battery (A), the charging of the positive electrode is completed before the charging of the negative electrode is completed.

【0086】しかし、電池(C)では、負極の水素吸蔵
合金の量を増加させただけであるから、負極の体積が大
きくなり、その結果、表1に示したように、電池の厚さ
が電池(A)よりも大きくなってしまう。
However, in the battery (C), since the amount of the hydrogen storage alloy in the negative electrode was simply increased, the volume of the negative electrode was increased. As a result, as shown in Table 1, the thickness of the battery was reduced. It becomes larger than the battery (A).

【0087】また、電池(P)では、金属コバルトの酸
化に必要な電気量に相当する充電電気量を有する粒径が
小さい水素吸蔵合金粉末を負極に添加しているので、負
極の体積も電池(A)と等しい。しかし、この電池で
は、粒径が小さい水素吸蔵合金粉末を用いているので、
この合金粉末が充放電サイクルの進行にともなって劣化
しやすい。その結果、充放電サイクルの進行にともなっ
て、この微粒子の水素吸蔵合金の腐食にともなって発生
する水素によって、負極の過剰の未充電の水素吸蔵合金
が充電されて、負極からの水素発生が起こりやすくな
る。
Further, in the battery (P), the hydrogen storage alloy powder having a small particle size and having a charge electricity quantity corresponding to the electricity quantity required for the oxidation of metallic cobalt is added to the negative electrode, so that the volume of the negative electrode is also the battery. Equal to (A). However, in this battery, since the hydrogen storage alloy powder having a small particle size is used,
This alloy powder easily deteriorates as the charge / discharge cycle progresses. As a result, as the charge-discharge cycle progresses, the hydrogen that is generated along with the corrosion of the hydrogen storage alloy of the fine particles is charged with the excess uncharged hydrogen storage alloy of the negative electrode, and hydrogen is generated from the negative electrode. It will be easier.

【0088】図1では、本発明の電池として電池(A)
についてのみ説明したが、本発明の電池(D)〜(O)
の場合にも、電池(A)における酸化ビスマスの代わり
に添加したそれぞれの金属化合物が、電池(A)の場合
の酸化ビスマスと同様の作用効果を奏する。
In FIG. 1, a battery (A) is used as the battery of the present invention.
However, the batteries (D) to (O) of the present invention have been described.
Also in this case, each metal compound added in place of bismuth oxide in the battery (A) has the same effect as the bismuth oxide in the case of the battery (A).

【0089】なお、上記の実施例では、特定の組成の稀
土類系の水素吸蔵合金を用いる場合について説明した。
しかし、本発明の作用効果は、この稀土類系水素吸蔵合
金のように、PCT特性の平坦部の領域が広く、しか
も、放電が困難な吸蔵水素の量が少ない水素吸蔵合金の
場合にも(例えば、金属間化合物LaNi5 のLaをそのほか
の稀土類金属やZr、Ti、Hfなどで部分的に置換したり、
NiをCo、Al、Mn、Cu、Fe、Cr、Vnなどで部分的に置換し
たり、さらには、Laのサイトの金属元素の原子数の合計
1 に対するNiのサイトの金属元素の原子数の合計が4.9
から5.1 の範囲にある水素吸蔵合金、あるいはZrNi2
ZrをTiやHfで部分的に置換したり、NiをCr、Mn、Al、F
e、V などで部分的に置換したり、さらには、Zrのサイ
トの金属元素の原子数の合計1 に対するNiのサイトの金
属元素の原子数の合計が1.5 から2 の範囲にある水素吸
蔵合金)、上記の実施例と同様に得られる。
In the above embodiments, the case where a rare earth-based hydrogen storage alloy having a specific composition is used has been described.
However, the function and effect of the present invention are also obtained in the case of a hydrogen storage alloy, such as this rare earth hydrogen storage alloy, in which the flat region of the PCT characteristic is wide and the amount of stored hydrogen that is difficult to discharge is small ( For example, La of the intermetallic compound LaNi 5 is partially replaced with other rare earth metals, Zr, Ti, Hf, etc.,
Ni is partially replaced by Co, Al, Mn, Cu, Fe, Cr, Vn, etc., and furthermore, the total number of atoms of metallic elements at the La site.
The total number of metallic elements at the Ni site for 1 is 4.9.
To hydrogen storage alloys in the range from 1 to 5.1, or ZrNi 2
Partially replace Zr with Ti or Hf, or replace Ni with Cr, Mn, Al, F
Hydrogen storage alloys that are partially substituted with e, V, etc., or that the total number of metal elements in the Ni site is 1 to the total number of metal elements in the Zr site is 1 to 2. ), Similar to the above example.

