JPH10289714A - Nickel-hydrogen storage battery - Google Patents

Nickel-hydrogen storage battery

Info

Publication number
JPH10289714A
JPH10289714A JP9095480A JP9548097A JPH10289714A JP H10289714 A JPH10289714 A JP H10289714A JP 9095480 A JP9095480 A JP 9095480A JP 9548097 A JP9548097 A JP 9548097A JP H10289714 A JPH10289714 A JP H10289714A
Authority
JP
Japan
Prior art keywords
nickel
hydroxide
positive electrode
hydrogen storage
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9095480A
Other languages
Japanese (ja)
Inventor
Yoshitaka Dansui
慶孝 暖水
Fumio Kato
文生 加藤
Kenji Suzuki
健二 鈴木
Koji Yuasa
浩次 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9095480A priority Critical patent/JPH10289714A/en
Priority to US09/058,227 priority patent/US6074785A/en
Priority to DE69837121T priority patent/DE69837121T2/en
Priority to EP98106730A priority patent/EP0872904B1/en
Publication of JPH10289714A publication Critical patent/JPH10289714A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nickel-hydrogen storage battery, having enhanced capacity density and high positive electrode characteristics by improving a positive electrode active material. SOLUTION: A nickel-hydrogen storage battery consist of a positive electrode, a negative electrode, an 8-12 mol/l-aqueous solution of sodium hydroxide as an alkaline electrolyte and a separator. Nickel hydroxide as the principal active material of the positive electrode is formed by soluting 8-12 atomic %-Mn into its metal nickel. The nickel hydroxide under a charged state is of a hexagonal system or a tetragonal system having a diffraction peak on a (001) plane at around the 16-19 degrees of a diffraction angle, 2θ, at X-ray diffraction using CUKα as a radiation source. Its ordered arrangement has a NaCl-type structure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル−水素蓄
電池に関するもので、正極活物質を改良して、その容量
密度を向上させるとともに、正極の特性を高めたもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel-hydrogen storage battery, in which a positive electrode active material is improved to increase its capacity density and to improve characteristics of a positive electrode.

【0002】[0002]

【従来の技術】近年、アルカリ蓄電池は、携帯機器の普
及に伴いその高容量化が要望されている。特にニッケル
−水素蓄電池は、水酸化ニッケルを主体とした活物質か
らなる正極と、水素吸蔵合金を主体とした負極からなる
二次電池であり、高容量で高信頼性の二次電池として急
速に普及してきている。
2. Description of the Related Art In recent years, with the spread of portable devices, there has been a demand for higher capacity alkaline storage batteries. In particular, nickel-hydrogen storage batteries are secondary batteries consisting of a positive electrode made of an active material mainly composed of nickel hydroxide and a negative electrode mainly composed of a hydrogen storage alloy, and are rapidly becoming high-capacity and highly reliable secondary batteries. It is becoming popular.

【0003】アルカリ蓄電池用の正極としては、大別し
て焼結式と非焼結式とがある。焼結式正極は、ニッケル
粉末を焼結して得た多孔度80%程度の多孔質ニッケル
焼結基板に、硝酸ニッケル水溶液等のニッケル塩溶液を
含浸し、次いで、アルカリ水溶液に浸漬するなどして多
孔質ニッケル焼結基板中に水酸化ニッケル活物質を生成
させて製造するものである。この電極は基板の多孔度を
これ以上大きくする事が困難であるため、充填される活
物質量を増加させる事ができず、高容量化には限界があ
る。
The positive electrode for an alkaline storage battery is roughly classified into a sintered type and a non-sintered type. The sintered positive electrode is prepared by impregnating a nickel salt solution such as a nickel nitrate aqueous solution into a porous nickel sintered substrate having a porosity of about 80% obtained by sintering nickel powder, and then immersing the substrate in an alkaline aqueous solution. To produce a nickel hydroxide active material in a porous nickel sintered substrate. Since it is difficult to further increase the porosity of the substrate in this electrode, the amount of the filled active material cannot be increased, and there is a limit to increasing the capacity.

【0004】非焼結式正極は、例えば、特開昭60−4
0667号公報に開示された、ニッケル金属よりなる三
次元的に連続した多孔度95%以上のスポンジ状多孔体
の孔部に、活物質である水酸化ニッケルを充填するもの
である。これは現在高容量のアルカリ蓄電池の正極とし
て広く用いられている。
A non-sintered positive electrode is disclosed in, for example,
No. 0667 discloses a method in which three-dimensionally continuous sponge-like porous material made of nickel metal and having a porosity of 95% or more is filled with nickel hydroxide as an active material. It is currently widely used as the positive electrode of high capacity alkaline storage batteries.

