JP3316687B2 - Nickel-metal hydride storage battery - Google Patents

Nickel-metal hydride storage battery

Info

Publication number
JP3316687B2
JP3316687B2 JP28928891A JP28928891A JP3316687B2 JP 3316687 B2 JP3316687 B2 JP 3316687B2 JP 28928891 A JP28928891 A JP 28928891A JP 28928891 A JP28928891 A JP 28928891A JP 3316687 B2 JP3316687 B2 JP 3316687B2
Authority
JP
Japan
Prior art keywords
nickel
hydroxide
storage battery
battery
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28928891A
Other languages
Japanese (ja)
Other versions
JPH05101823A (en
Inventor
利雄 村田
和弘 中満
田中  義則
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP28928891A priority Critical patent/JP3316687B2/en
Publication of JPH05101823A publication Critical patent/JPH05101823A/en
Application granted granted Critical
Publication of JP3316687B2 publication Critical patent/JP3316687B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水素の可逆的な吸蔵お
よび放出が可能な水素吸蔵合金を備えて、その水素の電
気化学的な酸化還元反応を起電反応に用いる負極と、水
酸化ニッケルを主たる活物質とする非焼結式の正極とを
備えるニッケル−金属水素化物蓄電池に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy capable of reversibly storing and releasing hydrogen, a negative electrode using an electrochemical oxidation-reduction reaction of hydrogen for an electromotive reaction, and a hydroxide. The present invention relates to a nickel-metal hydride storage battery including a non-sintered positive electrode containing nickel as a main active material.

【0002】[0002]

【従来の技術】ニッケル−金属水素化物蓄電池は、水素
の可逆的な吸蔵および放出が可能な水素吸蔵合金を備え
て、その水素の電気化学的な酸化還元反応を起電反応に
用いる負極と、水酸化ニッケルを活物質とする正極と、
水酸化カリウム水溶液などのアルカリ電解液とを備えて
いる。
2. Description of the Related Art A nickel-metal hydride storage battery is provided with a hydrogen storage alloy capable of reversibly storing and releasing hydrogen, a negative electrode using an electrochemical oxidation-reduction reaction of the hydrogen for an electromotive reaction, A positive electrode using nickel hydroxide as an active material,
An alkaline electrolyte such as a potassium hydroxide aqueous solution.

【0003】この負極は水素吸蔵電極と呼ばれ、この電
極に用いられる水素吸蔵合金には、LaNi5、ZrNi2、TiNi
およびTi2Niなどの金属間化合物や、これらの金属間化
合物の構成元素を他の元素で置換したものがある。これ
らの水素吸蔵合金は、その組成が異なると、水素吸蔵
量、平衡水素圧力、アルカリ電解液中で充放電を繰り返
す場合の保持容量特性などの性質が変化するので、合金
の組成を変えて水素吸蔵電極の性能の改良が試みられて
いる。
The negative electrode is called a hydrogen storage electrode, and the hydrogen storage alloy used for this electrode includes LaNi 5 , ZrNi 2 , TiNi
And intermetallic compounds such as Ti 2 Ni, and those obtained by substituting constituent elements of these intermetallic compounds with other elements. If the composition of these hydrogen storage alloys is different, properties such as the amount of hydrogen storage, the equilibrium hydrogen pressure, and the storage capacity characteristics when charging and discharging are repeated in an alkaline electrolyte will change. Attempts have been made to improve the performance of the storage electrode.

【0004】この水素吸蔵電極を、同じアルカリ電解液
中で作動するカドミウム電極と比較すると、これらの電
極の作動電位はほぼ同じであり、電極の体積当たりの放
電容量は、水素吸蔵電極がカドミウム電極の2−3倍の
大きさになる。したがって、カドミウム電極を用いてい
た従来のアルカリ蓄電池の負極に水素吸蔵電極を用いる
場合には、正極と負極との放電容量の比が一定になるよ
うに、負極の体積を小さくし、正極の体積を大きくする
ことができるので、カドミウム電極を用いる蓄電池と作
動電圧が同じで、しかも、1.5倍以上の放電容量を有
するアルカリ蓄電池が得られる。
When this hydrogen storage electrode is compared with a cadmium electrode operating in the same alkaline electrolyte, the operating potentials of these electrodes are almost the same, and the discharge capacity per electrode volume is such that the hydrogen storage electrode is a cadmium electrode. 2 to 3 times as large as Therefore, when a hydrogen storage electrode is used as the negative electrode of a conventional alkaline storage battery using a cadmium electrode, the volume of the negative electrode is reduced and the volume of the positive electrode is reduced so that the ratio of the discharge capacity between the positive electrode and the negative electrode becomes constant. Therefore, an alkaline storage battery having the same operating voltage as a storage battery using a cadmium electrode and having a discharge capacity 1.5 times or more can be obtained.

【0005】この電池の正極の水酸化ニッケル電極に
は、ニッケル−カドミウム蓄電池に用いられる焼結式ま
たは非焼結式のものが用いられていた。
As the nickel hydroxide electrode as the positive electrode of this battery, a sintered or non-sintered type used for nickel-cadmium storage batteries has been used.

【0006】焼結式の水酸化ニッケル電極は、カーボニ
ルニッケルなどのを焼結した多孔質の基板に、ニッケル
塩を主体とする溶液を含浸し、アルカリ溶液で中和した
り、その基板をカソードとして電解したり、あるいは基
板を加熱してニッケル塩を熱分解して、水酸化ニッケル
を主活物質をニッケル焼結体の細孔中に充填したもので
ある。
[0006] A sintered nickel hydroxide electrode is obtained by impregnating a porous substrate obtained by sintering carbonyl nickel or the like with a solution mainly composed of a nickel salt and neutralizing the solution with an alkali solution, or using the cathode as a cathode. In this method, nickel hydroxide is filled in the pores of the nickel sintered body with nickel hydroxide by pyrolyzing the nickel salt by heating or electrolyzing the substrate.

【0007】焼結式の水酸化ニッケル電極は、ニッケル
焼結体の細孔径が、非焼結式ニッケル極の基板に用いら
れる発泡体よりも著しく小さいので、活物質粉末を直接
充填することが困難である。しかも、ニッケル塩の溶液
の単体積に含有されるニッケルの濃度は、所望の充填密
度の水酸化ニッケルの単位体積に含有されるニッケルの
濃度よりも著しく低いので、実用的な活物質充填率の電
極を得るためには、活物質の充填工程を繰り返す必要が
ある。したがって、焼結式の水酸化ニッケル電極は、高
率放電特性にすぐれるが、製造コストが高い。
[0007] Since the sintered nickel hydroxide electrode has a pore diameter of the nickel sintered body significantly smaller than that of the foam used for the substrate of the non-sintered nickel electrode, the active material powder can be directly filled. Have difficulty. In addition, since the concentration of nickel contained in a single volume of the nickel salt solution is significantly lower than the concentration of nickel contained in a unit volume of nickel hydroxide having a desired packing density, a practical active material filling rate is reduced. In order to obtain an electrode, it is necessary to repeat the active material filling step. Therefore, the sintered nickel hydroxide electrode has excellent high-rate discharge characteristics, but has a high manufacturing cost.

