JP2001035489A - Sealed alkaline storage battery - Google Patents

Sealed alkaline storage battery

Info

Publication number
JP2001035489A
JP2001035489A JP11207530A JP20753099A JP2001035489A JP 2001035489 A JP2001035489 A JP 2001035489A JP 11207530 A JP11207530 A JP 11207530A JP 20753099 A JP20753099 A JP 20753099A JP 2001035489 A JP2001035489 A JP 2001035489A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
cement
manganese
nickel oxyhydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11207530A
Other languages
Japanese (ja)
Inventor
Mutsumi Yano
睦 矢野
Mitsunori Tokuda
光紀 徳田
Mamoru Kimoto
衛 木本
Yasuhiko Ito
靖彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP11207530A priority Critical patent/JP2001035489A/en
Publication of JP2001035489A publication Critical patent/JP2001035489A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To restrain the external leakage of an electrolyte over a long period and enhance the strength of a positive electrode molded body by solid dissolving Mn in γ-type nickel oxyhydroxide in a specified ratio, and adding cement to a positive electrode. SOLUTION: In γ-type nickel oxyhydroxide that is a positive electrode active material, Mn is solid dissolved as in 5-50 wt.% to the total quantity of Ni and Mn. According to this, the oxygen overvoltage can be increased. However, when the solid solution quantity is too small, the oxygen overvoltage is not sufficiently improved, so that repeated charge and discharge cause a leakage of electrolyte. When the solid solution quantity is too large, the quantity of γ-type nickel oxyhydroxide is relatively reduced, so that a sufficient discharge capacity cannot be obtained. When cement is added to a positive electrode, the strength of the positive electrode molded body can be enhanced. As the cement, portland cement is particularly preferred, and the mixing ratio is preferably set to 99.9:0.1-90:10 as the weight ratio of γ-type nickel oxyhydroxide: cement.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、放電スタートの密
閉型アルカリ蓄電池に関するものである。放電スタート
の蓄電池とは、予め充電することなく初回の放電を行う
ことができる蓄電池のことである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed alkaline storage battery with a discharge start. The discharge-started storage battery is a storage battery that can be discharged for the first time without being charged in advance.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
亜鉛を負極活物質とする密閉型アルカリ蓄電池用の正極
活物質としては、二酸化マンガンが提案されている(特
公昭45−3570号公報参照)。また、亜鉛を負極活
物質とするアルカリ蓄電池の正極活物質として、酸化ニ
ッケルと二酸化マンガンを混合したものが提案されてい
る(特公昭49−114741号公報参照)。
2. Description of the Related Art
Manganese dioxide has been proposed as a positive electrode active material for a sealed alkaline storage battery using zinc as a negative electrode active material (see Japanese Patent Publication No. 45-3570). A mixture of nickel oxide and manganese dioxide has been proposed as a positive electrode active material of an alkaline storage battery using zinc as a negative electrode active material (see Japanese Patent Publication No. 49-114471).

【0003】しかしながら、二酸化マンガンは充放電サ
イクルにおける可逆性が悪く、初回の放電を行った後充
電しても当初の二酸化マンガンに戻らないので、充放電
サイクルにおいて放電容量が急激に低下する。また、二
酸化マンガンの酸素過電圧が低いために、充電時に正極
側で酸素ガス(水の電気分解による)が発生して電池内
圧が上昇し、それに伴い電池外装部材の接合部における
密着性が低下して、電解液が外部に漏出しやすい。ま
た、酸化ニッケルと二酸化マンガンとの混合物を蓄電池
に用いた場合、活物質である酸化ニッケルの酸素過電圧
が低いために、二酸化マンガンを単独で使用した場合と
同様に、電池内圧が上昇しやすく漏液が起こりやすい。
However, manganese dioxide has poor reversibility in the charge / discharge cycle, and does not return to the original manganese dioxide even if charged after the first discharge, so that the discharge capacity sharply decreases in the charge / discharge cycle. In addition, since the oxygen overvoltage of manganese dioxide is low, oxygen gas (due to electrolysis of water) is generated on the positive electrode side during charging, and the internal pressure of the battery increases, and accordingly, the adhesion at the junction of the battery exterior member decreases. Therefore, the electrolyte is easily leaked to the outside. Also, when a mixture of nickel oxide and manganese dioxide is used for a storage battery, the internal pressure of the battery is likely to rise, as in the case of using manganese dioxide alone, because the oxygen overvoltage of nickel oxide, which is the active material, is low. Liquid is likely to occur.

【0004】このような問題を解消し得る正極活物質と
して、本出願人はマンガンを固溶したγ型オキシ水酸化
ニッケルを提案している(特開平10−214621号
公報参照)。マンガンを固溶したγ型オキシ水酸化ニッ
ケルを正極活物質として用いることにより、充放電サイ
クルの長期に渡って電解液が外部に漏出しにくい、信頼
性の高い放電スタートの密閉型アルカリ蓄電池を得るこ
とができる。
As a positive electrode active material that can solve such a problem, the present applicant has proposed γ-type nickel oxyhydroxide in which manganese is dissolved (see JP-A-10-214621). By using γ-type nickel oxyhydroxide in which manganese is dissolved as a positive electrode active material, it is possible to obtain a highly reliable discharge-starting sealed alkaline storage battery in which the electrolyte is unlikely to leak out for a long period of the charge / discharge cycle. be able to.

【0005】このような密閉型アルカリ蓄電池において
は、亜鉛を負極活物質として用いる場合、負極を電池缶
の中心に配置し、正極をその周りに配置するいわゆるイ
ンサイドアウト型構造が一般に採用されている。すなわ
ち、正極集電体となる電池缶の内側に電池缶と電気的に
接続するように、中空状に成形した正極を配置し、負極
をその内側に配置する。正極成形体は、上述のように電
池缶と電気的に接続するように電池缶に挿入されるの
で、正極成形体の強度が弱いと正極成形体にクラックが
発生し、電池缶に挿入することができなくなる。このた
め、従来より正極成形体の強度を高める方法が求められ
ている。
In such a sealed alkaline storage battery, when zinc is used as a negative electrode active material, a so-called inside-out type structure in which a negative electrode is arranged at the center of a battery can and a positive electrode is arranged around the center is generally adopted. . That is, a hollow positive electrode is disposed inside a battery can serving as a positive electrode current collector so as to be electrically connected to the battery can, and the negative electrode is disposed inside the positive electrode. Since the positive electrode molded body is inserted into the battery can so as to be electrically connected to the battery can as described above, if the strength of the positive electrode molded body is low, cracks occur in the positive electrode molded body, and the positive electrode molded body is inserted into the battery can. Can not be done. For this reason, there has been a demand for a method for increasing the strength of the positive electrode molded body.

【0006】本発明の目的は、充放電サイクルの長期に
わたって電解液が外部に漏出しにくい、信頼性の高い放
電スタートの密閉型アルカリ蓄電池であって、正極成形
体の強度が高められた密閉型アルカリ蓄電池を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a highly reliable sealed alkaline storage battery with a discharge start, in which electrolyte does not easily leak to the outside over a long period of charge / discharge cycles, wherein the strength of the positive electrode molded body is enhanced. It is to provide an alkaline storage battery.

【0007】[0007]

【課題を解決するための手段】本発明の密閉型アルカリ
蓄電池は、電池缶と、電池缶と電気的に接触するように
電池缶内に配置される、γ型オキシ水酸化ニッケルを正
極活物質とした中空状の正極と、正極の内側に配置され
る、亜鉛を負極活物質とした負極と、正極と負極の間に
配置されるセパレータと、負極内に挿入された状態で配
置される負極集電体と、正極、負極、及びセパレータ内
に含浸される電解液とを備える密閉型アルカリ蓄電池で
あって、γ型オキシ水酸化ニッケルがマンガンをニッケ
ルとマンガンの総量に対して5〜50重量%固溶してお
り、かつ正極中にセメントが添加されていることを特徴
としている。
The sealed alkaline storage battery according to the present invention comprises a battery can and a γ-type nickel oxyhydroxide disposed in the battery can so as to make electrical contact with the battery can. A hollow positive electrode, a negative electrode disposed inside the positive electrode, using zinc as a negative electrode active material, a separator disposed between the positive electrode and the negative electrode, and a negative electrode disposed in the negative electrode A sealed alkaline storage battery comprising a current collector, a positive electrode, a negative electrode, and an electrolytic solution impregnated in a separator, wherein the γ-type nickel oxyhydroxide contains manganese in an amount of 5 to 50% by weight based on the total amount of nickel and manganese. % Solid solution and cement is added to the positive electrode.