【0005】この非焼結式正極においては、高容量化の
点から、球状の水酸化ニッケルをスポンジ状ニッケル多
孔体の孔部に充填することが提案されている。これはス
ポンジ状ニッケル多孔体の孔部(ポア)サイズが、20
0〜500μm程度であり、このポアに粒径が数μm〜
数10μmの球状水酸化ニッケルを充填するものであ
る。この構成では、ニッケル多孔体の骨格近傍の水酸化
ニッケルは導電性が保たれているので、充放電反応がス
ムーズに進行するが、骨格から離れた水酸化ニッケルの
反応は十分に進まない。
In this non-sintered type positive electrode, it has been proposed that spherical nickel hydroxide be filled into the pores of a sponge-like nickel porous material from the viewpoint of increasing the capacity. This is because the pore size of the sponge-like nickel porous body is 20
0 to 500 μm, and the pores have a particle size of several μm
It is filled with spherical nickel hydroxide of several tens of μm. In this configuration, the nickel hydroxide in the vicinity of the skeleton of the porous nickel body maintains conductivity, so that the charge / discharge reaction proceeds smoothly, but the reaction of nickel hydroxide separated from the skeleton does not sufficiently proceed.

【0006】このため、非焼結式正極は、充填した水酸
化ニッケルの利用率を向上させるために、活物質である
水酸化ニッケル以外に導電剤を用いて、これで球状水酸
化ニッケルの粒子間を電気的に接続させて導電性ネット
ワークを形成している。この導電剤としては、水酸化コ
バルト、一酸化コバルトのようなコバルト化合物や、金
属コバルト、金属ニッケル等が用いられる。これによ
り、非焼結式正極では、活物質を高密度に充填しても導
電性を保つことが可能となり、高容量化が図れる。
[0006] For this reason, the non-sintered positive electrode uses a conductive agent in addition to nickel hydroxide as an active material in order to improve the utilization of the filled nickel hydroxide. The conductive network is formed by making electrical connection between them. As the conductive agent, a cobalt compound such as cobalt hydroxide or cobalt monoxide, metallic cobalt, metallic nickel or the like is used. As a result, the non-sintered positive electrode can maintain conductivity even when the active material is filled at a high density, and can achieve high capacity.

【0007】[0007]

【発明が解決しようとする課題】しかし、非焼結式正極
の活物質として用いられる球状水酸化ニッケルは、その
放電状態では活性水酸化ニッケル(β−Ni(O
H)2)とよばれるもので、ニッケルの平均価数は2.
1価である。この活物質は、充電状態ではβ型オキシ水
酸化ニッケル(β−NiOOH)になり、ニッケルの平
均価数は3.1価近傍といわれている。
However, the spherical nickel hydroxide used as the active material of the non-sintered positive electrode is in a discharged state in which activated nickel hydroxide (β-Ni (O
H) 2 ), and the average valence of nickel is 2.
It is monovalent. This active material becomes β-type nickel oxyhydroxide (β-NiOOH) in a charged state, and the average valence of nickel is said to be around 3.1.

【0008】したがって、充放電では、ほぼ一電子反応
で利用率が100%となる。(利用率は一電子反応を仮
定した理論単位重量当り容量289mAh/gで実際に
計測される容量を割った値の百分率)その結果、この活
物質を用いると正極の容量密度は650mAh/cc程
度になる。
[0008] Therefore, in charge and discharge, the utilization rate becomes 100% by almost one-electron reaction. (The utilization is a percentage of a value obtained by dividing a capacity actually measured by a capacity per theoretical unit weight of 289 mAh / g assuming a one-electron reaction.) As a result, when this active material is used, the capacity density of the positive electrode is about 650 mAh / cc. become.

【0009】また、ニッケル−水素蓄電池は、低温で連
続過充電を行なうと、正極のニッケル価数は、さらに高
次になり、3.67価まで価数が上昇する事も確認され
ている。
[0009] It has also been confirmed that when a nickel-hydrogen storage battery is continuously overcharged at a low temperature, the nickel valence of the positive electrode becomes higher and rises to 3.67 valence.

【0010】しかし、ニッケルの平均価数が3.5価付
近を越えると水酸化ニッケルはγ型オキシ水酸化ニッケ
ル(γ−NiOOH)になる。γ−NiOOHは、Cu
Kαを線源としたX線回折における回折角2θが12度
付近(λ=1.5405)に(003)面の回折ピーク
をもつ物質で、ニッケル−ニッケル金属面の層間にカチ
オン、アニオンや水等が挿入されており、β−NiOO
H(密度4.68g/cm3)に比較して結晶が膨張し
易い。
However, when the average valence of nickel exceeds about 3.5, the nickel hydroxide becomes γ-type nickel oxyhydroxide (γ-NiOOH). γ-NiOOH is Cu
A substance having a (003) plane diffraction peak at a diffraction angle 2θ of about 12 degrees (λ = 1.5405) in X-ray diffraction using Kα as a source. Cations, anions and water are present between the nickel-nickel metal plane layers. Are inserted, β-NiOO
The crystals are more likely to expand than H (density 4.68 g / cm 3 ).