【0008】非焼結式の水酸化ニッケル電極は、発泡ニ
ッケルやニッケル繊維の焼結体などからなる耐アルカリ
性導電性の3次元多孔体に、水酸化ニッケルを主体とす
る活物質粉末と、金属コバルト、水酸化コバルト、およ
び酸化コバルトとからなる群から選択した少なくとも1
つからなる添加物とを充填したものである。
[0008] The non-sintered nickel hydroxide electrode is formed by adding an alkali-resistant conductive three-dimensional porous body made of foamed nickel or a sintered nickel fiber to an active material powder mainly composed of nickel hydroxide and a metal. At least one selected from the group consisting of cobalt, cobalt hydroxide, and cobalt oxide
And an additive consisting of two components.

【0009】この正極は、焼結式の水酸化ニッケル電極
と異なって、ニッケルのネットワークが疎であるので、
電極内の集電性が高くない。そこで、金属コバルト、水
酸化コバルト、および酸化コバルトとからなる群から選
択した少なくとも1つの粉末を添加する方法が用いられ
る。これらの添加物は、正極を充電する際に酸化される
とともに、正極活物質である水酸化ニッケルの放電を容
易にして、正極の活物質利用率を高くするという効果が
大きい。この電極は、生産性に優れるが、高率放電特性
に劣る。
[0009] Unlike the sintered nickel hydroxide electrode, this positive electrode has a sparse nickel network.
The current collecting property in the electrode is not high. Therefore, a method of adding at least one powder selected from the group consisting of cobalt metal, cobalt hydroxide, and cobalt oxide is used. These additives are oxidized when the positive electrode is charged, and have a great effect of facilitating discharge of nickel hydroxide, which is a positive electrode active material, and increasing the active material utilization of the positive electrode. This electrode is excellent in productivity but inferior in high-rate discharge characteristics.

【0010】[0010]

【発明が解決しようとする課題】ニッケル・金属水素化
物蓄電池に用いられる上記のニッケル極は、例えば1時
間率よりも大きい電流で過充電する場合には、水酸化ニ
ッケルの充電生成物にγ相オキシ水酸化ニッケルと呼ば
れる化合物が生成しやすい。このγ相の化合物は、モル
体積が大きいので、これが生成すると、正極板が膨張し
て、セパレータ中の電解液が吸収されたり、正極板の強
度が低下する。しかも、このγ相は、その結晶の内部に
も、水やカリウムイオンが挿入されるので、電解液がさ
らに吸収されるものと考えられる。
When the nickel electrode used in a nickel metal hydride storage battery is overcharged with a current larger than, for example, one hour, the nickel hydroxide charge product has a γ phase. A compound called nickel oxyhydroxide is easily formed. Since the compound of the γ phase has a large molar volume, when it is generated, the positive electrode plate expands to absorb the electrolyte solution in the separator or to decrease the strength of the positive electrode plate. In addition, since the water and potassium ions are inserted into the crystal of the γ phase, it is considered that the electrolyte is further absorbed.

【0011】このようなことが起こると、充放電サイク
ルを繰り返す間にセパレータの電解液が正極に吸収され
て、セパレータ中の電解液量が少なくなり、ニッケル・
金属水素化物蓄電池の内部抵抗が高くなって電池の充放
電が困難になり、電池の充放電サイクル寿命が短くなる
という不都合が発生する。
When such a phenomenon occurs, the electrolyte in the separator is absorbed by the positive electrode during the repetition of the charge / discharge cycle, and the amount of the electrolyte in the separator is reduced.
The internal resistance of the metal hydride storage battery is increased, making it difficult to charge and discharge the battery, resulting in a disadvantage that the charge and discharge cycle life of the battery is shortened.

【0012】水酸化ニッケル電極の性能は、従来はニッ
ケル・カドミウム電池において詳しく調べられてきてお
り、水酸化ニッケル電極のγ相の抑制についても種種の
対策が施されてきた。そこで、従来のニッケル・金属水
素化物蓄電池では、正極のγ相の生成を抑制するため
に、ニッケル・カドミウム蓄電池でおこなわれてきた手
段を採用していた。その手段は、具体的にはニッケルカ
ドミウム電池の場合と同様に、水酸化ニッケルに、カド
ミウムを共沈したり、カドミウムの酸化物や水酸化物を
水酸化ニッケルと別の相として添加する方法である。
Conventionally, the performance of nickel hydroxide electrodes has been studied in detail in nickel-cadmium batteries, and various measures have been taken to suppress the γ phase of nickel hydroxide electrodes. Therefore, in the conventional nickel-metal hydride storage battery, the means performed in the nickel-cadmium storage battery has been adopted in order to suppress the generation of the γ phase of the positive electrode. Specifically, as in the case of a nickel cadmium battery, a method of coprecipitating cadmium with nickel hydroxide or adding an oxide or hydroxide of cadmium as another phase with nickel hydroxide. is there.

【0013】しかし、これらの手段には次のような欠点
がある。
However, these means have the following disadvantages.

【0014】カドミウムを添加する手段によれば、水酸
化ニッケルのγ相の生成を抑制することができる。カド
ミウムを添加する場合には、酸化カドミウムや水酸化カ
ドミウムを水酸化ニッケルと共沈することなく添加する
手段は、カドミウムを水酸化ニッケルと共沈する手段と
比較して、γ相の生成を抑制する効果が大きい。しか
し、カドミウムは環境汚染の原因物質であるという疑い
がある。そして、ニッケル・金属水素化物蓄電池では、
正極へのカドミウムの添加をおこなわなければカドミウ
ムを含有しない電池が得られるので、正極にカドミウム
を用いないことが望まれている。
According to the means for adding cadmium, the formation of the γ phase of nickel hydroxide can be suppressed. When cadmium is added, the means of adding cadmium oxide or cadmium hydroxide without co-precipitation with nickel hydroxide suppresses the formation of γ phase compared to the means of co-precipitating cadmium with nickel hydroxide. The effect is great. However, it is suspected that cadmium is a cause of environmental pollution. And in nickel / metal hydride storage batteries,
Unless cadmium is added to the positive electrode, a battery containing no cadmium can be obtained. Therefore, it is desired not to use cadmium for the positive electrode.

【0015】したがって、カドミウムを添加することな
く、充放電サイクルの進行にともなう電池の内部抵抗の
増加を抑制したニッケル・金属水素化物蓄電池が望まれ
ていた。
Therefore, a nickel-metal hydride storage battery which does not add cadmium and suppresses an increase in the internal resistance of the battery as the charge / discharge cycle progresses has been desired.