【0090】さらに、上記の実施例では、正極に特定の
量の金属コバルトを添加する場合について説明した。し
かし、金属コバルトの添加量は当業者の必要に応じて適
宜選択されるものであって、本発明が作用効果を奏する
金属コバルトの配合量は、上記の実施例の配合量の場合
だけに限定されるものではない。
Further, in the above embodiment, the case where a specific amount of metallic cobalt is added to the positive electrode has been described. However, the amount of metallic cobalt added is appropriately selected according to the need of those skilled in the art, and the amount of metallic cobalt to which the present invention exerts its function and effect is limited only to the amount of the above examples. It is not something that will be done.

【0091】さらに、上記の実施例では、正極に金属コ
バルトを単独で添加する場合について説明した。しか
し、金属コバルトを単独で添加する場合だけではなく、
金属コバルト、酸化コバルト、および水酸化コバルトの
群から選択した1つ以上を正極に添加する場合にも、正
極活物質の利用率を高くする効果がある。そして、この
場合にも、本発明の手段は、上記の実施例と同様の作用
効果を奏することを確かめた。
Furthermore, in the above embodiment, the case where metallic cobalt is added alone to the positive electrode has been described. However, not only when adding metallic cobalt alone,
Even when one or more selected from the group of metallic cobalt, cobalt oxide, and cobalt hydroxide is added to the positive electrode, there is an effect of increasing the utilization rate of the positive electrode active material. And, in this case, it was confirmed that the means of the present invention has the same effects as those of the above embodiment.

【0092】ただし、これらの電池を充電する場合に、
金属コバルトのコバルトは、0価から3価に酸化され、
酸化コバルトおよび水酸化コバルトのコバルトは2価か
ら3価に酸化される。従って、正極に添加するコバルト
の量が同じ場合には、金属コバルトを添加する場合より
も、酸化コバルトや水酸化コバルトを添加する場合のほ
うが、コバルトを酸化にするために必要な充電電気量は
少なくなる。それゆえ、酸化コバルトや水酸化コバルト
を正極に添加する場合には、金属コバルトを添加する上
記の実施例の場合と比較して、負極からの水素ガスの発
生が正極からの酸素ガスの発生よりも早くならないよう
にするために必要な酸化ビスマス等の化合物の添加量は
少なくてよいことになる。
However, when charging these batteries,
Cobalt of metallic cobalt is oxidized from 0 valence to 3 valence,
Cobalt oxide and cobalt hydroxide are oxidized from divalent to trivalent. Therefore, if the amount of cobalt added to the positive electrode is the same, the amount of charging electricity required to oxidize cobalt is greater when cobalt oxide or cobalt hydroxide is added than when metallic cobalt is added. Less. Therefore, when cobalt oxide or cobalt hydroxide is added to the positive electrode, hydrogen gas is generated from the negative electrode more than oxygen gas is generated from the positive electrode as compared with the case of the above-described example in which metallic cobalt is added. Therefore, the amount of addition of a compound such as bismuth oxide or the like required to prevent the increase in the processing time may be small.

【0093】また、上記の実施例では、水酸化ニッケル
およびコバルトを発泡状ニッケルに充填する水酸化ニッ
ケル電極を正極板に用いる場合について説明したが、発
泡状ニッケルの代わりにニッケル繊維の焼結体を用いて
も、上記の実施例と同様の作用効果を奏する。
Further, in the above-mentioned embodiment, the case where the nickel hydroxide electrode in which nickel hydroxide and cobalt are filled in foam nickel is used for the positive electrode plate has been described. However, instead of foam nickel, a sintered body of nickel fiber is used. Even if it is used, the same operational effect as that of the above-described embodiment can be obtained.