【0011】また、γ−NiOOH(密度3.79g/
cm3)は、放電する際にα−3Ni(OH)2・2H2
O(密度2.82g/cm3)になる。この時の密度変
化は大きく、したがって活物質は膨張収縮を繰り返して
起こす。そのため球状水酸化ニッケルは、球状が崩れて
しまったり、充電状態のγ−NiOOHが放電しないで
蓄積されるため正極が膨潤して、電池内の電解液を吸っ
てしまう。
Γ-NiOOH (density 3.79 g /
cm 3 ) is α-3Ni (OH) 2 .2H 2 when discharging.
O (density 2.82 g / cm 3 ). At this time, the density change is large, and thus the active material repeatedly expands and contracts. Therefore, the spherical nickel hydroxide loses its spherical shape, and the charged γ-NiOOH is accumulated without being discharged, so that the positive electrode swells and absorbs the electrolytic solution in the battery.

【0012】その結果として、セパレータの保有してい
る電解液量が減少して液がれ状態になり、電池の内部抵
抗が上昇して放電が不可能になる。この現象は焼結式正
極を用いた場合でも古くから知られており、とくに密閉
型電池では正極の膨潤による電池特性の劣化が起こる。
As a result, the amount of the electrolytic solution held by the separator is reduced and the electrolyte is leaked, so that the internal resistance of the battery is increased and the battery cannot be discharged. This phenomenon has been known for a long time even when a sintered positive electrode is used. Particularly in a sealed battery, the battery characteristics deteriorate due to swelling of the positive electrode.

【0013】本発明は、上記課題を解決するもので、正
極活物質を改良して、その容量密度を向上させるととも
に、正極の特性を高めたニッケル−水素蓄電池を提供す
ることを目的とする。
An object of the present invention is to provide a nickel-hydrogen storage battery that improves the positive electrode active material, improves the capacity density thereof, and improves the characteristics of the positive electrode.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に、本発明のニッケル−水素蓄電池は、水酸化ニッケル
を活物質の主体とした正極と、水素吸蔵合金を主体とし
た負極と、アルカリ電解液と、セパレータとからなり、
前記正極の主活物質である水酸化ニッケルは、遷移金属
のうちの少なくとも1種類を固溶していて、充電状態の
それの結晶構造はCuKαを線源としたX線回折におけ
る回折角2θが16〜19度付近に(00l)面の回折
ピークをもつ六方晶系もしくは正方晶系で、規則配列が
NaCl型構造をもったものである。
In order to achieve the above object, a nickel-hydrogen storage battery according to the present invention comprises a positive electrode mainly composed of nickel hydroxide as an active material, a negative electrode mainly composed of a hydrogen storage alloy, and an alkaline battery. Consisting of an electrolyte and a separator,
Nickel hydroxide, which is the main active material of the positive electrode, has at least one kind of transition metal dissolved therein, and its crystalline structure in a charged state has a diffraction angle 2θ in X-ray diffraction using CuKα as a source. It is a hexagonal system or a tetragonal system having a (001) plane diffraction peak at around 16 to 19 degrees, and has a regular arrangement of a NaCl type structure.

【0015】[0015]

【発明の実施の形態】請求項1に記載の発明は、正極活
物質が前記に示す結晶構造をもち、充電状態ではニッケ
ルの平均価数が3.5価という、β−NiOOHより高
次の価数になるので、反応電子数が増加して活物質の容
量密度が向上するとともに、正極の特性を向上させるこ
とができる。
BEST MODE FOR CARRYING OUT THE INVENTION According to the first aspect of the present invention, the positive electrode active material has the crystal structure described above, and in a charged state, the average valence of nickel is 3.5, which is higher than β-NiOOH. Since the valence becomes valence, the number of reactive electrons increases, the capacity density of the active material improves, and the characteristics of the positive electrode can be improved.