【0016】[0016]

【課題を解決するための手段】本発明は、上記の課題を
解決するために、水酸化ニッケルを主活物質とする非焼
結式の正極と、水素吸蔵合金を主体とする負極とを備え
るニッケル−金属水素化物蓄電池において、該水酸化ニ
ッケルが、該水酸化ニッケル粉末の表面に、水酸化マグ
ネシウムを含有するニッケル−金属水素化物蓄電池を提
供する。さらに、その効果をいっそう大きくするため
に、前記の水酸化ニッケルが、水酸化マグネシウムのほ
かに、水酸化ニッケルとともに共沈された水酸化コバル
トを水酸化ニッケル中に含有するニッケル−金属水素化
物蓄電池を提供する。
In order to solve the above-mentioned problems, the present invention comprises a non-sintered positive electrode mainly composed of nickel hydroxide and a negative electrode mainly composed of a hydrogen storage alloy. In a nickel-metal hydride battery, the nickel hydroxide provides a nickel-metal hydride battery containing magnesium hydroxide on the surface of the nickel hydroxide powder . Further, in order to further enhance the effect, the nickel hydroxide contains, in addition to magnesium hydroxide, nickel hydroxide containing cobalt hydroxide co-precipitated with nickel hydroxide in nickel hydroxide. I will provide a.

【0017】[0017]

【作用】本発明の手段によれば、カドミウムを添加しな
い場合にもニッケル・金属水素化物蓄電池を充電して、
正極のγ相の生成が効果的に抑制される。その結果、セ
パレータ中の電解液が正極に吸収されることが効果的に
抑制されて、ニッケル・金属水素化物蓄電池の充放電サ
イクル寿命が長くなる。
According to the means of the present invention, a nickel-metal hydride storage battery is charged even when cadmium is not added,
Generation of the γ phase of the positive electrode is effectively suppressed. As a result, absorption of the electrolytic solution in the separator by the positive electrode is effectively suppressed, and the charge / discharge cycle life of the nickel-metal hydride storage battery is extended.

【0018】なお、本発明の手段で、水酸化ニッケル粉
末に添加されたマグネシウムは、その一部がアルカリ電
解液に溶解する。そして、この水酸化ニッケル電極をカ
ドミウム電極と組み合わせて、ニッケル・カドミウム蓄
電池を構成する場合には、電解液に溶出したマグネシウ
ムがカドミウム電極に移動して、カドミウム電極の充電
が著しく困難になるという不都合が発生する。
In the meantime, part of the magnesium added to the nickel hydroxide powder by the means of the present invention is dissolved in the alkaline electrolyte. When the nickel hydroxide electrode is combined with a cadmium electrode to form a nickel-cadmium storage battery, the magnesium eluted in the electrolytic solution moves to the cadmium electrode, making it extremely difficult to charge the cadmium electrode. Occurs.

【0019】しかし、本発明においては、この水酸化ニ
ッケル電極を水素吸蔵電極と組み合わせてニッケル・金
属水素化物蓄電池を構成するので、負極がカドミウム電
極ではなく、水素吸蔵電極であるから、このような不都
合が起こらない。
However, in the present invention, since this nickel hydroxide electrode is combined with a hydrogen storage electrode to constitute a nickel metal hydride storage battery, the negative electrode is not a cadmium electrode but a hydrogen storage electrode. No inconvenience occurs.

【0020】すなわち、本発明を構成する水酸化ニッケ
ル電極は、ニッケル・カドミウム蓄電池の正極に適用し
た場合に不都合が発生するのであるが、本発明のように
ニッケル・金属水素化物蓄電池の正極に適用する場合に
は、そのような不都合を発生することなく、上述のよう
に充放電サイクル寿命が長くなるという作用効果を奏す
るものである。
That is, although the nickel hydroxide electrode constituting the present invention has disadvantages when applied to the positive electrode of a nickel-cadmium storage battery, it is applied to the positive electrode of a nickel-metal hydride storage battery as in the present invention. In such a case, the operation and effect of extending the charge / discharge cycle life as described above can be obtained without causing such inconvenience.

【0021】[0021]

【実施例】[蓄電池(A1)](比較例) 電池(A1)は、次のように構成した。EXAMPLES [accumulator (A1)] (Comparative Example) cell (A1) was constructed as follows.

【0022】正極は、次のようにして製作した。すなわ
ち、硫酸ニッケルと硫酸マグネシウムとの混合水溶液に
水酸化ナトリウム水溶液を添加して、水酸化ニッケルと
水酸化マグネシウムとの合計に対して5モル%の水酸化
マグネシウムが共沈した水酸化ニッケルの活物質粉末
(ア)を製作した。この活物質粉末95重量部と水酸化コ
バルト粉末5 重量部とを混合し、これに精製水を加えて
混練しペースト状混合物を調製した。次に、多孔度が約
98%%で厚さが約0.7mmの発泡状ニッケル多孔体に、この
ペースト状混合物を充填し、乾燥し、加圧し、切断し
て、活物質充填部の厚さが0.55mm、巾が14mm、長さが57
mmの非焼結式水酸化ニッケル電極を得た。
The positive electrode was manufactured as follows. That is, an aqueous solution of sodium hydroxide is added to a mixed aqueous solution of nickel sulfate and magnesium sulfate, and the activity of nickel hydroxide in which 5 mol% of magnesium hydroxide is coprecipitated with respect to the total of nickel hydroxide and magnesium hydroxide is added. Material powder (a) was produced. 95 parts by weight of this active material powder and 5 parts by weight of cobalt hydroxide powder were mixed, and purified water was added thereto and kneaded to prepare a paste-like mixture. Next, the porosity is about
This paste-like mixture is filled into a foamed nickel porous body having a thickness of about 0.7 mm at 98 %%, dried, pressed and cut, and the active material filled portion has a thickness of 0.55 mm and a width of 14 mm. , Length 57
mm non-sintered nickel hydroxide electrode was obtained.