【0008】本発明において正極活物質として用いるγ
型オキシ水酸化ニッケルは、マンガン(Mn)を5〜5
0重量%固溶している。本発明におけるマンガンの固溶
量は以下の式により定義される。
Γ used as a positive electrode active material in the present invention
The type nickel oxyhydroxide has manganese (Mn) of 5 to 5
0% by weight solid solution. The manganese solid solution amount in the present invention is defined by the following equation.

【0009】マンガンの固溶量(重量%)=(γ型オキ
シ水酸化ニッケル中のマンガン量)/(γ型オキシ水酸
化ニッケル中のニッケル及びマンガンの合計量)×10
0 本発明に従いγ型オキシ水酸化ニッケルにマンガンを固
溶させることにより、酸素過電圧を増加させることがで
きる。マンガンの固溶量が5重量%未満であると、酸素
過電圧を十分に向上させることができないため、充放電
を繰り返した際に電解液の漏れが発生する。マンガンの
固溶量が50重量%を超えると、活物質であるγ型オキ
シ水酸化ニッケルの量が相対的に減少するため、十分な
放電容量が得られない。
Amount of solid solution of manganese (% by weight) = (amount of manganese in γ-type nickel oxyhydroxide) / (total amount of nickel and manganese in γ-type nickel oxyhydroxide) × 10
O Oxygen overpotential can be increased by dissolving manganese in γ-type nickel oxyhydroxide according to the present invention. When the solid solution amount of manganese is less than 5% by weight, the oxygen overvoltage cannot be sufficiently improved, so that leakage of the electrolyte occurs when charge and discharge are repeated. If the solid solution amount of manganese exceeds 50% by weight, the amount of γ-type nickel oxyhydroxide, which is an active material, relatively decreases, so that a sufficient discharge capacity cannot be obtained.

【0010】本発明においては、正極中にセメントが添
加されている。セメントを添加することにより、正極成
形体の強度を高めることができる。セメントを添加する
方法として具体的には、正極活物質であるγ型オキシ水
酸化ニッケル、黒鉛粉末などの導電剤、電解液などを混
合して正極合剤を調製する際にセメントを添加混合する
方法が挙げられる。このようにして得られた正極合剤を
加圧成形することにより正極成形体とすることができ
る。
[0010] In the present invention, cement is added to the positive electrode. By adding cement, the strength of the positive electrode molded body can be increased. Specifically, as a method for adding cement, a positive electrode active material is mixed with a γ-type nickel oxyhydroxide, a conductive agent such as graphite powder, and an electrolytic solution to prepare a positive electrode mixture by adding cement. Method. The positive electrode mixture obtained in this manner is subjected to pressure molding to obtain a positive electrode molded body.

【0011】セメントとしては、水硬性セメントが好ま
しく用いられ、この中でもポルトランドセメント、スラ
グセメント、アルミナセメント等が特に好ましく用いら
れる。
As the cement, hydraulic cement is preferably used, and among them, Portland cement, slag cement, alumina cement and the like are particularly preferably used.

【0012】セメントの混合割合は、正極中におけるγ
型オキシ水酸化ニッケルとセメントの重量比(γ型オキ
シ水酸化ニッケル:セメント)が、99.9:0.1〜
90:10であることが好ましい。すなわち、以下の式
で定義されるセメント添加量として、0.1〜10重量
%であることが好ましい。
The mixing ratio of cement is γ in the positive electrode.
Weight ratio of nickel oxyhydroxide to cement (γ-nickel oxyhydroxide: cement) is 99.9: 0.1 to
It is preferably 90:10. That is, the amount of cement defined by the following formula is preferably 0.1 to 10% by weight.

【0013】セメント添加量(重量%)=セメント量/
(マンガン固溶γ型オキシ水酸化ニッケル量+セメント
量)×100 セメント添加量が0.1重量%未満であると、正極成形
体の強度を十分に高めることができない場合がある。セ
メント添加量が10重量%を超えると、活物質であるγ
型オキシ水酸化ニッケルの量が相対的に少なくなるため
十分な電池容量が得られない場合がある。
Addition amount of cement (% by weight) = Cement amount /
(Amount of manganese solid solution γ-type nickel oxyhydroxide + amount of cement) × 100 If the amount of cement is less than 0.1% by weight, the strength of the positive electrode molded body may not be sufficiently increased. If the amount of cement exceeds 10% by weight, the active material γ
Since the amount of the nickel oxyhydroxide becomes relatively small, a sufficient battery capacity may not be obtained.

【0014】本発明におけるγ型オキシ水酸化ニッケル
中のニッケル原子の価数は、初回放電前において、すな
わち満充電状態で、3.4〜3.8価であることが好ま
しい。ニッケル原子の価数が3.4未満になると、十分
な放電容量が得られにくく、また酸素過電圧が低いため
充電時に電解液の漏れが発生する場合がある。また、一
般にオキシ水酸化ニッケルにおいては、ニッケル原子の
価数が3.8価よりも大きなものは存在しない。従っ
て、満充填状態の後にさらに充電を続けても、水が分解
して酸素ガスが発生するだけであり、ニッケル原子の価
数が3.8価を超えることはない。
In the present invention, the valence of the nickel atom in the γ-type nickel oxyhydroxide is preferably 3.4 to 3.8 before the first discharge, that is, in a fully charged state. If the valence of the nickel atom is less than 3.4, it is difficult to obtain a sufficient discharge capacity, and the electrolyte may leak during charging due to a low oxygen overvoltage. In general, there is no nickel oxyhydroxide having a valence of nickel atom larger than 3.8. Therefore, even if the charging is further continued after the fully charged state, only the water is decomposed and oxygen gas is generated, and the valence of the nickel atom does not exceed 3.8.

【0015】本発明において用いるγ型オキシ水酸化ニ
ッケルは、例えば水酸化ニッケルを次亜塩素酸ナトリウ
ム(NaClO)等の酸化剤で酸化することにより得ら
れる。またニッケルの価数は、反応させる酸化剤の添加
量により調整することができる。
The γ-type nickel oxyhydroxide used in the present invention is obtained, for example, by oxidizing nickel hydroxide with an oxidizing agent such as sodium hypochlorite (NaClO). The valence of nickel can be adjusted by the amount of the oxidizing agent to be reacted.

【0016】本発明において用いるγ型オキシ水酸化ニ
ッケルには、マンガン以外に、さらに亜鉛、コバルト、
ビスマス、アルミニウム、イットリウム、エルビウム、
イッテルビウム及びガドリニウムよりなる群から選ばれ
た少なくとも1種の元素が固溶されていてもよい。これ
らの元素が固溶したγ型オキシ水酸化ニッケルを用いる
ことにより、正極の酸素過電圧をさらに高めることがで
きる。これらの元素の固溶量としては、0.5〜5重量
%程度が好ましい。なお、この固溶量は以下の式により
定義される。
The γ-type nickel oxyhydroxide used in the present invention further includes zinc, cobalt,
Bismuth, aluminum, yttrium, erbium,
At least one element selected from the group consisting of ytterbium and gadolinium may be dissolved. By using γ-type nickel oxyhydroxide in which these elements are dissolved, the oxygen overvoltage of the positive electrode can be further increased. The solid solution amount of these elements is preferably about 0.5 to 5% by weight. The solid solution amount is defined by the following equation.