【0016】請求項2に記載の発明は、水酸化ニッケル
に固溶する遷移金属がMn,Al,CrおよびCoのう
ちの少なくとも1種類であることを規定したものであ
り、充電状態のそれの結晶構造は、CuKαの線源とし
たX線回折における回折角2θが16〜19度付近に
(00l)面の回折ピークをもつ六方晶系もしくは正方
晶系で、規則配列がNaCl型構造であるのが好まし
い。規定した遷移金属の固溶量は水酸化ニッケルの金属
ニッケルに対して2〜20原子%が適量である。もし、
この量が2原子%よりも少ないと、水酸化ニッケルに対
する固溶量が十分でなく上記の回折ピークが得られな
い。また、逆にその固溶量が多いと、活物質である水酸
化ニッケル自体の量が相対的に減少して正極への活物質
の充填量が少なくなるので、正極の容量が低下する。
According to a second aspect of the present invention, the transition metal dissolved in nickel hydroxide is at least one of Mn, Al, Cr and Co, and the transition metal in a charged state is specified. The crystal structure is a hexagonal system or a tetragonal system having a (00l) plane diffraction peak at a diffraction angle 2θ of around 16 to 19 degrees in X-ray diffraction using a CuKα radiation source, and an ordered structure is a NaCl type structure. Is preferred. An appropriate amount of the specified transition metal solid solution is 2 to 20 atomic% based on the metal nickel of the nickel hydroxide. if,
If this amount is less than 2 atomic%, the amount of solid solution in nickel hydroxide is not sufficient, and the above-mentioned diffraction peak cannot be obtained. Conversely, if the amount of solid solution is large, the amount of nickel hydroxide itself, which is the active material, is relatively reduced, and the amount of the active material filled in the positive electrode is reduced, so that the capacity of the positive electrode is reduced.

【0017】[0017]

【実施例】正極板としては、活物質である平均粒径15
μmの球状の水酸化ニッケル粉末にその金属ニッケルに
対してMnを10原子%固溶させたもの100重量部
に、結着剤としてポリテトラフルオロエチレン0.5重
量部と、導電剤として水酸化コバルト10重量部と、分
散媒としての適量の水を加えてペースト状とし、これを
スポンジ状ニッケル多孔体の孔部に充填した後乾燥し、
ロールプレス機で圧延して作製した。この正極板の寸法
は、幅35mm、長さ120mm、厚さ0.78mmと
した。この正極の理論容量(水酸化ニッケルが1電子反
応であると仮定して289mAh/gとして計算する)
は1600mAhであった。
EXAMPLES As a positive electrode plate, an average particle size of 15 as an active material was used.
μm spherical nickel hydroxide powder, 100 atomic parts of solid solution of Mn with respect to the metallic nickel, 100 parts by weight, 0.5 parts by weight of polytetrafluoroethylene as a binder, and hydroxide as a conductive agent 10 parts by weight of cobalt and an appropriate amount of water as a dispersion medium were added to form a paste, which was filled into the pores of the sponge-like nickel porous body and dried,
It was produced by rolling with a roll press. The dimensions of the positive electrode plate were 35 mm in width, 120 mm in length, and 0.78 mm in thickness. Theoretical capacity of this positive electrode (calculated as 289 mAh / g assuming that nickel hydroxide is a one-electron reaction)
Was 1600 mAh.

【0018】負極板としては、AB5型水素吸蔵合金粉
末100重量部と、炭素粉末1重量部と、ポリテトラフ
ルオロエチレン1重量部と、適量の水を加えてペースト
状とし、これをパンチングメタルに塗布して乾燥した
後、圧延した。この負極板の寸法は、幅35mm、長さ
145mm、厚み0.39mmとした。この負極の理論
容量(水素吸蔵合金の単位重量当りの電気量は280m
Ah/gとして計算する)は2900mAhであった。
[0018] the negative electrode plate, and the AB 5 type hydrogen absorbing alloy powder 100 parts by weight, and the carbon powder 1 part by weight, polytetrafluoroethylene 1 part by weight, a paste by adding an appropriate amount of water, which punched metal And then rolled. The dimensions of the negative electrode plate were 35 mm in width, 145 mm in length, and 0.39 mm in thickness. The theoretical capacity of this negative electrode (the amount of electricity per unit weight of the hydrogen storage alloy is 280 m
(Calculated as Ah / g) was 2900 mAh.

【0019】上記で作製した正極板と、負極板と、この
両者間にポリプロピレン不織布製セパレータを配して全
体を渦巻状に巻回して極板群を構成し、これを電池ケー
スに挿入し、アルカリ電解液として水酸化ナトリウム1
0mol/lの水溶液を所定量注入した後、正極端子を
兼ねる封口板で密閉して4/5Aサイズで、公称容量1
600mAhのニッケル−水素蓄電池Aを構成した。
A positive electrode plate, a negative electrode plate, and a separator made of a polypropylene nonwoven fabric are disposed between the two, and the whole is spirally wound to form an electrode plate group, which is inserted into a battery case. Sodium hydroxide 1 as alkaline electrolyte
After injecting a predetermined amount of 0 mol / l aqueous solution, it is sealed with a sealing plate also serving as a positive electrode terminal, and is 4 / 5A in size, with a nominal capacity of 1
A 600 mAh nickel-hydrogen storage battery A was configured.