【0094】さらに、上記の実施例では、負極には、水
素吸蔵合金粉末をパンチングメタルに坦持させた水素吸
蔵電極を用いる場合について説明したが、パンチングメ
タルの代わりに、ニッケルやニッケルメッキした鉄や銅
などの耐アルカリ性金属からなる網やエキスパンデッド
メタルを用いたり、あるいは、発泡状メタルや金属繊維
の焼結体のような三次元多孔体の空隙に水素吸蔵合金を
充填した水素吸蔵電極を負極に用いる場合にも、上記の
実施例と同様の作用効果を奏することを確かめた。
Further, in the above-mentioned embodiment, the case where the hydrogen storage electrode in which the hydrogen storage alloy powder is carried on the punching metal is used for the negative electrode has been described, but nickel or nickel-plated iron is used instead of the punching metal. Hydrogen storage electrode that uses a net or expanded metal made of alkali resistant metal such as copper or copper, or fills the voids of a three-dimensional porous body such as foamed metal or sintered metal fiber with hydrogen storage alloy It was confirmed that the same action and effect as those of the above-described examples can be obtained when the is used for the negative electrode.

【0095】また、上記の実施例では、矩形状の電極を
積層して、外形が角形の密閉形ニッケル・金属水素化物
蓄電池について説明したが、そのほかに、帯状の正極
板、負極板、およびセパレータを捲回してなる円筒形の
密閉形ニッケル・金属水素化物蓄電池を構成した場合に
も、上記の実施例と同様の作用効果を奏することを確か
めた。
Further, in the above-mentioned embodiment, a rectangular nickel-metal hydride storage battery in which rectangular electrodes are laminated to have a rectangular outer shape has been described, but in addition to this, a strip-shaped positive electrode plate, negative electrode plate, and separator are used. It was confirmed that even when a cylindrical sealed nickel-metal hydride storage battery formed by winding is wound, the same operational effect as that of the above-mentioned embodiment is obtained.

【0096】また、上記の実施例では、水素吸蔵合金粉
末と酸化ビスマスなどの化合物の粉末とをペースト状混
合物にして製作したペースト式の水素吸蔵電極を負極に
用いる場合について説明した。しかし、この構成のほか
に、水素吸蔵合金の焼結体や溶射層のような多孔体から
なる水素吸蔵電極やペースト式の水素吸蔵電極の場合
に、酸化ビスマスなどの化合物の微粉末をペースト状に
して、そのペースト状混合物を水素吸蔵電極の細孔に注
入してから乾燥したり、酸化ビスマスなどの化合物の微
粉末を乾燥状態のままで水素吸蔵電極の細孔に注入する
方法で添加する場合にも、上記の実施例と同様の作用効
果を奏することを確認した。
Further, in the above-mentioned embodiment, the case where the paste type hydrogen storage electrode manufactured by making the paste mixture of the hydrogen storage alloy powder and the powder of the compound such as bismuth oxide is used for the negative electrode. However, in addition to this configuration, in the case of a hydrogen storage electrode consisting of a sintered body of a hydrogen storage alloy or a porous body such as a sprayed layer or a paste type hydrogen storage electrode, fine powder of a compound such as bismuth oxide is pasted. Then, the paste-like mixture is injected into the pores of the hydrogen storage electrode and then dried, or fine powder of a compound such as bismuth oxide is added into the pores of the hydrogen storage electrode in a dry state. Also in this case, it was confirmed that the same operational effects as those of the above-mentioned examples were exhibited.

【0097】また、上記の実施例では、負極に用いる水
素吸蔵合金粉末の平均粒径が約30μm で、酸化ビスマス
などの化合物の平均粒径が約5 μm の場合について説明
したが、水素吸蔵合金および酸化ビスマスなどの化合物
の平均粒径は、それぞれこのような場合にのみ本発明の
手段が作用効果を奏するのではない。要するに、酸化ビ
スマスなどの化合物の粒径が負極の水素吸蔵合金の充填
密度を著しく低下させない程度であれば、そのほかの種
種の粒径の組み合わせでも、同様の作用効果を奏するこ
とはいうまでもない。
In the above examples, the hydrogen storage alloy powder used for the negative electrode has an average particle size of about 30 μm, and the compound such as bismuth oxide has an average particle size of about 5 μm. The average particle size of the compounds such as bismuth oxide and the like is not the case that the means of the present invention exerts its effects only in such cases. In short, it is needless to say that the combination of the particle diameters of other species also has the same effect as long as the particle diameter of the compound such as bismuth oxide does not significantly reduce the packing density of the hydrogen storage alloy of the negative electrode. ..