【0023】負極は、次のようにして製作した。すなわ
ち、合金の組成がLmNi3.8Co0.7Al0.5(ここにLmは、約9
0重量%のLaを含有する稀土類金属混合物たるランタン
リッチミッシュメタルである。)になるように、各成分
元素を真空にした高周波誘導加熱炉で融解し、これを鋳
造して得た鋳塊を粉砕し、平均粒径が約30μmの水素吸
蔵合金粉末を得た。次に、この合金粉末100重量部、お
よびカーボンブラック3重量部を混合し、これに3 重量
%のポリビニルアルコール水溶液40重量部を加えてペー
スト状混合物を調製した。そして、鉄板にニッケルメッ
キを施した厚さが約0.08mmの穿孔鋼板(開口率は約50
%)に、このペースト状混合物(あ)を塗着し、ドクタ
ーブレードで厚さを調節してから、乾燥し、加圧し、切
断して、活物質坦持部の厚さが0.30mm、巾が15mm、長さ
が58mmの水素吸蔵電極を得た。
The negative electrode was manufactured as follows. That is, the composition of the alloy is LmNi 3.8 Co 0.7 Al 0.5 (where Lm is about 9
A lanthanum-rich misch metal which is a rare earth metal mixture containing 0% by weight of La. ), Each component element was melted in a high-frequency induction heating furnace in a vacuum, and the obtained ingot was pulverized to obtain a hydrogen storage alloy powder having an average particle size of about 30 μm. Next, 100 parts by weight of this alloy powder and 3 parts by weight of carbon black were mixed, and 40 parts by weight of a 3% by weight aqueous solution of polyvinyl alcohol was added thereto to prepare a paste-like mixture. Then, a perforated steel plate with a thickness of about 0.08 mm (plated area of about 50
%), Apply the paste-like mixture (a), adjust the thickness with a doctor blade, dry, pressurize, and cut. The active material carrier has a thickness of 0.30 mm and a width of 0.30 mm. Was obtained and a hydrogen storage electrode having a length of 58 mm was obtained.

【0024】電池1個には、上記の正極板4 枚と負極板
5 枚とを、界面活性剤で親水性を賦与した厚さが0.10mm
のポリプロピレン製のセパレータ1枚を介して積層して
用いた。この積層体を、ニッケルメッキを施した厚さが
約0.4mmの鉄製の角形電池ケースに収納し、7Mの水酸化
カリウム水溶液に10g/lの水酸化リチウムを溶解した電
解液を注入し、電極の端子を兼ねる安全弁を備えた金属
製蓋体の周縁部を、この電池ケースの周縁部と溶接し
て、電池を封口した。このようにして、比較例の密閉形
ニッケル−金属水素化物蓄電池(A1)を製作した。
One battery has four positive plates and a negative plate.
5 sheets and a thickness of 0.10 mm given hydrophilicity by a surfactant
And laminated using one polypropylene separator. This laminated body was housed in a nickel-plated iron prismatic battery case with a thickness of about 0.4 mm, and an electrolyte solution in which 10 g / l lithium hydroxide was dissolved in a 7 M aqueous potassium hydroxide solution was injected. The periphery of the metal lid provided with the safety valve also serving as the terminal was welded to the periphery of the battery case to seal the battery. Thus, a sealed nickel-metal hydride storage battery (A1) of a comparative example was manufactured.

【0025】この電池1個の正極には、約3.0gの水酸化
ニッケルおよび約0.167gの水酸化コバルトが充填されて
いる。水酸化ニッケルが1電子反応に従うことを仮定す
ると、この電池1個の正極に含まれる水酸化ニッケルの
理論容量は、約870mAh(=289×3.0)である。
The positive electrode of one battery is filled with about 3.0 g of nickel hydroxide and about 0.167 g of cobalt hydroxide. Assuming that nickel hydroxide follows a one-electron reaction, the theoretical capacity of nickel hydroxide contained in one positive electrode of this battery is about 870 mAh (= 289 × 3.0).

【0026】一方、この電池1個の負極には、約4.6gの
水素吸蔵合金が含有されている。この水素吸蔵合金を充
放電する場合に、水素ガスをほとんど放出することなく
充電される電気量は、この水素吸蔵合金1g当たり約270m
Ahであり、この充電電気量は、ほぼそのまま放電され
る。従って、この電池1個の負極の水素吸蔵合金は、充
電電気量が約1240mAh(=270×4.6)になるまで水素ガスを
発生することなく充電される。 [蓄電池(A2)](本発明実施例) 蓄電池(A1)の正極活物質(ア)の代わりに、水酸化
マグネシウムを共沈しない水酸化ニッケル粉末を硫酸マ
グネシウムの水溶液に浸漬してから、水酸化ナトリウム
の水溶液と反応させて、水酸化ニッケルと水酸化マグネ
シウムとの合計に対して5モル%の水酸化マグネシウム
を、水酸化ニッケル粉末の表面に析出させて、正極活物
質粉末(イ)を製作した。そして、蓄電池(A1)にお
ける正極活物質(ア)の代わりに、正極活物質(イ)を
用い、そのほかの構成は蓄電池(A1)と同じにして、
本発明の密閉形ニッケル−金属水素化物蓄電池(A2)
を製作した。 [蓄電池(A3)](比較例) 蓄電池(A1)の正極添加物(ア)の代わりに、硫酸ニ
ッケル、硫酸マグネシウム、および硫酸コバルトの混合
水溶液に水酸化ナトリウム水溶液を加えて、水酸化マグ
ネシウムおよび水酸化コバルトを共沈して添加した水酸
化ニッケルからなる正極活物質粉末(ウ)を製作した。
この正極活物質(ウ)には、水酸化ニッケル、水酸化マ
グネシウム、および水酸化コバルトとの合計に対して、
水酸化マグネシウムおよび水酸化コバルトが、それぞれ
2.5モル%ずつ含有されている。そして、正極活物質
(ア)の代わりに、正極活物質(ウ)を用い、そのほか
の構成は蓄電池(A1)と同じにして、比較例の密閉形
ニッケル−金属水素化物蓄電池(A3)を製作した。 [蓄電池(A4)](本発明実施例) 蓄電池(A1)の正極活物質(ア)の代わりに、硫酸ニ
ッケルと硫酸コバルトの混合水溶液に水酸化ナトリウム
水溶液を加えて、水酸化コバルトを共沈して添加した水
酸化ニッケルを主体とする粉末を調製した。そして、こ
の水酸化ニッケルを主体とする粉末を、硫酸マグネシウ
ムの水溶液に浸漬してから、水酸化ナトリウム水溶液を
反応させて、水酸化ニッケルを主体とする粉末の表面に
水酸化マグネシウムを析出させて、正極活物質粉末
(エ)を製作した。この正極活物質(エ)には、水酸化
ニッケル、水酸化マグネシウム、および水酸化コバルト
との合計に対して、水酸化マグネシウムおよび水酸化コ
バルトが、それぞれ2.5モル%ずつ含有されている。
そして、正極活物質(ア)の代わりに、正極活物質
(エ)を用い、そのほかの構成は蓄電池(A1)と同じ
にして、本発明の密閉形ニッケル−金属水素化物蓄電池
(A4)を製作した。
On the other hand, the negative electrode of one battery contains about 4.6 g of a hydrogen storage alloy. When charging and discharging this hydrogen storage alloy, the amount of electricity charged without releasing hydrogen gas is about 270 m / g of this hydrogen storage alloy.
Ah, and this charged amount of electricity is discharged almost as it is. Therefore, the hydrogen storage alloy of the negative electrode of one battery is charged without generating hydrogen gas until the charged amount of electricity becomes about 1240 mAh (= 270 × 4.6). [Storage battery (A2)] (Example of the present invention) Instead of the positive electrode active material (A) of the storage battery (A1), nickel hydroxide powder not coprecipitating with magnesium hydroxide was immersed in an aqueous solution of magnesium sulfate, and then water was added. By reacting with an aqueous solution of sodium oxide, magnesium hydroxide of 5 mol% with respect to the total of nickel hydroxide and magnesium hydroxide is deposited on the surface of the nickel hydroxide powder, and the positive electrode active material powder (a) is produced. Made. Then, instead of the positive electrode active material (A) in the storage battery (A1), a positive electrode active material (A) is used, and other configurations are the same as those of the storage battery (A1).
Sealed nickel-metal hydride storage battery of the present invention (A2)
Was made. [Storage Battery (A3)] ( Comparative Example) Instead of the positive electrode additive (A) of the storage battery (A1), an aqueous sodium hydroxide solution was added to a mixed aqueous solution of nickel sulfate, magnesium sulfate, and cobalt sulfate, and magnesium hydroxide and A positive electrode active material powder (C) comprising nickel hydroxide to which cobalt hydroxide was added by coprecipitation was produced.
The positive electrode active material (c) includes nickel hydroxide, magnesium hydroxide, and cobalt hydroxide,
Magnesium hydroxide and cobalt hydroxide are each contained in an amount of 2.5 mol%. Then, a sealed nickel-metal hydride storage battery (A3) of a comparative example was manufactured in the same manner as the storage battery (A1) except that the positive electrode active material (A) was used instead of the positive electrode active material (A). did. Instead of the storage battery (A4)] (invention examples) cathode active material of the battery (A1) (a), by adding an aqueous solution of sodium hydroxide in a mixed aqueous solution of nickel sulfate and cobalt sulfate, coprecipitated cobalt hydroxide To prepare a powder mainly composed of the added nickel hydroxide. Then, the powder mainly composed of nickel hydroxide is immersed in an aqueous solution of magnesium sulfate, and then reacted with an aqueous solution of sodium hydroxide to precipitate magnesium hydroxide on the surface of the powder mainly composed of nickel hydroxide. A positive electrode active material powder (d) was produced. This positive electrode active material (d) contains 2.5% by mole of each of magnesium hydroxide and cobalt hydroxide based on the total of nickel hydroxide, magnesium hydroxide, and cobalt hydroxide.
Then, the sealed nickel-metal hydride storage battery (A4) of the present invention is manufactured in the same manner as the storage battery (A1) except that the positive electrode active material (A) is used instead of the positive electrode active material (A). did.