【0020】また、上記で作製した正極板用活物質に代
えて、Mnを固溶させていない水酸化ニッケルを用いた
以外は、上記と同様な構成とした電池を比較例の電池B
とした。
A battery having the same configuration as the battery B of the comparative example except that nickel hydroxide not containing Mn as a solid solution was used instead of the positive electrode plate active material prepared above.
And

【0021】この電池A,Bそれぞれを160mAで1
5時間充電し、1時間放置した後、320mAで端子電
圧が1Vに至るまで放電する充放電サイクルを2回行な
った。
Each of the batteries A and B was charged at 160 mA to 1
After charging for 5 hours and allowing to stand for 1 hour, two charge / discharge cycles were performed at 320 mA until the terminal voltage reached 1 V.

【0022】さらに45℃の温度雰囲気で3日間放置す
るエージングを行なった後、20℃の温度雰囲気下で1
60mAの電流で18時間充電し、1時間放置した後、
320mAで端子電圧1Vに至るまで放電した。この時
の放電容量から求めた正極の活物質利用率(実際の放電
容量/正極理論容量を289mAhとした際の百分率)
は、電池Aが130%であり、電池Bは100%であっ
た。
After aging for 3 days in a temperature atmosphere of 45 ° C.,
After charging for 18 hours with a current of 60 mA and leaving for 1 hour,
Discharge was performed at 320 mA until the terminal voltage reached 1 V. The active material utilization rate of the positive electrode obtained from the discharge capacity at this time (percentage when the actual discharge capacity / the positive electrode theoretical capacity is 289 mAh)
The battery A was 130% and the battery B was 100%.

【0023】確認のために、充電状態の電池A,Bをそ
れぞれ分解して正極板を取り出し、活物質のCuKαを
線源とした(波長λが1.5405)X線回折による分
析を行った。この分析により、回折角2θを求めた結
果、電池Aの正極板は2θが16度近くに(00l)面
の回折ピークが確認できたが、電池Bの正極板は、電池
Aのそれと同様な回折ピークを確認できなかった。
For confirmation, the batteries A and B in the charged state were respectively disassembled, the positive electrode plate was taken out, and analyzed by X-ray diffraction using CuKα as an active material (wavelength λ is 1.5405). . The diffraction angle 2θ was determined by this analysis. As a result, a diffraction peak of the (00l) plane was confirmed in the positive electrode plate of the battery A where 2θ was close to 16 degrees, but the positive electrode plate of the battery B had the same No diffraction peak could be confirmed.

【0024】このことより、比較例の電池Bは、正極活
物質が充電状態では、β−NiOOHになり、そのニッ
ケルの平均価数は3.1価であるので、その正極活物質
の利用率は100%になったものである。
Thus, in the battery B of the comparative example, when the positive electrode active material was in a charged state, it became β-NiOOH, and the average valence of nickel was 3.1. Is 100%.

【0025】実施例の電池Aは、正極活物質が充電状態
では高次のニッケル酸化状態となり、平均価数も3.5
価と高まるので、比較例よりも反応電子数が増加し、水
酸化ニッケルそのものの容量密度が向上する。そのため
正極活物質の利用率は130%となり、比較例より30
%向上した。
In the battery A of the embodiment, when the positive electrode active material is in a charged state, it is in a higher nickel oxidation state and has an average valence of 3.5.
Since the number of reaction electrons increases, the number of reactive electrons increases as compared with the comparative example, and the capacity density of nickel hydroxide itself improves. Therefore, the utilization rate of the positive electrode active material was 130%, which was 30% less than that of the comparative example.
% Improved.

【0026】なお、本発明の実施例では、正極活物質で
ある水酸化ニッケルに、Mnをその金属ニッケルに対し
て10原子%固溶させたものを用いたが、その固溶量は
2〜20原子%の範囲であれば、実施例とほぼ同様な効
果が得られ、最も好ましい範囲は8〜12原子%であっ
た。
In the embodiment of the present invention, nickel hydroxide, which is a positive electrode active material, is obtained by dissolving Mn at 10 atomic% with respect to the metallic nickel. When the content is in the range of 20 atomic%, almost the same effect as that of the embodiment is obtained, and the most preferable range is 8 to 12 atomic%.