【0098】さらに、上記の実施例では、酸化ビスマス
などの化合物の添加量を、正極の金属コバルトを0価か
ら3価に酸化するために必要な電気量で、それらの化合
物が金属に還元される量にほぼ等しくした場合について
説明した。しかしながら、本発明は、このような添加量
においてのみ臨界的な作用効果を奏するのではなく、も
っと広い添加量の範囲で作用効果を奏する。
Further, in the above-mentioned examples, the amount of the compound such as bismuth oxide added is the amount of electricity required to oxidize the metallic cobalt of the positive electrode from 0-valent to 3-valent, and these compounds are reduced to the metal. The case where the amount is almost equal to the amount is described. However, the present invention does not exert the critical action and effect only with such an addition amount, but exerts the action and effect in a wider range of the addition amount.

【0099】すなわち、酸化ビスマス等の化合物の添加
量がこれよりも少ない場合には、水素吸蔵合金の量を増
加させておけば、負極の厚さは、それに応じて増加し
て、本発明の作用効果の大きさは小さくなるものの、負
極の厚さは、酸化ビスマス等の化合物を添加しない場合
よりも小さくて済むので、やはり、本発明の手段の作用
効果が得られる。
That is, when the amount of the compound such as bismuth oxide added is smaller than that, if the amount of the hydrogen storage alloy is increased, the thickness of the negative electrode is increased accordingly, and the thickness of the present invention is increased. Although the magnitude of the action and effect is small, the thickness of the negative electrode can be made smaller than in the case where no compound such as bismuth oxide is added, so that the action and effect of the means of the present invention can be obtained.

【0100】逆に、酸化ビスマスなどの化合物の添加量
がこれよりも多い場合にも、上述のように、正極活物質
の水酸化ニッケルそれ自体にも、充電されて放電されな
い部分が存在するので、酸化ビスマスなどの化合物の量
が少々多くても、電池の放電が負極の容量で制限される
ことにはならない。
On the contrary, even when the amount of the compound such as bismuth oxide added is larger than this, as described above, the nickel hydroxide itself of the positive electrode active material has a portion which is not charged and discharged. Even if the amount of the compound such as bismuth oxide is slightly large, the discharge of the battery is not limited by the capacity of the negative electrode.

【0101】また、充電されて放電されない正極活物質
の量は、水酸化ニッケル電極の製造方法の影響を受ける
ものであって、どの水酸化ニッケル電極でも上記の実施
例に示したように水酸化ニッケルのニッケルが2.25価ま
で必ず放電されるというものではない。
Further, the amount of the positive electrode active material that is charged and not discharged is influenced by the method for manufacturing the nickel hydroxide electrode. Nickel of nickel is not always discharged up to 2.25 valence.

【0102】このような理由から、酸化ビスマスなどの
金属化合物の添加量は、等業者が必要に応じて適宜選択
することができるものである。
For this reason, the addition amount of the metal compound such as bismuth oxide can be appropriately selected by those skilled in the art as needed.

【0103】[0103]