【0027】[0027]

【0028】[0028]

【0029】[0029]

【0030】[0030]

【0031】 [蓄電池(C1)](比較例) 蓄電池(A1)の正極活物質に水酸化カルシウムを共沈
することなく、そのほかの構成は蓄電池(A1)と同じ
にして、比較例の密閉形ニッケル−金属水素化物蓄電池
(C1)を製作した。 [蓄電池(C2)](比較例) 蓄電池(A3)の正極活物質に水酸化マグネシウムを共
沈することなく、そのほかの構成は蓄電池(A3)と同
じにして、比較例の密閉形ニッケル−金属水素化物蓄電
池(C2)を製作した。 [蓄電池(E1)](比較例) 蓄電池(A1)の負極たる水素吸蔵電極を備えることな
く、その代わりに、次のカドミウム負極(チ)を用い
た。そして、この電池では、蓄電池(A1)と比較し
て、負極板の厚さの増加分だけ電池の厚さを大きくし
た。そのほかの構成は蓄電池(A1)と同じにして、比
較例の密閉形ニッケル−カドミウム蓄電池(E1)を製
作した。
[0031] [battery (C1)] (Comparative Example) without co-precipitation of calcium hydroxide in the positive electrode active material of the battery (A1), other configurations are the same as the storage battery (A1), sealed in Comparative Example A nickel-metal hydride storage battery (C1) was manufactured. [Storage battery (C2)] (Comparative example) The sealed nickel-metal of the comparative example is the same as the storage battery (A3) without co-precipitating magnesium hydroxide on the positive electrode active material of the storage battery (A3). A hydride storage battery (C2) was manufactured. [Storage Battery (E1)] (Comparative Example) The following cadmium negative electrode (H) was used without using a hydrogen storage electrode as a negative electrode of the storage battery (A1). In this battery, the thickness of the battery was increased by an amount corresponding to the increase in the thickness of the negative electrode plate, as compared with the storage battery (A1). The other configuration was the same as that of the storage battery (A1), and a sealed nickel-cadmium storage battery (E1) of a comparative example was manufactured.

【0032】この電池の負極(チ)は、次のようにして
製作した。すなわち、酸化カドミウム粉末100重量部、
および金属カドミウム粉末30重量部を混合し、これに3
重量%のポリビニルアルコール水溶液40重量部を加えて
ペースト状混合物を調製した。そして、鉄板にニッケル
メッキを施した厚さが約0.08mmの穿孔鋼板(開口率は約
50%)に、このペースト状混合物を塗着し、ドクターブ
レードで厚さを調節してから、乾燥し、加圧し、切断し
て、活物質坦持部の厚さが0.6mm、巾が15mm、長さが0.5
8mmのカドミウム電極を得た。カドミウム電極では、充
電生成物である金属カドミウムのうちで、放電が困難に
なる量が水素吸蔵電極と比較して著しく大きいので、電
池の放電を正極で制限するように、充電生成物として作
用する金属カドミウム粉末をあらかじめ供えさせてい
る。
The negative electrode (h) of this battery was manufactured as follows. That is, 100 parts by weight of cadmium oxide powder,
And 30 parts by weight of metal cadmium powder, and
A paste-like mixture was prepared by adding 40 parts by weight of an aqueous solution of polyvinyl alcohol having a weight percentage of 40%. Then, a perforated steel plate with a thickness of about 0.08 mm made of nickel plated iron plate (opening ratio is about
50%), apply this paste-like mixture, adjust the thickness with a doctor blade, dry, press and cut, the active material carrying part has a thickness of 0.6 mm and a width of 15 mm , Length 0.5
An cadmium electrode of 8 mm was obtained. In the cadmium electrode, of the metal cadmium, which is a charge product, the amount of difficulty in discharging is significantly larger than that of the hydrogen storage electrode, so that it acts as a charge product so as to limit the discharge of the battery at the positive electrode. Metal cadmium powder is provided in advance.