【0027】さらに、本発明の実施例では、正極活物質
である水酸化ニッケルへの固溶金属としてMnを用いた
が、この外にAl,CrおよびCoの遷移金属のうちの
いずれかを用いても実施例とほぼ同様な効果が得られ
る。この際のそれぞれの金属の固溶量は、活物質である
水酸化ニッケルの金属ニッケルに対して、Alならば5
〜15原子%,Crならば5〜20原子%,Coならば
15〜20原子%が好ましい結果であった。
Further, in the embodiment of the present invention, Mn is used as a solid solution metal in nickel hydroxide which is a positive electrode active material. In addition, any one of transition metals of Al, Cr and Co is used. Even in this case, substantially the same effects as in the embodiment can be obtained. At this time, the solid solution amount of each metal is 5% for Al with respect to metallic nickel of nickel hydroxide as an active material.
Preferred results were % 15 at%, 5-20 at% for Cr, and 15-20 at% for Co.

【0028】さらにまた、正極活物質である水酸化ニッ
ケルへの固溶金属としては、前記のように単独ばかりで
なく、MnとAl,MnとCr,MnとCoを組合わせ
たいずれかの併用状態でも実施例とほぼ同様な効果が得
られる。この併用の際のそれぞれの固溶量は、水酸化ニ
ッケルの金属ニッケルに対して、MnとAlならばMn
5〜10原子%とAl5〜10原子%、MnとCrなら
ばMn5〜10原子%とCr5〜10原子%,MnとC
oならばMn5〜10原子%とCo2〜5原子%が好ま
しい。
Further, as a solid solution metal in nickel hydroxide which is a positive electrode active material, not only a single metal as described above but also any one of a combination of Mn and Al, Mn and Cr, and Mn and Co is used. In the state, almost the same effects as those of the embodiment can be obtained. The amount of each solid solution at the time of this combined use is Mn and Mn if Al and Mn are relative to metallic nickel of nickel hydroxide.
5-10 atomic% and Al 5-10 atomic%, Mn and Cr, Mn 5-10 atomic% and Cr 5-10 atomic%, Mn and C
If o, Mn is preferably 5 to 10 atomic% and Co is preferably 2 to 5 atomic%.

【0029】前記で水酸化ニッケルへの固溶金属として
は、Mnを中心にしてAl,CrおよびCoを組合わせ
た併用状態を示したが、Mn,Al,CrおよびCoの
うちのいずれかを主体に組合わた併用状態でも実施例と
ほぼ同様な効果が得られる。その併用の時の固溶金属の
総量は、活物質である水酸化ニッケルの金属ニッケルに
対して、2〜20原子%の範囲とするのが好ましい。
As described above, as the solid solution metal in nickel hydroxide, a combined use state in which Al, Cr and Co are combined around Mn is shown, but any one of Mn, Al, Cr and Co is used. The same effect as in the embodiment can be obtained even in the combined state in which the main body is combined. When used together, the total amount of the solid solution metal is preferably in the range of 2 to 20 atomic% based on the metal nickel of nickel hydroxide as the active material.

【0030】なお、アルカリ電解液としては、前記では
水酸化ナトリウム10mol/lの水溶液を用いたが、
この濃度に限定されるものではなく8〜12mol/l
の範囲であれば、実施例とほぼ同様な効果が得られる。
As the alkaline electrolyte, an aqueous solution of sodium hydroxide 10 mol / l was used in the above,
It is not limited to this concentration but 8 to 12 mol / l
Within this range, substantially the same effects as in the embodiment can be obtained.

【0031】また、上記のアルカリ電解液は水酸化ナト
リウムの単独水溶液としたが、これに限らず水酸化カリ
ウムの単独水溶液かあるいはこれらの混合水溶液、さら
にはこれらに水酸化リチウム、水酸化ルビジウムおよび
水酸化セシウムのうちの少なくとも1種類を加えた混合
水溶液を用いても、実施例とほぼ同様な効果が得られ
る。
The above-mentioned alkaline electrolyte is a single aqueous solution of sodium hydroxide. However, the present invention is not limited to this. A single aqueous solution of potassium hydroxide or a mixed aqueous solution thereof, and further, lithium hydroxide, rubidium hydroxide and Even when a mixed aqueous solution to which at least one of cesium hydroxide is added is used, substantially the same effects as in the embodiment can be obtained.

【0032】[0032]