【0017】他の元素の固溶量(重量%)=(γ型オキ
シ水酸化ニッケル中の他の元素の量)/(γ型オキシ水
酸化ニッケル中のニッケル及び他の元素の合計量)×1
00 また、本発明においては、正極、負極、セパレータ、負
極集電体、及び電解液が、電池缶内の容積の75体積%
以上を占めることが好ましい。これにより、電池缶内に
おける活物質の充填量を高めることができ、放電容量の
高い密閉型アルカリ蓄電池とすることができる。また、
このような放電容量の高い密閉型アルカリ蓄電池におい
て、電池内圧の上昇を抑制し、充放電を繰り返した際に
電解液が外部へ漏出するのを防止することができる。
Solid solution amount of other elements (% by weight) = (amount of other elements in γ-type nickel oxyhydroxide) / (total amount of nickel and other elements in γ-type nickel oxyhydroxide) × 1
Further, in the present invention, the positive electrode, the negative electrode, the separator, the negative electrode current collector, and the electrolyte are 75% by volume of the volume in the battery can.
It is preferable to occupy the above. Thereby, the filling amount of the active material in the battery can can be increased, and a sealed alkaline storage battery having a high discharge capacity can be obtained. Also,
In such a sealed alkaline storage battery having a high discharge capacity, it is possible to suppress an increase in the internal pressure of the battery and to prevent the electrolyte from leaking out when charging and discharging are repeated.

【0018】[0018]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は以下の実施例により限定される
ものではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples.

【0019】(実験1)この実験では、マンガンを固溶
したγ型オキシ水酸化ニッケルにセメントを添加混合し
た電池A1〜A6、セメントを添加しなかった電池X、
二酸化マンガンを正極活物質に使用した比較電池Y及び
酸化ニッケルと二酸化マンガンの混合物を正極活物質に
使用した比較電池Zの1サイクル目の放電容量、25サ
イクル目の放電容量維持率及び漏液電池発生数を調べ
た。
(Experiment 1) In this experiment, batteries A1 to A6 in which cement was added to γ-type nickel oxyhydroxide in which manganese was dissolved, and batteries X in which cement was not added,
Discharge capacity at the first cycle, discharge capacity retention rate at the 25th cycle, and leakage battery of comparative battery Y using manganese dioxide as the positive electrode active material and comparative battery Z using a mixture of nickel oxide and manganese dioxide as the positive electrode active material The number of occurrences was examined.

【0020】〔正極の作製〕硫酸マンガン40.4g、
硫酸ニッケル154.8gを水に溶解し総量を5000
mlとした。この水溶液に、10重量%アンモニアと1
0重量%水酸化ナトリウムの混合水溶液を滴下し、pH
を9.5±0.3に保持した。pHが低下した際には混
合水溶液を滴下し、pHが一定になった後1時間混合し
た。そして、ろ過、水洗後、80℃にて乾燥し、マンガ
ンを固溶した水酸化ニッケルを得た。
[Preparation of positive electrode] 40.4 g of manganese sulfate,
Dissolve 154.8 g of nickel sulfate in water to make the total amount 5000
ml. 10% by weight ammonia and 1%
A 0% by weight aqueous solution of sodium hydroxide was added dropwise,
Was maintained at 9.5 ± 0.3. When the pH dropped, the mixed aqueous solution was dropped, and after the pH became constant, it was mixed for 1 hour. Then, after filtration and washing with water, drying was performed at 80 ° C. to obtain nickel hydroxide in which manganese was dissolved.

【0021】10モル/リットルの水酸化ナトリウム水
溶液500mlと10重量%次亜塩素酸ナトリウム水溶
液1500mlの混合液に上記で得られたマンガンを固
溶した水酸化ニッケル粉末100gを攪拌しながら投入
し、1時間攪拌混合した後、沈殿物をろ過し、水洗し、
60℃で乾燥して、γ型オキシ水酸化ニッケルを得た。
このとき、マンガンがγ型オキシ水酸化ニッケル中のニ
ッケルとマンガンの総量に対して20重量%固溶されて
いることを原子吸光法で確認した。また、このときのニ
ッケル原子の価数は鉄の2価・3価の酸化還元滴定によ
り測定した結果3.6であった。
To a mixture of 500 ml of a 10 mol / l aqueous sodium hydroxide solution and 1500 ml of a 10% by weight aqueous sodium hypochlorite solution, 100 g of the above-obtained nickel hydroxide powder in which manganese was dissolved was added with stirring. After stirring and mixing for 1 hour, the precipitate is filtered, washed with water,
Drying at 60 ° C. gave γ-type nickel oxyhydroxide.
At this time, it was confirmed by atomic absorption spectrometry that manganese was dissolved in a solid solution at 20% by weight based on the total amount of nickel and manganese in the γ-type nickel oxyhydroxide. The valence of the nickel atom at this time was 3.6 as a result of measurement by divalent / trivalent redox titration of iron.

【0022】このようにして得たγ型オキシ水酸化ニッ
ケル(正極活物質)とポルトランドセメント(電気化学
工業社製、デンカ普通ポルトランドセメント)とを9
9:1の重量比で混合した粉末100重量部と、黒鉛粉
末10重量部と30重量%水酸化カリウム水溶液10重
量部とをらいかい機で30分間混合し、加圧成形して、
外径1.3cm、内径0.95cm、高さ1.15cm
の円筒中空状の成形体を作製した。これにより、γ型オ
キシ水酸化ニッケルとセメントの総量に対してセメント
を1重量%添加したことになる。なお、正極を成形する
際のプレス圧を通常よりも低い2.8ton/cm2
し、クラックが発生しやすい条件で正極を作製した。な
お、電池の作製においては、この円筒中空状の正極を3
個直列に重ねて、全体として1個の円筒中空体として使
用した。
The thus obtained γ-type nickel oxyhydroxide (cathode active material) and Portland cement (Denka ordinary Portland cement, manufactured by Denki Kagaku Kogyo Co., Ltd.)
100 parts by weight of a powder mixed in a weight ratio of 9: 1, 10 parts by weight of graphite powder and 10 parts by weight of a 30% by weight aqueous solution of potassium hydroxide were mixed for 30 minutes by a rapier, and pressed and molded.
1.3cm outside diameter, 0.95cm inside diameter, 1.15cm height
Was produced. This means that 1% by weight of cement was added to the total amount of γ-type nickel oxyhydroxide and cement. In addition, the positive electrode was manufactured under the condition that the pressing pressure at the time of forming the positive electrode was set to 2.8 ton / cm 2 lower than usual and cracks were easily generated. In the production of the battery, this cylindrical hollow positive electrode was
They were stacked in series and used as a single cylindrical hollow body as a whole.

【0023】〔負極の作製〕負極活物質としての亜鉛粉
末65重量部と酸化亜鉛(ZnO)を飽和量含む40重
量%水酸化カリウム水溶液34重量部と、ゲル化剤とし
てのアクリル酸樹脂(日本純薬社製、商品名「ジュンロ
ンPW150」)1重量部とを混合して、ゲル状の負極
を作製した。
[Preparation of Negative Electrode] 65 parts by weight of zinc powder as a negative electrode active material, 34 parts by weight of a 40% by weight aqueous solution of potassium hydroxide containing a saturated amount of zinc oxide (ZnO), and acrylic resin as a gelling agent (Japan) (Junron PW150, manufactured by Junyaku Co., Ltd.) was mixed with 1 part by weight to prepare a gelled negative electrode.

【0024】〔電池の作製〕上記の正極及び負極を用い
て、通称「インサイドアウト型」と呼ばれている構造
(電池缶側が正極側、電池蓋側が負極側:「アウトサイ
ド・正極型」とも呼ばれる)で、AAサイズの密閉型ア
ルカリ蓄電池(本発明電池)A1を作製した。なお、放
電容量を正極容量で規定するために、正極と負極との電
気化学的な容量を1:1.2とした(以下の電池も全て
これと同じ容量比にした)。また、負極、正極、電解
液、セパレータ、負極集電体、及び電解液からなる発電
要素体が占める体積を、電池缶内の容積に対して、80
体積%とした(以下の電池も全てこれと同じ充填率にし
た)。
[Preparation of Battery] Using the above-mentioned positive electrode and negative electrode, a structure commonly called “inside-out type” (the battery can side is the positive electrode side, the battery lid side is the negative electrode side: both “outside / positive type”) AA size sealed alkaline storage battery (battery of the present invention) A1 was manufactured. In addition, in order to define the discharge capacity by the positive electrode capacity, the electrochemical capacity between the positive electrode and the negative electrode was set to 1: 1.2 (all the following batteries had the same capacity ratio). Further, the volume occupied by the power generating element body composed of the negative electrode, the positive electrode, the electrolytic solution, the separator, the negative electrode current collector, and the electrolytic solution is 80% with respect to the volume in the battery can.
% By volume (all of the following batteries had the same filling rate).