【0033】 この電池1個の負極には、約3.1gの酸化カ
ドミウムおよび約0.93g(理論容量:約440mAh)の金属カド
ミウムが含有されている。 [蓄電池(E2)](比較例) 蓄電池(A2)の負極の水素吸蔵電極代わりに、カドミ
ウム負極(チ)を用い、負極の厚さの増加分だけ電池の
厚さを大きくすることのほかの構成は蓄電池(A2)と
同じにして、比較例の密閉形ニッケル−カドミウム蓄電
池(E2)を製作した。 [蓄電池(E3)](比較例) 蓄電池(A3)の負極の水素吸蔵電極代わりに、カドミ
ウム負極(チ)を用い、負極の厚さの増加分だけ電池の
厚さを大きくすることのほかの構成は蓄電池(A3)と
同じにして、比較例の密閉形ニッケル−カドミウム蓄電
池(E3)を製作した。 [蓄電池(E4)](比較例) 蓄電池(A4)の負極の水素吸蔵電極代わりに、カドミ
ウム負極(チ)を用い、負極の厚さの増加分だけ電池の
厚さを大きくすることのほかの構成は蓄電池(A4)と
同じにして、比較例の密閉形ニッケル−カドミウム蓄電
池(E4)を製作した。 [実験] 以上に述べた10種類の蓄電池の化成のために、充放電
サイクルの前に、次の条件で2回の充放電をおこなっ
た。
[0033] The battery one negative electrode, about 3.1g of cadmium oxide and approximately 0.93g of: metal cadmium (theoretical capacity of about 440 mAh) is contained. [Storage Battery (E2)] (Comparative Example) In addition to using a cadmium negative electrode (H) instead of the hydrogen storage electrode of the negative electrode of the storage battery (A2), the thickness of the battery was increased by the increase in the thickness of the negative electrode. A sealed nickel-cadmium storage battery (E2) of a comparative example was manufactured in the same manner as the storage battery (A2). [Storage Battery (E3)] (Comparative Example) In addition to using a cadmium negative electrode (h) instead of the hydrogen storage electrode of the negative electrode of the storage battery (A3), the thickness of the battery was increased by the increase in the thickness of the negative electrode. The sealed nickel-cadmium storage battery (E3) of the comparative example was manufactured in the same manner as the storage battery (A3). [Storage Battery (E4)] (Comparative Example) In addition to using a cadmium negative electrode (h) instead of the hydrogen storage electrode of the negative electrode of the storage battery (A4), the thickness of the battery was increased by the increased thickness of the negative electrode. The sealed nickel-cadmium storage battery (E4) of the comparative example was manufactured in the same manner as the storage battery (A4). [Experiment] For the formation of the ten types of storage batteries described above, two charge / discharge cycles were performed under the following conditions before the charge / discharge cycle.

【0034】充電:電流80mAで16時間通電し、1
時間放置する。
Charging: current is supplied at a current of 80 mA for 16 hours.
Leave for a time.

【0035】放電:電流160mAで端子電圧1.0V
まで放電し、1時間放置する。
Discharge: terminal voltage 1.0 V at a current of 160 mA
And let stand for 1 hour.

【0036】これらの蓄電池の充放電サイクル寿命試験
を、次の条件でおこなった。電池の充放電は、20℃で
おこなった。
The charge / discharge cycle life test of these batteries was performed under the following conditions. The charge and discharge of the battery were performed at 20 ° C.

【0037】充電:電流800mAで1.2時間通電
し、30分間放置する。
Charging: electricity is supplied at a current of 800 mA for 1.2 hours and left for 30 minutes.

【0038】放電:電流800mAで端子電圧1.0V
まで通電し、30分間放置する。
Discharge: terminal voltage 1.0 V at a current of 800 mA
And let stand for 30 minutes.

【0039】この試験の間の電池の内部抵抗を、1KH
zの交流法で測定し、その値が、初期の化成の充放電の
後の内部抵抗の値の5倍に到達するまでの充放電サイク
ル数を、その電池の充放電サイクル寿命と判定した。ま
た、電池の安全弁を観察して、充電中の電解液の漏出を
観察した。
The internal resistance of the battery during this test was 1 KH
z was measured by the AC method, and the number of charge / discharge cycles until the value reached 5 times the value of the internal resistance after charge / discharge in the initial formation was determined as the charge / discharge cycle life of the battery. Further, the leakage of the electrolyte solution during charging was observed by observing the safety valve of the battery.

【0040】この試験における上記の電池の充放電サイ
クル寿命、および電解液の漏出の有無を表1に示す。
Table 1 shows the charge / discharge cycle life of the battery and the presence or absence of leakage of the electrolyte in this test.

【0041】[0041]

【表1】 [Table 1]

【0042】すなわち、比較例のニッケル−カドミウム
蓄電池(E1)、(E2)、(E3)および(E4)
は、電解液の漏出が起こって、電池の内部抵抗が増加
し、充放電サイクル寿命が著しく短くなっている。これ
は、正極に添加されているマグネシウムが負極に移動し
てカドミウムの充電反応が阻害され、電池の充電の途中
で水素ガスが負極から多量に発生し、その結果、電池の
内圧が著しく増加し、安全弁が開いて電解液が溢出し、
電池の内部抵抗が増加したものである。
That is, the nickel-cadmium storage batteries (E1), (E2), (E3) and (E4) of the comparative examples
In this case, the electrolyte leaks, the internal resistance of the battery increases, and the charge / discharge cycle life is significantly shortened. This is because magnesium added to the positive electrode moves to the negative electrode and the cadmium charging reaction is hindered, and a large amount of hydrogen gas is generated from the negative electrode during charging of the battery, resulting in a significant increase in the internal pressure of the battery. , The safety valve opens and the electrolyte overflows,
This is because the internal resistance of the battery has increased.

【0043】正極にマグネシウムを備えていない比較例
の密閉形のニッケル−金属水素化物蓄電池(C1)およ
び(C2)では、密閉形ニッケル−カドミウム蓄電池の
ような内部短絡や電解液の漏出は起こっていないもの
の、内部抵抗の増加を伴うので、充放電サイクル寿命は
約600サイクル程度である。
A sealed nickel-metal hydride storage battery (C1) of a comparative example having no positive electrode provided with magnesium and
In the case of (C2) and (C2), although the internal short circuit and leakage of the electrolyte do not occur as in the sealed nickel-cadmium storage battery, the internal resistance is increased, and the charge / discharge cycle life is about 600 cycles.

【0044】一方、本発明の密閉形ニッケル−金属水素
化物蓄電池(A2)および(A4)は、いずれも電池の
内部短絡や電解液の漏出を引き起こすことなく、800
サイクル以上の充放電をおこなっても内部抵抗の増加を
伴わない。これは、マグネシウムを正極活物質に共沈す
ることや、正極活物質の表面に析出させる構成によっ
て、正極におけるγ相の生成が効果的に抑制されたこと
に起因する。
On the other hand, each of the sealed nickel-metal hydride storage batteries (A2) and (A4) of the present invention has a capacity of 800 volts without causing an internal short circuit of the battery or leakage of the electrolyte.
Even if the charge and discharge are performed for more than one cycle, the internal resistance does not increase. This is because the co-precipitation of magnesium in the positive electrode active material and the formation of magnesium on the surface of the positive electrode active material effectively suppressed the generation of the γ phase in the positive electrode.