【発明の効果】以上のように本発明の電池では正極の主
活物質である水酸化ニッケルは、遷移金属のうちの少な
くとも1種類を固溶していて、充電状態のそれはCuK
αを線源としたX線回折における回折角2θの16〜1
9度付近に(00l)面の回折ピークをもつ六方晶系も
しくは正方晶系で、規則配列がNaCl型構造をもった
ものであるので、充電状態ではニッケルの平均価数が
3.5価と高次の価数になるので、反応電子数が増加し
て活物質の容量密度が向上し、正極の特性を高めること
ができる。
As described above, in the battery of the present invention, nickel hydroxide, which is the main active material of the positive electrode, has at least one kind of transition metal in solid solution, and the charged state is CuK.
16 to 1 of diffraction angle 2θ in X-ray diffraction using α as a source
It is a hexagonal or tetragonal system having a (00l) plane diffraction peak at around 9 degrees and has a regular arrangement of a NaCl type structure, so that the average valence of nickel is 3.5 in a charged state. Since the valence becomes higher, the number of reactive electrons increases, the capacity density of the active material improves, and the characteristics of the positive electrode can be improved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 湯浅 浩次 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Koji Yuasa 1006 Kazuma Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】水酸化ニッケルを活物質の主体とした正極
と、水素吸蔵合金を主体とした負極と、アルカリ電解液
と、セパレータとからなり、前記正極の主活物質である
水酸化ニッケルは、遷移金属のうちの少なくとも1種類
を固溶していて、充電状態のそれはCuKαを線源とし
たX線回折における回折角2θの16〜19度付近に
(00l)面の回折ピークをもつ六方晶系もしくは正方
晶系で、規則配列がNaCl型構造をもったものである
ニッケル−水素蓄電池。
1. A positive electrode mainly composed of nickel hydroxide as an active material, a negative electrode mainly composed of a hydrogen storage alloy, an alkaline electrolyte, and a separator. And a solid solution of at least one of transition metals, and in a charged state, has a (001) plane diffraction peak near 16 to 19 degrees of diffraction angle 2θ in X-ray diffraction using CuKα as a radiation source. A nickel-hydrogen storage battery having a crystal system or a tetragonal system and having a regular arrangement having a NaCl type structure.
【請求項2】用いる遷移金属はMn,Al,Crおよび
Coのうちの少なくとも1種類であり、その固溶量は水
酸化ニッケルの金属ニッケルに対して2〜20原子%で
ある請求項1記載のニッケル−水素蓄電池。
2. The transition metal used is at least one of Mn, Al, Cr and Co, and its solid solution amount is 2 to 20 at% with respect to metallic nickel of nickel hydroxide. Nickel-hydrogen storage battery.
【請求項3】水酸化ニッケルを活物質の主体とした正極
と、水素吸蔵合金を主体とした負極と、アルカリ電解液
と、セパレータとからなり、前記正極の主活物質である
水酸化ニッケルは、その金属ニッケルに対してMnを8
〜12原子%固溶していて、充電状態のそれはCuKα
を線源としたX線回折における回折角2θの16〜19
度付近に(00l)面の回折ピークをもつ六方晶系もし
くは正方晶系で、規則配列がNaCl型構造をもったも
のであるニッケル−水素蓄電池。
3. A positive electrode mainly composed of nickel hydroxide as an active material, a negative electrode mainly composed of a hydrogen storage alloy, an alkaline electrolyte, and a separator. , Mn is 8 with respect to the metallic nickel.
~ 12 at.% Solid solution and charged state is CuKα
Of diffraction angle 2θ in X-ray diffraction using
A nickel-metal hydride storage battery having a hexagonal or tetragonal system having a diffraction peak of the (00l) plane in the vicinity of a degree and having a NaCl-type structure in a regular arrangement.
【請求項4】アルカリ電解液は、水酸化ナトリウムまた
は水酸化カリウムの単独水溶液か、あるいは混合水溶液
である請求項1から3のいずれかに記載のニッケル−水
素蓄電池。
4. The nickel-hydrogen storage battery according to claim 1, wherein the alkaline electrolyte is a single aqueous solution of sodium hydroxide or potassium hydroxide or a mixed aqueous solution.
【請求項5】アルカリ電解液は、水酸化ナトリウムまた
は水酸化カリウムの単独水溶液か、あるいは混合水溶液
に、水酸化ルビジウム、水酸化セシウムおよび水酸化リ
チウムのうちの少なくとも1種類を加えた混合水溶液で
ある請求項1から3のいずれかに記載のニッケル−水素
蓄電池。
5. The alkaline electrolyte is a single aqueous solution of sodium hydroxide or potassium hydroxide, or a mixed aqueous solution obtained by adding at least one of rubidium hydroxide, cesium hydroxide and lithium hydroxide to a mixed aqueous solution. The nickel-hydrogen storage battery according to any one of claims 1 to 3.
【請求項6】水酸化ニッケルを活物質の主体とした正極
と、水素吸蔵合金を主体とした負極と、水酸化ナトリウ
ムの8〜12mol/l水溶液からなるアルカリ電解液
と、セパレータとからなり、前記正極の主活物質である
水酸化ニッケルは、その金属ニッケルに対してMnを8
〜12原子%固溶していて、充電状態のそれはCuKα
を線源としたX線回折における回折角2θの16〜19
度付近に(00l)面の回折ピークをもつ六方晶系もし
くは正方晶系で、規則配列がNaCl型構造をもったも
のであるニッケル−水素蓄電池。
6. A positive electrode mainly composed of nickel hydroxide as an active material, a negative electrode mainly composed of a hydrogen storage alloy, an alkaline electrolyte comprising 8 to 12 mol / l aqueous solution of sodium hydroxide, and a separator, Nickel hydroxide, which is the main active material of the positive electrode, has Mn of 8 with respect to the metallic nickel.
~ 12 at.% Solid solution and charged state is CuKα
Of diffraction angle 2θ in X-ray diffraction using
A nickel-metal hydride storage battery having a hexagonal or tetragonal system having a diffraction peak of the (00l) plane in the vicinity of a degree and having a NaCl-type structure in a regular arrangement.
JP9095480A 1997-04-14 1997-04-14 Nickel-hydrogen storage battery Pending JPH10289714A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9095480A JPH10289714A (en) 1997-04-14 1997-04-14 Nickel-hydrogen storage battery
US09/058,227 US6074785A (en) 1997-04-14 1998-04-10 Nickel/metal hydride storage battery
DE69837121T DE69837121T2 (en) 1997-04-14 1998-04-14 Nickel / metal hydride storage battery
EP98106730A EP0872904B1 (en) 1997-04-14 1998-04-14 Nickel/metal hydride storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9095480A JPH10289714A (en) 1997-04-14 1997-04-14 Nickel-hydrogen storage battery

Publications (1)

Publication Number Publication Date
JPH10289714A true JPH10289714A (en) 1998-10-27

Family

ID=14138790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9095480A Pending JPH10289714A (en) 1997-04-14 1997-04-14 Nickel-hydrogen storage battery

Country Status (1)

Country Link
JP (1) JPH10289714A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277104A (en) * 1999-03-25 2000-10-06 Sanyo Electric Co Ltd Sealed type alkaline storage battery
JP2001006665A (en) * 1999-06-22 2001-01-12 Sanyo Electric Co Ltd Sealed alkaline storage battery
JP2001035489A (en) * 1999-07-22 2001-02-09 Sanyo Electric Co Ltd Sealed alkaline storage battery
US6649304B2 (en) 2000-06-16 2003-11-18 Canon Kabushiki Kaisha Nickel-series rechargeable battery and process for the production thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277104A (en) * 1999-03-25 2000-10-06 Sanyo Electric Co Ltd Sealed type alkaline storage battery
JP2001006665A (en) * 1999-06-22 2001-01-12 Sanyo Electric Co Ltd Sealed alkaline storage battery
JP2001035489A (en) * 1999-07-22 2001-02-09 Sanyo Electric Co Ltd Sealed alkaline storage battery
US6649304B2 (en) 2000-06-16 2003-11-18 Canon Kabushiki Kaisha Nickel-series rechargeable battery and process for the production thereof

Similar Documents

Publication Publication Date Title
JP3438142B2 (en) Medium / large capacity sealed metal oxide / hydrogen storage battery
AU705864B2 (en) A nickel battery electrode having multiple composition nickel hydroxide active materials
US6649304B2 (en) Nickel-series rechargeable battery and process for the production thereof
JP3191752B2 (en) Nickel-hydrogen secondary battery and method for manufacturing electrode thereof
US6074785A (en) Nickel/metal hydride storage battery
CN106463786B (en) Nickel-hydrogen secondary battery
JP2004071304A (en) Positive active material for alkaline storage battery, positive electrode using it, and alkaline storage battery
JP2004273138A (en) Secondary battery and manufacturing method thereof
EP0852405A2 (en) Positive electrode, alkaline secondary battery, and method for manufacturing alkaline secondary battery
JP4474722B2 (en) Alkaline storage battery and positive electrode for alkaline storage battery used therefor
JPH10289714A (en) Nickel-hydrogen storage battery
JP3436060B2 (en) Nickel-hydrogen storage battery
JPH10289716A (en) Nickel-hydrogen storage battery
JP3436059B2 (en) Nickel-hydrogen storage battery
JP4061048B2 (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
JP3639494B2 (en) Nickel-hydrogen storage battery
JP2001313069A (en) Nickel hydrogen storage battery
JP3536849B2 (en) Sealed metal oxide / hydrogen storage battery
JP4573609B2 (en) Alkaline storage battery
JP3316687B2 (en) Nickel-metal hydride storage battery
JP3518259B2 (en) Nickel-hydrogen storage battery and method for producing positive electrode active material thereof
US20040202932A1 (en) Electrochemically active material for an electrode
JP3482478B2 (en) Nickel-metal hydride storage battery
JPH0582127A (en) Enclosed type nickel-metal hydride storage battery
JPH11219721A (en) Alkaline storage battery