【0025】図1は、作製した密閉型アルカリ蓄電池を
示す部分断面図である。図示の密閉型アルカリ蓄電池
は、有底円筒状の正極缶(正極外部端子)1、負極蓋
(負極外部端子)2、絶縁パッキング3、真鍮製の負極
集電棒4、円筒中空状の正極(ニッケル極)5、ビニロ
ンを主材とする円筒フィルム状のセパレータ6、ゲル状
負極(亜鉛極)7などからなる。
FIG. 1 is a partial cross-sectional view showing the manufactured sealed alkaline storage battery. The illustrated sealed alkaline storage battery includes a cylindrical bottomed positive electrode can (positive electrode external terminal) 1, a negative electrode cover (negative electrode external terminal) 2, an insulating packing 3, a negative electrode current collector rod 4 made of brass, and a cylindrical positive electrode (nickel negative electrode). Electrode 5, a cylindrical film-shaped separator 6 mainly composed of vinylon, a gelled negative electrode (zinc electrode) 7, and the like.

【0026】正極缶1には、正極缶1の円筒部の内周面
に当接させて正極5が収納されており、該円筒中空状の
正極5の内周面には、セパレータ6が外周面を当接させ
て設けられており、セパレータ6の内側には、ゲル状の
負極7が充填されている。負極7の中央部には、正極缶
1と負極蓋2とを電気的に絶縁する絶縁パッキング3に
より一端を支持された負極集電棒(負極集電体)4が挿
入されている。正極缶1の開口部は、負極蓋2により閉
蓋されている。電池内部の密閉は、正極缶1の開口部に
絶縁パッキング3を嵌め込み、その上に負極蓋2を載置
した後、正極缶1の閉口端を内側にかしめることにより
なされている。本実施例の密閉型アルカリ蓄電池におい
て、電極缶は、正極缶1、負極蓋2及び絶縁パッキング
3から構成される。
In the positive electrode can 1, a positive electrode 5 is accommodated in contact with the inner peripheral surface of the cylindrical portion of the positive electrode can 1, and a separator 6 has an outer peripheral surface on the inner peripheral surface of the cylindrical hollow positive electrode 5. The separator 6 is filled with a gelled negative electrode 7 inside the separator 6. A negative electrode current collector rod (negative electrode current collector) 4 whose one end is supported by an insulating packing 3 that electrically insulates the positive electrode can 1 and the negative electrode lid 2 is inserted into the center of the negative electrode 7. The opening of the positive electrode can 1 is closed by a negative electrode lid 2. The inside of the battery is sealed by inserting an insulating packing 3 into the opening of the positive electrode can 1, placing the negative electrode cover 2 thereon, and caulking the closed end of the positive electrode can 1 inside. In the sealed alkaline storage battery according to the present embodiment, the electrode can includes a positive electrode can 1, a negative electrode lid 2, and an insulating packing 3.

【0027】なお、上記実施例の密閉型アルカリ蓄電池
においては中空状正極として円筒状の正極を用いている
が、本発明はこれに限定されるものではなく、例えば、
角筒状などの中空状正極であってもよい。
In the sealed alkaline storage battery of the above embodiment, a cylindrical positive electrode is used as the hollow positive electrode. However, the present invention is not limited to this.
It may be a hollow positive electrode such as a rectangular tube.

【0028】(実験2)正極の作製で、硫酸マンガンの
量を5.1gとしたこと以外は同様にして電池A2を作
製した。このときのマンガン固溶量は、2.5重量%で
あることを原子吸光法で確認した。またニッケル原子の
価数は3.6であった。
(Experiment 2) Battery A2 was produced in the same manner as in the production of the positive electrode except that the amount of manganese sulfate was changed to 5.1 g. At this time, it was confirmed by an atomic absorption method that the manganese solid solution amount was 2.5% by weight. The valence of the nickel atom was 3.6.

【0029】(実験3)正極の作製で、硫酸マンガンの
量を10.2gとしたこと以外は同様にして電池A3を
作製した。このときのマンガン固溶量は、5重量%であ
ることを原子吸光法で確認した。またニッケル原子の価
数は3.6であった。
(Experiment 3) Battery A3 was produced in the same manner as in the production of the positive electrode except that the amount of manganese sulfate was changed to 10.2 g. At this time, the manganese solid solution amount was confirmed to be 5% by weight by an atomic absorption method. The valence of the nickel atom was 3.6.

【0030】(実験4)正極の作製で、硫酸マンガンの
量を20.2gとしたこと以外は同様にして電池A4を
作製した。このときのマンガン固溶量は、10重量%で
あることを原子吸光法で確認した。またニッケル原子の
価数は3.6であった。
(Experiment 4) Battery A4 was produced in the same manner as in the production of the positive electrode except that the amount of manganese sulfate was changed to 20.2 g. At this time, the manganese solid solution amount was confirmed to be 10% by weight by an atomic absorption method. The valence of the nickel atom was 3.6.

【0031】(実験5)正極の作製で、硫酸マンガンの
量を101gとしたこと以外は同様にして電池A5を作
製した。このときのマンガン固溶量は、50重量%であ
ることを原子吸光法で確認した。またニッケル原子の価
数は3.6であった。
(Experiment 5) Battery A5 was produced in the same manner as in the production of the positive electrode except that the amount of manganese sulfate was changed to 101 g. At this time, it was confirmed by an atomic absorption method that the manganese solid solution amount was 50% by weight. The valence of the nickel atom was 3.6.

【0032】(実験6)正極の作製で、硫酸マンガンの
量を121gとしたこと以外は同様にして電池A6を作
製した。このときのマンガン固溶量は、60重量%であ
ることを原子吸光法で確認した。またニッケル原子の価
数は3.6であった。
(Experiment 6) Battery A6 was produced in the same manner as in the production of the positive electrode except that the amount of manganese sulfate was changed to 121 g. At this time, it was confirmed by an atomic absorption method that the manganese solid solution amount was 60% by weight. The valence of the nickel atom was 3.6.

【0033】(比較例1)正極の作製において、セメン
トを添加しなかったことを除いて、同様にして電池Xを
作製した。
Comparative Example 1 A battery X was produced in the same manner as in the production of the positive electrode except that no cement was added.

【0034】(比較例2)二酸化マンガン粉末100g
と、黒鉛粉末15gと、ポリエチレン樹脂5gとを混合
し、さらにこれに7モル/リットル濃度の水酸化カリウ
ム水溶液20mlを混合し、加圧成形して、正極を作製
した。この正極を使用したこと以外は同様にして、密閉
型アルカリ蓄電池Yを作製した。
Comparative Example 2 100 g of manganese dioxide powder
And 15 g of graphite powder and 5 g of polyethylene resin, and further mixed with 20 ml of a 7 mol / l aqueous solution of potassium hydroxide, followed by pressure molding to produce a positive electrode. A sealed alkaline storage battery Y was produced in the same manner except that this positive electrode was used.

【0035】(比較例3)2モル/リットル濃度の硝酸
ニッケル水溶液500mlと、10重量%次亜塩素酸ナ
トリウム水溶液1500mlとを、14モル/リットル
濃度の水酸化カリウム水溶液2000mlに滴下混合し
た後、1時間徐冷した。次いで、生成した沈殿物をろ
過、水洗し、90℃で乾燥して、正極活物質としての酸
化ニッケル粉末を作製した。
(Comparative Example 3) 500 ml of a 2 mol / l aqueous solution of nickel nitrate and 1500 ml of a 10% by weight aqueous solution of sodium hypochlorite were dropped and mixed into 2000 ml of a 14 mol / l aqueous solution of potassium hydroxide. The mixture was gradually cooled for 1 hour. Next, the generated precipitate was filtered, washed with water, and dried at 90 ° C. to prepare a nickel oxide powder as a positive electrode active material.

【0036】上記酸化ニッケル粉末50gと、二酸化マ
ンガン粉末30gと、黒鉛15gとポリエチレン樹脂5
gとを混合し、さらにこれに7モル/リットル濃度の水
酸化カリウム水溶液20mlを混合し、加圧成形して、
正極を作製した。
The above nickel oxide powder 50 g, manganese dioxide powder 30 g, graphite 15 g and polyethylene resin 5
g, and then mixed with 20 ml of a 7 mol / l aqueous solution of potassium hydroxide, followed by pressure molding.
A positive electrode was produced.

【0037】この正極を使用したこと以外は同様にし
て、密閉型アルカリ蓄電池Zを作製した。
A sealed alkaline storage battery Z was produced in the same manner except that this positive electrode was used.

【0038】(正極のクラック発生率)成形した正極を
電池缶に挿入する際に生じるクラックの発生率を下記の
式により求めた。 クラック発生率(%)=(クラック発生した正極の数)
/作製した正極の数)×100結果を表1に示す。
(Crack Generation Rate of Positive Electrode) The crack generation rate generated when the molded positive electrode was inserted into a battery can was determined by the following equation. Crack generation rate (%) = (number of positive electrodes with cracks)
Table 1 shows the results.

【0039】(各電池の種々の充放電サイクルにおける
容量維持率及び漏液電池発生数)正極活物質のみが異な
る上記9種の密閉型アルカリ蓄電池について、100m
Aで電池電圧が1Vになるまで放電した後、100mA
で電池電圧が1.95V(比較例2では1.65V)に
達するまで充電を行う工程を1サイクルとする充放電サ
イクル試験を行って、各電池の1サイクル目の放電容
量、25サイクル目における容量維持率及び漏液電池発
生数を調べた。
(Capacity Retention Rate and Number of Generated Leakage Batteries in Various Charge and Discharge Cycles of Each Battery) The above nine types of sealed alkaline storage batteries differing only in the positive electrode active material were 100 m
After discharging until the battery voltage becomes 1 V at 100 A, 100 mA
A charge / discharge cycle test was performed in which the charge step was performed until the battery voltage reached 1.95 V (1.65 V in Comparative Example 2). The capacity retention ratio and the number of leaked batteries generated were examined.

【0040】なお、電池はそれぞれ10本ずつ作製し
た。結果を表1に示す。表1中の1サイクル目の放電容
量は、電池A1の1サイクル目の容量を100とした指
数である。また、25サイクル目における容量維持率
は、各電池の1サイクル目の放電容量に対する比率
(%)であり、かつ電解液が漏出しなかった電池の容量
維持率の平均値である。
Incidentally, ten batteries were manufactured for each. Table 1 shows the results. The discharge capacity at the first cycle in Table 1 is an index with the capacity at the first cycle of the battery A1 as 100. The capacity retention rate at the 25th cycle is a ratio (%) to the discharge capacity at the first cycle of each battery, and is an average value of the capacity retention rates of the batteries in which the electrolyte did not leak.

【0041】[0041]

【表1】 [Table 1]

【0042】表1に示す結果から明らかなように、マン
ガンを5〜50重量%固溶したγ型オキシ水酸化ニッケ
ルにセメントを添加して作製した正極を用いた電池A1
及びA3〜A5は、正極におけるクラックの発生がな
く、しかもサイクル特性及び耐漏液特性に優れているこ
とがわかる。
As is clear from the results shown in Table 1, a battery A1 using a positive electrode prepared by adding cement to γ-type nickel oxyhydroxide in which manganese is solid-dissolved in an amount of 5 to 50% by weight is added.
In addition, A3 to A5 have no cracks in the positive electrode, and are excellent in cycle characteristics and leakage resistance.

【0043】電池A2の漏液電池発生数が多いのは、マ
ンガンの固溶量が少ないため酸素過電圧を十分に向上さ
せることができないためであると考えられる。電池A6
の1サイクル目の放電容量が小さいのは、マンガンの固
溶量が多いため活物質であるγ型オキシ水酸化ニッケル
の量が相対的に減少するためであると考えられる。
It is considered that the reason why the number of leaked batteries generated in the battery A2 is large is that the oxygen overvoltage cannot be sufficiently improved due to the small amount of solid solution of manganese. Battery A6
It is considered that the reason why the discharge capacity in the first cycle is small is that the amount of γ-type nickel oxyhydroxide, which is an active material, is relatively reduced due to the large amount of solid solution of manganese.

【0044】比較の電池Xの正極クラック発生率が高い
のは、セメントが添加されていないため、正極成形体の
強度が不十分であるためと考えられる。また比較の電池
Yの放電容量が低いのは、結晶構造が変化したためと考
えられる。また、耐漏液特性が悪いのは、正極の酸素過
電圧が低いためと考えられる。
The reason why the positive electrode crack generation rate of the comparative battery X is high is considered to be that the strength of the positive electrode molded product was insufficient because no cement was added. The reason why the discharge capacity of the comparative battery Y is low is considered to be that the crystal structure has changed. In addition, it is considered that the liquid leakage resistance is poor because the oxygen overvoltage of the positive electrode is low.

【0045】また、比較の電池Zの放電容量が低いの
は、正極活物質にマンガンが固溶されていないので酸素
過電圧が低くなり、充電受け入れ性が低下し、その結果
活物質利用率が低くなったためと考えられる。また耐漏
液特性が悪いのは、正極の酸素過電圧が低いためと考え
られる。
The reason why the discharge capacity of the comparative battery Z is low is that oxygen overvoltage is low because manganese is not dissolved in the positive electrode active material, the charge acceptability is low, and as a result, the active material utilization rate is low. It is thought that it became. It is considered that the liquid leakage resistance is poor because the oxygen overvoltage of the positive electrode is low.

【0046】(実験2)この実験では、添加するセメン
トの添加量について検討した。正極の作製でマンガンを
20重量%固溶したγ型オキシ水酸化ニッケルとセメン
トとの混合比を99.95:0.05、99.9:0.
1、97:3、95:5、90:10、88:12とし
たこと以外は同様にして電池B1〜B6を作製した。こ
のときのニッケル原子の価数は3.6であった。
(Experiment 2) In this experiment, the amount of cement to be added was examined. In the preparation of the positive electrode, the mixing ratio of γ-type nickel oxyhydroxide containing 20% by weight of manganese in solid solution and cement was 99.95: 0.05, 99.9: 0.
Batteries B1 to B6 were produced in the same manner, except that 1, 97: 3, 95: 5, 90:10, and 88:12. At this time, the valence of the nickel atom was 3.6.

【0047】これらB1〜B6の各電池について実験1
で行ったのと同じ条件で充放電サイクル試験を行い、1
サイクル目の電池容量並びに25サイクル目の電池容量
及び漏液電池発生数を調べた。また、正極成形体のクラ
ック発生率を実験1と同様にして測定した。
Experiment 1 for each of these batteries B1 to B6
A charge / discharge cycle test was performed under the same conditions as
The battery capacity at the cycle, the battery capacity at the 25th cycle, and the number of leaked batteries were examined. The crack generation rate of the positive electrode molded body was measured in the same manner as in Experiment 1.

【0048】結果を表2に示す。表2中の1サイクル目
の放電容量は、電池A1の1サイクル目の容量を100
とした指数である。また、25サイクル目における容量
維持率は、各電池の1サイクル目の放電容量に対する比
率(%)である。A1は表1中のA1と同じ電池であ
る。
Table 2 shows the results. The discharge capacity at the first cycle in Table 2 is 100% of the capacity at the first cycle of the battery A1.
Is an index. The capacity retention rate at the 25th cycle is a ratio (%) to the discharge capacity at the 1st cycle of each battery. A1 is the same battery as A1 in Table 1.

【0049】[0049]

【表2】 [Table 2]

【0050】表2に示す結果より、正極にクラックの発
生がなく、かつ高い放電容量を得るためには、正極にお
けるセメント添加量を0.1〜10重量%とすることが
好ましいことがわかる。比較の電池B1のクラック発生
率が高いのは、セメントの添加量が少ないため正極成形
体の強度を十分に高めることができなかったためである
と考えられる。また、比較の電池B6の放電容量が低い
のは、セメントの添加量が多くなり活物質であるγ型オ
キシ水酸化ニッケルの量が減少したためであると考えら
れる。
From the results shown in Table 2, it can be seen that in order to prevent cracks from occurring in the positive electrode and obtain a high discharge capacity, it is preferable to add 0.1 to 10% by weight of cement in the positive electrode. It is considered that the reason why the crack generation rate of the comparative battery B1 is high is that the strength of the positive electrode molded body could not be sufficiently increased due to the small amount of cement added. Further, it is considered that the reason why the discharge capacity of the comparative battery B6 is low is that the amount of the cement added was increased and the amount of the γ-type nickel oxyhydroxide as the active material was reduced.

【0051】(実験3)この実験では、γ型オキシ水酸
化ニッケル中のニッケル原子の価数と電池容量及び漏液
の関係を調べた。
(Experiment 3) In this experiment, the relationship between the valence of nickel atoms in γ-type nickel oxyhydroxide, the battery capacity, and the liquid leakage was examined.

【0052】実験1の「正極の作製」において水酸化ナ
トリウム水溶液500mlと混合する10重量%次亜塩
素酸ナトリウム水溶液の量を、1500mlに代えて、
1350ml、1400ml、または1600mlとし
たこと以外は電池A1の作製と同様にして、密閉型アル
カリ蓄電池D1〜D3を作製した。なお、このときのニ
ッケル原子の価数は、3.3、3.4、3.8である。
そして、活物質中のマンガンの固溶量は20重量%のも
のを用いた。マンガン固溶γ型オキシ水酸化ニッケルと
セメントの混合比率は99:1とした。これらD1〜D
3の各電池について実験1で行ったのと同じ条件で充放
電サイクル試験を行い、1サイクル目の電池容量並びに
25サイクル目の電池容量及び漏液電池発生数を調べ
た。また、実験1と同様にして正極のクラック発生率を
測定した。
In "Preparation of the positive electrode" of Experiment 1, the amount of the 10% by weight aqueous solution of sodium hypochlorite mixed with 500 ml of the aqueous sodium hydroxide solution was changed to 1500 ml.
The sealed alkaline storage batteries D1 to D3 were produced in the same manner as the production of the battery A1, except that 1350 ml, 1400 ml, or 1600 ml was used. The valence of the nickel atom at this time is 3.3, 3.4, 3.8.
The manganese in the active material had a solid solution amount of 20% by weight. The mixing ratio of manganese solid solution γ-type nickel oxyhydroxide and cement was 99: 1. These D1 to D
A charge / discharge cycle test was performed on each of the batteries No. 3 under the same conditions as those used in Experiment 1, and the battery capacity in the first cycle, the battery capacity in the 25th cycle, and the number of leaked batteries were examined. The crack generation rate of the positive electrode was measured in the same manner as in Experiment 1.

【0053】結果を表3に示す。表3中の1サイクル目
の放電容量は、電池A1の1サイクル目の容量を100
とした指数である。また、25サイクル目における容量
維持率は、各電池の1サイクル目の放電容量に対する比
率(%)であり、かつ電解液が漏出しなかった電池の容
量維持率の平均値である。A1は表1中のA1と同じ電
池である。なお、正極のクラック発生率はいずれも0%
であった。
Table 3 shows the results. The discharge capacity at the first cycle in Table 3 is 100% of the capacity at the first cycle of the battery A1.
Is an index. The capacity retention rate at the 25th cycle is a ratio (%) to the discharge capacity at the first cycle of each battery, and is an average value of the capacity retention rates of the batteries in which the electrolyte did not leak. A1 is the same battery as A1 in Table 1. The crack generation rate of the positive electrode was 0% in each case.
Met.

【0054】[0054]

【表3】 [Table 3]

【0055】表3に示す結果から明らかなように、電池
容量の大きい電池を得るためには、正極活物質としてニ
ッケル原子の価数が3.4〜3.8のγ型オキシ水酸化
ニッケルを使用することが好ましいことがわかる。
As apparent from the results shown in Table 3, in order to obtain a battery having a large battery capacity, γ-type nickel oxyhydroxide having a valence of nickel atom of 3.4 to 3.8 was used as a positive electrode active material. It turns out that it is preferable to use.

【0056】(実験4)この実験では、マンガン以外に
固溶させる元素の影響について検討した。なお、固溶量
の定義を以下に示す。 固溶量(重量%)=(γ型オキシ水酸化ニッケル中のマ
ンガン以外の固溶元素量)/(γ型オキシ水酸化ニッケ
ル中のニッケル量+マンガン以外の固溶元素量)×10
(Experiment 4) In this experiment, the effect of elements dissolved in solid solution other than manganese was examined. The definition of the amount of solid solution is shown below. Solid solution amount (% by weight) = (amount of solid solution element other than manganese in γ-type nickel oxyhydroxide) / (amount of nickel in γ-type nickel oxyhydroxide + amount of solid solution element other than manganese) × 10
0

【0057】(実験4−1)実験1の正極の作製におい
て硫酸マンガン、硫酸ニッケル以外に硫酸亜鉛を1.4
6g溶解させたこと以外は同様にして電池E1を作製し
た。このとき、亜鉛の固溶量が1重量%、マンガンの固
溶量が20重量%であることを原子吸光法で確認した。
ニッケルの価数を鉄の2価・3価の酸化還元滴定により
定量した結果3.6であった。なお、活物質とセメント
の混合比率は99:1とした。
(Experiment 4-1) In the preparation of the positive electrode of Experiment 1, zinc sulfate was used in addition to manganese sulfate and nickel sulfate at 1.4.
A battery E1 was made in the same manner except that 6 g was dissolved. At this time, it was confirmed by an atomic absorption method that the solid solution amount of zinc was 1% by weight and the solid solution amount of manganese was 20% by weight.
The valence of nickel was determined by iron bivalent / trivalent redox titration to be 3.6. The mixing ratio between the active material and the cement was 99: 1.

【0058】(実験4−2)実験1の正極の作製におい
て硫酸マンガン、硫酸ニッケル以外に硫酸コバルトを
1.55g溶解させたこと以外は同様にして電池E2を
作製した。このとき、コバルトの固溶量が1重量%、マ
ンガンの固溶量が20重量%であることを原子吸光法で
確認した。ニッケルの価数を鉄の2価・3価の酸化還元
滴定により定量した結果3.6であった。なお、活物質
とセメントの混合比率は99:1とした。
(Experiment 4-2) Battery E2 was produced in the same manner as in Experiment 1, except that 1.55 g of cobalt sulfate was dissolved in addition to manganese sulfate and nickel sulfate. At this time, it was confirmed by atomic absorption spectroscopy that the solid solution amount of cobalt was 1% by weight and the solid solution amount of manganese was 20% by weight. The valence of nickel was determined by iron bivalent / trivalent redox titration to be 3.6. The mixing ratio between the active material and the cement was 99: 1.

【0059】(実験4−3)実験1の正極の作製におい
て硫酸マンガン、硫酸ニッケル以外に硫酸ビスマスを
0.86g溶解させたこと以外は同様にして電池E3を
作製した。このとき、ビスマスの固溶量が1重量%、マ
ンガンの固溶量が20重量%であることを原子吸光法で
確認した。ニッケルの価数を鉄の2価・3価の酸化還元
滴定により定量した結果3.6であった。なお、活物質
とセメントの混合比率は99:1とした。
(Experiment 4-3) Battery E3 was produced in the same manner as in Experiment 1, except that 0.86 g of bismuth sulfate was dissolved in addition to manganese sulfate and nickel sulfate. At this time, it was confirmed by an atomic absorption method that the amount of bismuth in the solid solution was 1% by weight and the amount of manganese in the solution was 20% by weight. The valence of nickel was determined by iron bivalent / trivalent redox titration to be 3.6. The mixing ratio between the active material and the cement was 99: 1.

【0060】(実験4−4)実験1の正極の作製におい
て硫酸マンガン、硫酸ニッケル以外に硫酸アルミニウム
を3.74g溶解させたこと以外は同様にして電池E4
を作製した。このとき、アルミニウムの固溶量が1重量
%、マンガンの固溶量が20重量%であることを原子吸
光法で確認した。ニッケルの価数を鉄の2価・3価の酸
化還元滴定により定量した結果3.6であった。なお、
活物質とセメントの混合比率は99:1とした。
(Experiment 4-4) Battery E4 was produced in the same manner as in Experiment 1 except that 3.74 g of aluminum sulfate was dissolved in addition to manganese sulfate and nickel sulfate.
Was prepared. At this time, it was confirmed by an atomic absorption method that the solid solution amount of aluminum was 1% by weight and the solid solution amount of manganese was 20% by weight. The valence of nickel was determined by iron bivalent / trivalent redox titration to be 3.6. In addition,
The mixing ratio of the active material and the cement was 99: 1.

【0061】(実験4−5)実験1の正極の作製におい
て硫酸マンガン、硫酸ニッケル以外に硫酸イットリウム
を1.55g溶解させたこと以外は同様にして電池E5
を作製した。このとき、イットリウムの固溶量が1重量
%であることを発光分析法(ICP)で確認した。ま
た、マンガンの固溶量が20重量%であることを原子吸
光法で確認した。ニッケルの価数を鉄の2価・3価の酸
化還元滴定により定量した結果3.6であった。なお、
活物質とセメントの混合比率は99:1とした。
(Experiment 4-5) Battery E5 was produced in the same manner as in Experiment 1 except that 1.55 g of yttrium sulfate was dissolved in addition to manganese sulfate and nickel sulfate.
Was prepared. At this time, it was confirmed by emission spectroscopy (ICP) that the amount of yttrium dissolved in solid was 1% by weight. Further, it was confirmed by an atomic absorption method that the solid solution amount of manganese was 20% by weight. The valence of nickel was determined by iron bivalent / trivalent redox titration to be 3.6. In addition,
The mixing ratio of the active material and the cement was 99: 1.

【0062】(実験4−6)実験1の正極の作製におい
て硫酸マンガン、硫酸ニッケル以外に硫酸エルビウムを
1.10g溶解させたこと以外は同様にして電池E6を
作製した。このとき、エルビウムの固溶量が1重量%で
あることを発光分析法(ICP)で確認した。また、マ
ンガンの固溶量が20重量%であることを原子吸光法で
確認した。ニッケルの価数を鉄の2価・3価の酸化還元
滴定により定量した結果3.6であった。なお、活物質
とセメントの混合比率は99:1とした。
(Experiment 4-6) Battery E6 was produced in the same manner as in Experiment 1 except that 1.10 g of erbium sulfate was dissolved in addition to manganese sulfate and nickel sulfate. At this time, it was confirmed by luminescence analysis (ICP) that the solid solution amount of erbium was 1% by weight. Further, it was confirmed by an atomic absorption method that the solid solution amount of manganese was 20% by weight. The valence of nickel was determined by iron bivalent / trivalent redox titration to be 3.6. The mixing ratio between the active material and the cement was 99: 1.

【0063】(実験4−7)実験1の正極の作製におい
て硫酸マンガン、硫酸ニッケル以外に硫酸イッテルビウ
ムを1.08g溶解させたこと以外は同様にして電池E
7を作製した。このとき、イッテルビウムの固溶量が1
重量%であることを発光分析法(ICP)で確認した。
また、マンガンの固溶量が20重量%であることを原子
吸光法で確認した。ニッケルの価数を鉄の2価・3価の
酸化還元滴定により定量した結果3.6であった。な
お、活物質とセメントの混合比率は99:1とした。
(Experiment 4-7) Battery E was produced in the same manner as in Experiment 1 except that 1.08 g of ytterbium sulfate was dissolved in addition to manganese sulfate and nickel sulfate.
7 was produced. At this time, the solid solution amount of ytterbium is 1
The weight% was confirmed by emission spectrometry (ICP).
Further, it was confirmed by an atomic absorption method that the solid solution amount of manganese was 20% by weight. The valence of nickel was determined by iron bivalent / trivalent redox titration to be 3.6. The mixing ratio between the active material and the cement was 99: 1.

【0064】(実験4−8)実験1の正極の作製におい
て硫酸マンガン、硫酸ニッケル以外に硫酸ガドリニウム
を1.13g溶解させたこと以外は同様にして電池E8
を作製した。このとき、ガドリニウムの固溶量が1重量
%であることを発光分析法(ICP)で確認した。ま
た、マンガンの固溶量が20重量%であることを原子吸
光法で確認した。ニッケルの価数を鉄の2価・3価の酸
化還元滴定により定量した結果3.6であった。なお、
活物質とセメントの混合比率は99:1とした。
(Experiment 4-8) Battery E8 was manufactured in the same manner as in Experiment 1, except that 1.13 g of gadolinium sulfate was dissolved in addition to manganese sulfate and nickel sulfate in the preparation of the positive electrode.
Was prepared. At this time, it was confirmed by an emission spectrometry (ICP) that the solid solution amount of gadolinium was 1% by weight. Further, it was confirmed by an atomic absorption method that the solid solution amount of manganese was 20% by weight. The valence of nickel was determined by iron bivalent / trivalent redox titration to be 3.6. In addition,
The mixing ratio of the active material and the cement was 99: 1.

【0065】(実験4−9)実験1の正極の作製におい
て硫酸マンガン、硫酸ニッケル以外に硫酸エルビウムを
1.10g、硫酸アルミニウムを3.74g溶解させた
こと以外は同様にして電池E9を作製した。このとき、
エルビウムの固溶量が1重量%であることを発光分析法
(ICP)で確認した。また、アルミニウムの固溶量が
1重量%、マンガンの固溶量が20重量%であることを
原子吸光法で確認した。ニッケルの価数を鉄の2価・3
価の酸化還元滴定により定量した結果3.6であった。
なお、活物質とセメントの混合比率は99:1とした。
(Experiment 4-9) A battery E9 was produced in the same manner as in the experiment 1 except that 1.10 g of erbium sulfate and 3.74 g of aluminum sulfate were dissolved in addition to manganese sulfate and nickel sulfate. . At this time,
It was confirmed by emission spectrometry (ICP) that the solid solution amount of erbium was 1% by weight. Further, it was confirmed by an atomic absorption method that the amount of solid solution of aluminum was 1% by weight and the amount of solid solution of manganese was 20% by weight. The valence of nickel is 2/3 of iron
As a result of quantification by titration redox titration, it was 3.6.
The mixing ratio between the active material and the cement was 99: 1.

【0066】これらE1〜E9の各電池について実験1
で行ったのと同じ条件で充放電サイクル試験を行い、1
サイクル目の電池容量並びに25サイクル目の電池容
量、及び漏液電池発生数を調べた。また、実験1と同様
にして正極成形体のクラック発生率を測定した。
Experiment 1 on each of these batteries E1 to E9
A charge / discharge cycle test was performed under the same conditions as
The battery capacity at the cycle, the battery capacity at the 25th cycle, and the number of leaked batteries were examined. Further, the crack generation rate of the molded positive electrode was measured in the same manner as in Experiment 1.

【0067】結果を表4に示す。表4中の1サイクル目
の放電容量は、電池A1の1サイクル目の容量を100
とした指数である。また、25サイクル目における容量
維持率は、各電池の1サイクル目の放電容量に対する比
率(%)であり、かつ電解液が漏出しなかった電池の容
量維持率の平均値である。A1は表1中のA1と同じ電
池である。
Table 4 shows the results. The discharge capacity at the first cycle in Table 4 is 100 times the capacity at the first cycle of the battery A1.
Is an index. The capacity retention rate at the 25th cycle is a ratio (%) to the discharge capacity at the first cycle of each battery, and is an average value of the capacity retention rates of the batteries in which the electrolyte did not leak. A1 is the same battery as A1 in Table 1.

【0068】[0068]

【表4】 [Table 4]

【0069】表4に示す結果から明らかなように、マン
ガン以外に亜鉛、コバルト、ビスマス、アルミニウム、
イットリウム、エルビウム、イッテルビウム及びガドリ
ニウムよりなる群から選ばれた少なくとも1種の元素を
固溶させても優れた特性が得られることがわかる。
As is clear from the results shown in Table 4, in addition to manganese, zinc, cobalt, bismuth, aluminum,
It can be seen that excellent properties can be obtained even when at least one element selected from the group consisting of yttrium, erbium, ytterbium, and gadolinium is dissolved.

【0070】[0070]

【発明の効果】本発明によれば、充放電サイクルの長期
にわたって電解液が外部に漏出しにくい、信頼性の高い
放電スタートの密閉型アルカリ蓄電池であって、正極成
形体の強度が高められた密閉型アルカリ蓄電池とするこ
とができる。
According to the present invention, there is provided a sealed alkaline storage battery having a highly reliable discharge start, in which the electrolyte is unlikely to leak to the outside over a long period of the charge / discharge cycle, in which the strength of the molded positive electrode is increased. A sealed alkaline storage battery can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に従う一実施例の密閉型アルカリ蓄電池
を示す部分断面図。
FIG. 1 is a partial sectional view showing a sealed alkaline storage battery of one embodiment according to the present invention.

【符号の説明】[Explanation of symbols]

1…正極缶 2…負極蓋 3…絶縁パッキング 4…負極集電棒 5…正極 6…セパレータ 7…ゲル状負極 DESCRIPTION OF SYMBOLS 1 ... Positive electrode can 2 ... Negative electrode cover 3 ... Insulating packing 4 ... Negative current collector rod 5 ... Positive electrode 6 ... Separator 7 ... Gelled negative electrode

フロントページの続き (72)発明者 木本 衛 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 伊藤 靖彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H003 AA04 BB02 BB04 BB11 BD00 BD04 5H016 AA03 AA08 AA10 EE01 EE05 HH00 HH01 5H028 AA01 AA05 AA07 CC17 EE01 EE05 EE08 HH00 HH01 Continuing from the front page (72) Inventor Mamoru Kimoto 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Yasuhiko Ito 2-5-25 Keihanhondori, Moriguchi-shi, Osaka No. Sanyo Electric Co., Ltd. F-term (reference) 5H003 AA04 BB02 BB04 BB11 BD00 BD04 5H016 AA03 AA08 AA10 EE01 EE05 HH00 HH01 5H028 AA01 AA05 AA07 CC17 EE01 EE05 EE08 HH00 HH01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電池缶と、前記電池缶と電気的に接触す
るように前記電池缶内に配置される、γ型オキシ水酸化
ニッケルを正極活物質とした中空状の正極と、前記正極
の内側に配置される、亜鉛を負極活物質とした負極と、
前記正極と前記負極の間に配置されるセパレータと、前
記負極内に挿入された状態で配置される負極集電体と、
前記正極、前記負極、及び前記セパレータ内に含浸され
る電解液とを備える密閉型アルカリ蓄電池であって、 前記γ型オキシ水酸化ニッケルがマンガンをニッケルと
マンガンの総量に対して5〜50重量%固溶しており、
かつ前記正極中にセメントが添加されていることを特徴
とする密閉型アルカリ蓄電池。
1. A battery can, a hollow positive electrode using gamma-type nickel oxyhydroxide as a positive electrode active material, and a hollow positive electrode disposed in the battery can so as to be in electrical contact with the battery can. A negative electrode, which is disposed on the inside and has zinc as a negative electrode active material,
A separator disposed between the positive electrode and the negative electrode, a negative electrode current collector disposed in a state inserted in the negative electrode,
A sealed alkaline storage battery comprising the positive electrode, the negative electrode, and an electrolyte impregnated in the separator, wherein the γ-type nickel oxyhydroxide contains manganese in an amount of 5 to 50% by weight based on the total amount of nickel and manganese. Solid solution,
A sealed alkaline storage battery characterized in that cement is added to the positive electrode.
【請求項2】 前記正極中におけるγ型オキシ水酸化ニ
ッケルとセメントの重量比が、99.9:0.1〜9
0:10であることを特徴とする請求項1に記載の密閉
型アルカリ蓄電池。
2. The weight ratio of γ-type nickel oxyhydroxide to cement in the positive electrode is 99.9: 0.1-9.
2. The sealed alkaline storage battery according to claim 1, wherein the ratio is 0:10.
【請求項3】 初回放電前の前記γ型オキシ水酸化ニッ
ケル中のニッケル原子の価数が3.4〜3.8価である
ことを特徴とする請求項1または2に記載の密閉型アル
カリ蓄電池。
3. The sealed alkali according to claim 1, wherein the valence of the nickel atom in the γ-type nickel oxyhydroxide before the first discharge is 3.4 to 3.8. Storage battery.
【請求項4】 前記γ型オキシ水酸化ニッケルに、マン
ガン以外に、さらに亜鉛、コバルト、ビスマス、アルミ
ニウム、イットリウム、エルビウム、イッテルビウム及
びガドリニウムよりなる群から選ばれた少なくとも1種
の元素が固溶していることを特徴とする請求項1〜3の
いずれか1項に記載の密閉型アルカリ蓄電池。
4. The γ-type nickel oxyhydroxide further comprises at least one element selected from the group consisting of zinc, cobalt, bismuth, aluminum, yttrium, erbium, ytterbium and gadolinium in addition to manganese. The sealed alkaline storage battery according to any one of claims 1 to 3, wherein:
JP11207530A 1999-07-22 1999-07-22 Sealed alkaline storage battery Pending JP2001035489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11207530A JP2001035489A (en) 1999-07-22 1999-07-22 Sealed alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11207530A JP2001035489A (en) 1999-07-22 1999-07-22 Sealed alkaline storage battery

Publications (1)

Publication Number Publication Date
JP2001035489A true JP2001035489A (en) 2001-02-09

Family

ID=16541258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11207530A Pending JP2001035489A (en) 1999-07-22 1999-07-22 Sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2001035489A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4112705B1 (en) * 1958-10-10 1966-07-19
JPS5061635A (en) * 1973-10-04 1975-05-27
JPH10125318A (en) * 1996-10-24 1998-05-15 Matsushita Electric Ind Co Ltd Positive active material and positive electrode for alkaline storage battery
JPH10214621A (en) * 1997-01-30 1998-08-11 Sanyo Electric Co Ltd Sealed alkaline storage battery
JPH10289714A (en) * 1997-04-14 1998-10-27 Matsushita Electric Ind Co Ltd Nickel-hydrogen storage battery
JPH10334913A (en) * 1997-05-30 1998-12-18 Matsushita Electric Ind Co Ltd Alkaline storage battery and its manufacture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4112705B1 (en) * 1958-10-10 1966-07-19
JPS5061635A (en) * 1973-10-04 1975-05-27
JPH10125318A (en) * 1996-10-24 1998-05-15 Matsushita Electric Ind Co Ltd Positive active material and positive electrode for alkaline storage battery
JPH10214621A (en) * 1997-01-30 1998-08-11 Sanyo Electric Co Ltd Sealed alkaline storage battery
JPH10289714A (en) * 1997-04-14 1998-10-27 Matsushita Electric Ind Co Ltd Nickel-hydrogen storage battery
JPH10334913A (en) * 1997-05-30 1998-12-18 Matsushita Electric Ind Co Ltd Alkaline storage battery and its manufacture

Similar Documents

Publication Publication Date Title
JP3239076B2 (en) Sealed alkaline storage battery
JP2001338645A (en) Paste type positive electrode for alkaline battery and nickel hydrogen battery
JPH11167933A (en) Sealed alkaline zinc storage battery
JP3568408B2 (en) Positive electrode active material for alkaline secondary batteries and alkaline secondary batteries
JP3389252B2 (en) Alkaline storage battery and charging method thereof
JP3631016B2 (en) Sealed alkaline storage battery
JP2000067910A (en) Sealed alkaline zing storage battery
JP3663071B2 (en) Sealed alkaline zinc storage battery
JP3653410B2 (en) Sealed alkaline zinc storage battery
JP4253172B2 (en) Sealed nickel zinc primary battery
JP2001035489A (en) Sealed alkaline storage battery
JP3902351B2 (en) Sealed alkaline storage battery
JP2000277104A (en) Sealed type alkaline storage battery
JP2001093525A (en) Sealed alkaline battery
JP3728143B2 (en) Sealed alkaline storage battery
JP3663072B2 (en) Sealed alkaline zinc storage battery
JP3913412B2 (en) Sealed alkaline storage battery
JP2000251924A (en) Sealed alkaline zinc storage battery
JP3433035B2 (en) Sealed alkaline storage battery
JP2000357511A (en) Sealed alkaline storage battery
JP2001093569A (en) Sealed alkaline storage battery
JP2000311683A (en) Sealed alkaline storage battery
JP2000251925A (en) Sealed alkaline zinc storage battery
JP2000311682A (en) Sealed alkaline manganese storage battery
JP2003168473A (en) Cylinder type storage battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050726