【0045】また、本発明実施例と比較例のニッケル−
金属水素化物蓄電池を比較すると、次のことがわかる。
In addition, the nickel of Examples of the present invention and Comparative Examples
A comparison of metal hydride storage batteries shows that:

【0046】すなわち、充放電サイクル寿命は、(A
2)が(A1)よりも長く、(A4)は(A3)よりも
長い。従って、水酸化ニッケルに水酸化コバルトを共沈
させる場合とさせない場合のいずれにおいても、水酸化
マグネシウムは、水酸化ニッケルに共沈するよりも、水
酸化ニッケルの表面に析出させるほうが、ニッケル−金
属水素化物蓄電池の充放電サイクル寿命が長くなる効果
があるといえる。
That is, the charge / discharge cycle life is (A
2) is longer than (A1), (A4) is longer than (A3)
Long . Therefore, in both cases where and without coprecipitation of cobalt hydroxide with nickel hydroxide, magnesium hydroxide is more likely to precipitate on the surface of nickel hydroxide than co-precipitate with nickel hydroxide. It can be said that the charge / discharge cycle life of the hydride storage battery is prolonged.

【0047】また、充放電サイクル寿命は、(A3)が
(A1)よりも長く、(A4)は(A2)よりも長く、
(B3)は(B1)よりも長く(B4)は(B2)より
も長い。従って、水酸化マグネシウムを、水酸化ニッケ
ルに共沈する場合と、水酸化ニッケルの表面に析出させ
る場合のいずれにおいても、水酸化コバルトを水酸化ニ
ッケルに共沈するほうが、ニッケル−金属水素化物蓄電
池の充放電サイクル寿命が長くなる効果があるといえ
る。
The charge / discharge cycle life of (A3) is longer than (A1), (A4) is longer than (A2),
(B3) is longer than (B1) and (B4) is longer than (B2). Therefore, in both the case where magnesium hydroxide is co-precipitated on nickel hydroxide and the case where magnesium hydroxide is precipitated on the surface of nickel hydroxide, it is more preferable to co-precipitate cobalt hydroxide on nickel hydroxide than in nickel-metal hydride storage batteries. It can be said that there is an effect of prolonging the charge / discharge cycle life.

【0048】なお、上記の実施例では、正極に添加する
水酸化マグネシウムと水酸化コバルトとの合計の量が、
水酸化ニッケルと水酸化マグネシウムと水酸化コバルト
との合計に対して、5モル%に固定した場合について説
明したが、本発明の作用効果は、このような特定の添加
率の場合に限定して奏するのではなく、0.5モル%以上
であれば実質的な作用効果が得られる。ただし、その添
加率が高くなりすぎると、活物質の含有率が低下するの
で、正極の体積当たりの放電容量が低下する。従って、
これらの添加物の添加率の上限は、当業者の設計上の理
由によって変動するものである。実質的には、水酸化ニ
ッケルと水酸化マグネシウムと水酸化コバルトとの合計
に対して、20モル%以下の範囲で添加することが望ま
しい。
In the above embodiment, the total amount of magnesium hydroxide and cobalt hydroxide added to the positive electrode is
Although the case where the amount is fixed to 5 mol% with respect to the total of nickel hydroxide, magnesium hydroxide and cobalt hydroxide has been described, the operation and effect of the present invention are limited to the case of such a specific addition rate. If it is 0.5 mol% or more, a substantial effect can be obtained. However, if the addition ratio is too high, the content of the active material is reduced, so that the discharge capacity per volume of the positive electrode is reduced. Therefore,
The upper limit of the rate of addition of these additives varies for design reasons by those skilled in the art. Substantially, it is desirable to add in a range of 20 mol% or less based on the total of nickel hydroxide, magnesium hydroxide and cobalt hydroxide.

【0049】また、上記の実施例では、水酸化マグネシ
ウムおよび水酸化コバルトをともに添加する場合に、特
定の比率で添加して用いた場合について説明したが、こ
のような特定の混合比率だけではなく、設計上の要請に
応じての混合比率を適宜変更して用いることができる。
Further, in the above embodiment, the case where magnesium hydroxide and cobalt hydroxide are added together and used at a specific ratio has been described. The mixing ratio according to the design requirement can be appropriately changed and used.

【0050】さらに、上記の実施例では、非焼結式水酸
化ニッケル電極を正極に用いる場合に、その耐アルカリ
性導電性支持体として、発泡状ニッケル多孔体を用いる
場合について説明したが、そのほかに、ニッケル繊維の
焼結体、パンチングメタル、エキスパンデッドメタル、
金属網などを用いる場合にも、同様の作用効果を奏す
る。
Further, in the above embodiment, the case where the non-sintered nickel hydroxide electrode is used as the positive electrode and the foamed nickel porous material is used as the alkali-resistant conductive support has been described. , Sintered nickel fiber, punched metal, expanded metal,
When a metal net or the like is used, the same operation and effect can be obtained.

【0051】また、上記の実施例では、負極の水素吸蔵
合金として特定の組成の稀土類系合金を用いる場合につ
いて説明したが、そのほかに、稀土類元素の配合比の異
なる合金、稀土類元素以外の金属元素の種類や配合比の
異なる合金、稀土類元素に少量のZr,Ti,Hfなどを添加
した合金、ZrNi2に近い化学量論比であってZrやNiを部
分的にほかの金属で置換した合金、TiNi合金やその一部
を異種金属で置換した合金などを用いる場合にも同様の
作用効果を奏する。
In the above embodiment, the case where a rare earth alloy having a specific composition is used as the hydrogen storage alloy of the negative electrode has been described. Alloys with different types of metal elements and compounding ratios, alloys with rare earth elements added with a small amount of Zr, Ti, Hf, etc., and stoichiometric ratios close to ZrNi 2 that partially replace Zr and Ni with other metals The same operation and effect can be obtained when an alloy substituted with, a TiNi alloy or an alloy partially substituted with a dissimilar metal is used.

【0052】そして、上記の実施例では、負極の水素吸
蔵電極としてプラスチック結合電極を用いる場合につい
て説明したが、そのほかに、水素吸蔵合金を発泡状ニッ
ケル多孔体のような耐アルカリ性導電性多孔体に充填し
た電極や、水素吸蔵合金の焼結体からなる電極を用いる
場合にも同様の作用効果を奏する。
In the above embodiment, the case where a plastic bonding electrode is used as the hydrogen storage electrode of the negative electrode has been described. In addition, the hydrogen storage alloy may be converted into an alkali-resistant conductive porous body such as a foamed nickel porous body. Similar effects can be obtained when a filled electrode or an electrode made of a sintered body of a hydrogen storage alloy is used.

【0053】さらに、上記の実施例では、矩形状の電極
を積層してなる外形が角形のニッケル−金属水素化物蓄
電池の場合について説明したが、そのほかに、帯状の電
極を捲回してなる外形が円筒状のものや、円板状の電極
を積層してなる外形が円筒状のものなど、形状が異なる
場合にも同様の作用効果を奏するものである。
Further, in the above embodiment, the case where a nickel-metal hydride storage battery having a rectangular outer shape formed by laminating rectangular electrodes has been described. Similar effects can be obtained even when the shape is different, such as a cylindrical shape or a cylindrical shape in which disk-shaped electrodes are stacked.

【0054】また、上記の実施例では、密閉形の電池に
ついて説明したが、液量が多い開放形の電池の場合に
も、本発明の構成によれば充放電サイクルの進行にとも
なう正極の厚さの増加が抑制されるので、電池の厚さの
増加が抑制されるという作用効果を奏する。
In the above embodiment, the sealed type battery was described. However, in the case of an open type battery having a large amount of liquid, the thickness of the positive electrode due to the progress of the charge / discharge cycle can be increased according to the structure of the present invention. Since the increase in the battery thickness is suppressed, an effect of suppressing the increase in the thickness of the battery is achieved.

【0055】そして、上記の実施例では、非焼結式の水
酸化ニッケル電極を正極に用いる場合に、水酸化ニッケ
ルの粉末のほかに水酸化コバルトを添加する場合につい
て説明したが、そのほかに、酸化コバルトや金属コバル
トを単独で添加する場合や、水酸化コバルト、酸化コバ
ルト、及び金属コバルトの群から選択した2つ以上を用
いる場合にも同様の作用効果を奏する。ただし、金属コ
バルトを用いる場合には、コバルトを3価に酸化するた
めに必要な電気量が多くなるので、充電末期における負
極からの水素発生を防止するために、水酸化コバルトや
酸化コバルトを用いる場合と比較して、余分の水素吸蔵
合金を負極に用いる必要がある。
In the above embodiment, the case where a non-sintered nickel hydroxide electrode is used for the positive electrode and cobalt hydroxide is added in addition to the nickel hydroxide powder has been described. Similar effects can be obtained when cobalt oxide or cobalt metal is added alone, or when two or more selected from the group consisting of cobalt hydroxide, cobalt oxide, and cobalt metal are used. However, when metal cobalt is used, the amount of electricity required to oxidize cobalt to trivalent increases, so that cobalt hydroxide or cobalt oxide is used to prevent the generation of hydrogen from the negative electrode at the end of charging. As compared with the case, an extra hydrogen storage alloy needs to be used for the negative electrode.

【0056】[0056]

【発明の効果】以上に述べたように、本発明の手段を採
用することにより、正極にカドミウムを用いることな
く、充放電サイクルの進行にともなう電池の内部抵抗の
増加を抑制して充放電サイクル寿命が長いニッケル−金
属水素化物蓄電池が得られる。
As described above, by adopting the means of the present invention, it is possible to suppress the increase in the internal resistance of the battery accompanying the progress of the charge / discharge cycle without using cadmium for the positive electrode and to reduce the charge / discharge cycle. A long-life nickel-metal hydride storage battery is obtained.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−78965(JP,A) 特開 平2−109261(JP,A) 特開 昭64−3958(JP,A) 特開 平5−21064(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/24 - 4/34 H01M 4/52 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-78965 (JP, A) JP-A-2-109261 (JP, A) JP-A 64-3958 (JP, A) JP-A-5-95 21064 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01M 4/24-4/34 H01M 4/52

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水酸化ニッケルを主活物質とする非焼結式
の正極と、水素吸蔵合金を主体とする負極とを備えるニ
ッケル−金属水素化物蓄電池において、該水酸化ニッケ
粉末の表面に、水酸化マグネシウムを含有することを
特徴とするニッケル−金属水素化物蓄電池。
The method according to claim 1 nickel hydroxide positive electrode of non-sintered to main active material, nickel and a negative electrode made mainly of a hydrogen storage alloy - in metal hydride storage battery, on the surface of the water nickel oxide powder, A nickel-metal hydride storage battery comprising magnesium hydroxide.
【請求項2】前記の水酸化ニッケルが、水酸化マグネシ
ウムのほかに、水酸化ニッケルとともに共沈された水酸
化コバルトを水酸化ニッケル中に含有することを特徴と
する請求項1に記載のニッケル−金属水素化物蓄電池。
2. The nickel hydroxide according to claim 1, wherein the nickel hydroxide contains, in addition to magnesium hydroxide, cobalt hydroxide co-precipitated with nickel hydroxide in the nickel hydroxide. -Metal hydride storage batteries.
JP28928891A 1991-10-07 1991-10-07 Nickel-metal hydride storage battery Expired - Lifetime JP3316687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28928891A JP3316687B2 (en) 1991-10-07 1991-10-07 Nickel-metal hydride storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28928891A JP3316687B2 (en) 1991-10-07 1991-10-07 Nickel-metal hydride storage battery

Publications (2)

Publication Number Publication Date
JPH05101823A JPH05101823A (en) 1993-04-23
JP3316687B2 true JP3316687B2 (en) 2002-08-19

Family

ID=17741241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28928891A Expired - Lifetime JP3316687B2 (en) 1991-10-07 1991-10-07 Nickel-metal hydride storage battery

Country Status (1)

Country Link
JP (1) JP3316687B2 (en)

Also Published As

Publication number Publication date
JPH05101823A (en) 1993-04-23

Similar Documents

Publication Publication Date Title
JP3097347B2 (en) Nickel-metal hydride battery
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JPH11213998A (en) Positive electrode active material for alkaline storage battery
JPH0855618A (en) Sealed alkaline storage battery
JP3200822B2 (en) Nickel-metal hydride storage battery
JP3316687B2 (en) Nickel-metal hydride storage battery
JP3141141B2 (en) Sealed nickel-metal hydride storage battery
JP3404758B2 (en) Nickel-metal hydride storage battery and method of manufacturing the same
JP2566912B2 (en) Nickel oxide / hydrogen battery
JP4573609B2 (en) Alkaline storage battery
JP3362400B2 (en) Nickel-metal hydride storage battery
JP3192694B2 (en) Alkaline storage battery
JPH10289714A (en) Nickel-hydrogen storage battery
JPH06145849A (en) Hydrogen storage alloy electrode
JP3482478B2 (en) Nickel-metal hydride storage battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JPH06283170A (en) Nickel-hydrogen battery
JPH1040950A (en) Alkaline secondary battery
JPH05258750A (en) Manufacture of hydrogen storage alloy electrode
JPH1021904A (en) Alkaline storage battery
JP3266153B2 (en) Manufacturing method of sealed alkaline storage battery
JP2929716B2 (en) Hydrogen storage alloy electrode
JPH06150923A (en) Manufacture of hydrogen storage alloy electrode for sealed battery
JPH10289716A (en) Nickel-hydrogen storage battery
JPH06318455A (en) Nickel-hydrogen battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120614

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120614

Year of fee payment: 10