【発明の効果】本発明によれば、主として水酸化ニッケ
ルからなる活物質と、金属コバルト、水酸化コバルト、
および酸化コバルトとからなる群から選択した少なくと
も1つの添加物とを3次元多孔体に保持してなる正極
と、水素吸蔵合金を主体とする負極とを備える密閉形ニ
ッケル−金属水素化物蓄電池において、負極の体積の増
加を招くことなく、放電反応に関与しない負極の水素吸
蔵合金の量を少なくして、充放電サイクルの進行にとも
なう電池の電解液量の減少による電池の内部抵抗の増加
を抑制することができる。
According to the present invention, an active material mainly composed of nickel hydroxide, metallic cobalt, cobalt hydroxide,
A sealed nickel-metal hydride storage battery comprising a positive electrode having at least one additive selected from the group consisting of and cobalt oxide in a three-dimensional porous body, and a negative electrode mainly composed of a hydrogen storage alloy, Without increasing the volume of the negative electrode, reduce the amount of hydrogen storage alloy in the negative electrode that does not participate in the discharge reaction, and suppress the increase in the internal resistance of the battery due to the decrease in the amount of electrolyte solution of the battery as the charge and discharge cycle progresses. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の電池と、従来の電池との正極および
負極の物質の充電電気量を比較して示した図。
FIG. 1 is a diagram showing the amounts of charged electricity of positive and negative electrode materials of a battery of the present invention and a conventional battery in comparison.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】主として水酸化ニッケルからなる活物質
と、金属コバルト、水酸化コバルト、および酸化コバル
トとからなる群から選択した少なくとも1つの添加物と
を3次元多孔体に保持してなる正極と、水素吸蔵合金を
主体とする負極とを備える密閉形ニッケル−金属水素化
物蓄電池において、該水素吸蔵合金の放電反応の主体が
起こる電位よりも貴な電位で金属に還元される化合物を
負極に備えることを特徴とする密閉形ニッケル−金属水
素化物電池。
1. A positive electrode in which a three-dimensional porous body holds an active material mainly composed of nickel hydroxide and at least one additive selected from the group consisting of metallic cobalt, cobalt hydroxide and cobalt oxide. In a sealed nickel-metal hydride storage battery comprising a negative electrode mainly composed of a hydrogen storage alloy, the negative electrode is provided with a compound that is reduced to a metal at a potential nobler than the potential at which the main body of the discharge reaction of the hydrogen storage alloy occurs. A sealed nickel-metal hydride battery characterized by the following.
JP03270252A 1991-09-20 1991-09-20 Sealed nickel-metal hydride storage battery Expired - Fee Related JP3141141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03270252A JP3141141B2 (en) 1991-09-20 1991-09-20 Sealed nickel-metal hydride storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03270252A JP3141141B2 (en) 1991-09-20 1991-09-20 Sealed nickel-metal hydride storage battery

Publications (2)

Publication Number Publication Date
JPH0582127A true JPH0582127A (en) 1993-04-02
JP3141141B2 JP3141141B2 (en) 2001-03-05

Family

ID=17483661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03270252A Expired - Fee Related JP3141141B2 (en) 1991-09-20 1991-09-20 Sealed nickel-metal hydride storage battery

Country Status (1)

Country Link
JP (1) JP3141141B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017388A1 (en) * 1997-09-30 1999-04-08 Sanyo Electric Co., Ltd. Nickel-hydrogen storage battery
KR100308313B1 (en) * 1993-12-18 2001-12-01 카이저, 크루거 Battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100308313B1 (en) * 1993-12-18 2001-12-01 카이저, 크루거 Battery
WO1999017388A1 (en) * 1997-09-30 1999-04-08 Sanyo Electric Co., Ltd. Nickel-hydrogen storage battery
US6472101B1 (en) 1997-09-30 2002-10-29 Sanyo Electric Co., Ltd. Nickel-hydrogen storage battery

Also Published As

Publication number Publication date
JP3141141B2 (en) 2001-03-05

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JPH0528992A (en) Nickel positive pole for alkali storage battery and nickel-hydrogen storage battery using nickel positive pole
JP4474722B2 (en) Alkaline storage battery and positive electrode for alkaline storage battery used therefor
JP3079303B2 (en) Activation method of alkaline secondary battery
WO1999017388A1 (en) Nickel-hydrogen storage battery
JP3141141B2 (en) Sealed nickel-metal hydride storage battery
JP3200822B2 (en) Nickel-metal hydride storage battery
JP3113891B2 (en) Metal hydride storage battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JPH0714578A (en) Nickel positive electrode for alkaline storage battery and sealed nickel-hydrogen storage battery
JP2001313069A (en) Nickel hydrogen storage battery
JP3082348B2 (en) Nickel-hydrogen battery
JP3404758B2 (en) Nickel-metal hydride storage battery and method of manufacturing the same
JP2000182607A (en) Hydrogen storage alloy electrode
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP3362400B2 (en) Nickel-metal hydride storage battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JPH10289714A (en) Nickel-hydrogen storage battery
JP3266153B2 (en) Manufacturing method of sealed alkaline storage battery
JP3070081B2 (en) Sealed alkaline storage battery
JP2750793B2 (en) Nickel-metal hydride battery
JP3316687B2 (en) Nickel-metal hydride storage battery
JPH0690922B2 (en) Sealed alkaline storage battery
JP3482478B2 (en) Nickel-metal hydride storage battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees