JP2001006665A - Sealed alkaline storage battery - Google Patents

Sealed alkaline storage battery

Info

Publication number
JP2001006665A
JP2001006665A JP11175801A JP17580199A JP2001006665A JP 2001006665 A JP2001006665 A JP 2001006665A JP 11175801 A JP11175801 A JP 11175801A JP 17580199 A JP17580199 A JP 17580199A JP 2001006665 A JP2001006665 A JP 2001006665A
Authority
JP
Japan
Prior art keywords
positive electrode
manganese
battery
negative electrode
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11175801A
Other languages
Japanese (ja)
Other versions
JP3728143B2 (en
Inventor
Mitsunori Tokuda
光紀 徳田
Mutsumi Yano
睦 矢野
Mamoru Kimoto
衛 木本
Yasuhiko Ito
靖彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP17580199A priority Critical patent/JP3728143B2/en
Publication of JP2001006665A publication Critical patent/JP2001006665A/en
Application granted granted Critical
Publication of JP3728143B2 publication Critical patent/JP3728143B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a discharge start having an electrolyte hardly exposed to the outside for a long charge/discharge cycle and a large discharge capacity by dissolving a manganese in a γ-nickel oxyhydroxide in solid solution and by setting the density of a positive electrode compact within a specific range. SOLUTION: This sealed alkaline storage battery is constituted of a bottomed cylindrical positive electrode can 1, a negative electrode cover 2, an insulating packing 3, a brass negative electrode collector bar 4, a cylindrical hollow positive electrode 5, a cylindrical film-like separator 6 and a gel negative electrode 7, etc. A γ-nickel oxyhydroxide used for a positive electrode active material of the positive electrode 5 preferably dissolves in solid solution with 5-50 wt.% of a manganese. For example, 100 pts.wt of the γ-nickel oxyhydroxide is mixed with 10 pts.wt of a powdered graphite and 30 wt.% of a potassium hydroxide, a resulting positive electrode mix is pressure-formed by a press and a cylindrical hollow positive electrode compact is obtained. The density of the positive electrode compact is preferably 2.5-3.5 g/cm3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、放電スタートの密
閉型アルカリ蓄電池に関するものである。放電スタート
の蓄電池とは、予め充電することなく初回の放電を行う
ことができる蓄電池のことである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed alkaline storage battery with a discharge start. The discharge-started storage battery is a storage battery that can be discharged for the first time without being charged in advance.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
亜鉛を負極活物質とする密閉型アルカリ蓄電池用の正極
活物質としては、二酸化マンガンが提案されている(特
公昭45−3570号公報参照)。また、亜鉛を負極活
物質とするアルカリ蓄電池の正極活物質として、酸化ニ
ッケルと二酸化マンガンを混合したものが提案されてい
る(特公昭49−114741号公報参照)。
2. Description of the Related Art
Manganese dioxide has been proposed as a positive electrode active material for a sealed alkaline storage battery using zinc as a negative electrode active material (see Japanese Patent Publication No. 45-3570). A mixture of nickel oxide and manganese dioxide has been proposed as a positive electrode active material of an alkaline storage battery using zinc as a negative electrode active material (see Japanese Patent Publication No. 49-114471).

【0003】しかしながら、二酸化マンガンは充放電サ
イクルにおける可逆性が悪く、初回の放電を行った後充
電しても当初の二酸化マンガンに戻らないので、充放電
サイクルにおいて放電容量が急激に低下する。また、二
酸化マンガンの酸素過電圧が低いために、充電時に正極
側で酸素ガス(水の電気分解による)が発生して電池内
圧が上昇し、それに伴い電池外装部材の接合部における
密着性が低下して、電解液が外部に漏出しやすい。ま
た、酸化ニッケルと二酸化マンガンとの混合物を蓄電池
に用いた場合、活物質である酸化ニッケルの酸素過電圧
が低いために、二酸化マンガンを単独で使用した場合と
同様に、電池内圧が上昇しやすく漏液が起こりやすい。
However, manganese dioxide has poor reversibility in the charge / discharge cycle, and does not return to the original manganese dioxide even if charged after the first discharge, so that the discharge capacity sharply decreases in the charge / discharge cycle. In addition, since the oxygen overvoltage of manganese dioxide is low, oxygen gas (due to electrolysis of water) is generated on the positive electrode side during charging, and the internal pressure of the battery increases, and accordingly, the adhesion at the junction of the battery exterior member decreases. Therefore, the electrolyte is easily leaked to the outside. Also, when a mixture of nickel oxide and manganese dioxide is used for a storage battery, the internal pressure of the battery is likely to rise, as in the case of using manganese dioxide alone, because the oxygen overvoltage of nickel oxide, which is the active material, is low. Liquid is likely to occur.

【0004】このような問題を解消し得る正極活物質と
して、本出願人はマンガンを固溶したγ型オキシ水酸化
ニッケルを提案している(特開平10−214621号
公報参照)。マンガンを固溶したγ型オキシ水酸化ニッ
ケルを正極活物質として用いることにより、充放電サイ
クルの長期に渡って電解液が外部に漏出しにくい、信頼
性の高い放電スタートの密閉型アルカリ蓄電池を得るこ
とができる。しかしながら、このような密閉型アルカリ
蓄電池においては、さらに放電容量を高めることが求め
られている。
As a positive electrode active material that can solve such a problem, the present applicant has proposed γ-type nickel oxyhydroxide in which manganese is dissolved (see JP-A-10-214621). By using γ-type nickel oxyhydroxide in which manganese is dissolved as a positive electrode active material, it is possible to obtain a highly reliable discharge-starting sealed alkaline storage battery in which the electrolyte is unlikely to leak out for a long period of the charge / discharge cycle. be able to. However, such a sealed alkaline storage battery is required to further increase the discharge capacity.

【0005】本発明の目的は、充放電サイクルの長期に
渡って電解液が外部に漏出しにくく、かつ放電容量の高
い放電スタートの密閉型アルカリ蓄電池を提供すること
にある。
An object of the present invention is to provide a sealed alkaline storage battery having a high discharge capacity and a low discharge capacity, in which the electrolyte is unlikely to leak out to the outside over a long charge / discharge cycle.

【0006】[0006]

【課題を解決するための手段】本発明の密閉型アルカリ
蓄電池は、電池缶と、該電池缶と電気的に接触するよう
に電池缶内に配置される、γ型オキシ水酸化ニッケルか
らなる正極活物質を成形した中空状の正極と、正極の内
側に配置される、亜鉛を負極活物質とした負極と、正極
と負極の間に配置されるセパレータと、負極内に挿入さ
れた状態で配置される負極集電体と、正極、負極、及び
セパレータ内に含浸される電解液とを備える密閉型アル
カリ蓄電池であり、γ型オキシ水酸化ニッケルがマンガ
ンを固溶しており、かつ正極成形体の密度が2.5〜
3.5g/cm3 であることを特徴としている。
A sealed alkaline storage battery according to the present invention comprises a battery can and a positive electrode made of γ-type nickel oxyhydroxide disposed in the battery can so as to make electrical contact with the battery can. A hollow positive electrode formed by molding an active material, a negative electrode having zinc as a negative electrode active material disposed inside the positive electrode, a separator disposed between the positive electrode and the negative electrode, and disposed in a state inserted in the negative electrode Negative electrode current collector, a positive electrode, a negative electrode, and a sealed alkaline storage battery comprising an electrolytic solution impregnated in a separator, γ-type nickel oxyhydroxide has a solid solution of manganese, and a positive electrode molded body Density of 2.5 ~
It is characterized by a weight of 3.5 g / cm 3 .

【0007】本発明においては、正極成形体の密度が
2.5〜3.5g/cm3 に規定されている。正極成形
体の密度が2.5g/cm3 より小さいと、正極成形体
の強度が弱くなり、電池缶内へ正極成形体を挿入する際
にクラックが生じて挿入が困難となる。また、正極成形
体の密度が3.5g/cm3 より大きくなると、正極成
形体内部への電解液の浸透が困難になるため、充放電サ
イクルを経過するに伴い、放電容量の低下を生じる。正
極成形体の密度は、成形時のプレス圧を調整することに
より変化させることができる。正極成形体の密度は、正
極成形体の寸法から体積を算出するとともに、正極成形
体の重量を測定して、以下の式により求めることができ
る。
In the present invention, the density of the positive electrode molded body is specified to be 2.5 to 3.5 g / cm 3 . If the density of the positive electrode molded article is less than 2.5 g / cm 3 , the strength of the positive electrode molded article will be weak, and cracks will occur when inserting the positive electrode molded article into the battery can, making insertion difficult. On the other hand, when the density of the positive electrode molded body is higher than 3.5 g / cm 3 , it becomes difficult for the electrolyte solution to penetrate into the inside of the positive electrode molded body, so that the discharge capacity decreases as the charge / discharge cycle progresses. The density of the positive electrode molded body can be changed by adjusting the press pressure during molding. The density of the positive electrode molded body can be obtained by calculating the volume from the dimensions of the positive electrode molded body, measuring the weight of the positive electrode molded body, and using the following formula.

【0008】正極成形体の密度=(正極成形体の重量)
/(正極成形体の体積) 本発明において正極活物質として用いるγ型オキシ水酸
化ニッケルは、好ましくは、マンガン(Mn)を5〜5
0重量%固溶している。マンガンの固溶量は以下の式に
より定義される。
[0008] Density of molded positive electrode = (weight of molded positive electrode)
/ (Volume of positive electrode molded body) The γ-type nickel oxyhydroxide used as the positive electrode active material in the present invention preferably contains manganese (Mn) of 5 to 5%.
0% by weight solid solution. The solid solution amount of manganese is defined by the following equation.

【0009】マンガンの固溶量(重量%)=(γ型オキ
シ水酸化ニッケル中のマンガン量)/(γ型オキシ水酸
化ニッケル中のニッケル及びマンガンの合計量)×10
0 マンガンの固溶量が5重量%未満になると、充放電サイ
クルの経過に伴い、オキシ水酸化ニッケルの放電生成物
である水酸化ニッケルの結晶構造が、α型からβ型へ変
化するため、酸素過電圧(酸素発生電位−充電電位)が
低下し、充電時に正極側で酸素が発生しやすくなる傾向
にある。一方、固溶量が50重量%を超えると、正極活
物質であるγ型オキシ水酸化ニッケルの量が減少するた
め、十分な放電容量を得ることが困難になる。マンガン
の固溶量は、マンガンの原料とニッケル原料の混合割合
を変化させることにより、調整することができる。
Amount of solid solution of manganese (% by weight) = (amount of manganese in γ-type nickel oxyhydroxide) / (total amount of nickel and manganese in γ-type nickel oxyhydroxide) × 10
0 When the solid solution amount of manganese is less than 5% by weight, the crystal structure of nickel hydroxide, which is a discharge product of nickel oxyhydroxide, changes from α-form to β-form with the progress of the charge / discharge cycle. Oxygen overvoltage (oxygen generation potential-charge potential) decreases, and oxygen tends to be generated on the positive electrode side during charging. On the other hand, when the amount of solid solution exceeds 50% by weight, the amount of γ-type nickel oxyhydroxide, which is a positive electrode active material, decreases, and it becomes difficult to obtain a sufficient discharge capacity. The solid solution amount of manganese can be adjusted by changing the mixing ratio of the manganese raw material and the nickel raw material.

【0010】本発明におけるγ型オキシ水酸化ニッケル
中のニッケル原子の価数は、初回放電前において、すな
わち満充電状態で、3.4〜3.8価であることが好ま
しい。ニッケル原子の価数が3.4未満になると、十分
な放電容量が得られにくく、また酸素過電圧が低いため
充電時に電解液の漏れが発生する場合がある。また、一
般にオキシ水酸化ニッケルにおいては、ニッケル原子の
価数が3.8価よりも大きなものは存在しない。従っ
て、満充填状態の後にさらに充電を続けても、水が分解
して酸素ガスが発生するだけであり、ニッケル原子の価
数が3.8価を超えることはない。
The valence of the nickel atom in the γ-type nickel oxyhydroxide in the present invention is preferably 3.4 to 3.8 before the first discharge, that is, in a fully charged state. If the valence of the nickel atom is less than 3.4, it is difficult to obtain a sufficient discharge capacity, and the electrolyte may leak during charging due to a low oxygen overvoltage. In general, there is no nickel oxyhydroxide having a valence of nickel atom larger than 3.8. Therefore, even if the charging is further continued after the fully charged state, only the water is decomposed and oxygen gas is generated, and the valence of the nickel atom does not exceed 3.8.

【0011】本発明において用いるγ型オキシ水酸化ニ
ッケルは、例えば水酸化ニッケルを次亜塩素酸ナトリウ
ム(NaClO)等の酸化剤で酸化することにより得ら
れる。またニッケルの価数は、反応させる酸化剤の添加
量により調整することができる。
The γ-type nickel oxyhydroxide used in the present invention is obtained, for example, by oxidizing nickel hydroxide with an oxidizing agent such as sodium hypochlorite (NaClO). The valence of nickel can be adjusted by the amount of the oxidizing agent to be reacted.

【0012】本発明において用いるγ型オキシ水酸化ニ
ッケルには、マンガン以外に、さらにアルミニウム(A
l)、コバルト(Co)、イットリウム(Y)、イッテ
ルビウム(Yb)、エルビウム(Er)及びガドリニウ
ム(Gd)よりなる群から選ばれた少なくとも1種の元
素が固溶されていてもよい。これらの元素が固溶したγ
型オキシ水酸化ニッケルを用いることにより、正極の酸
素過電圧をさらに高めることができる。これらの元素の
固溶量としては、0.5〜5重量%程度が好ましい。な
お、この固溶量は以下の式により定義される。
The γ-type nickel oxyhydroxide used in the present invention further includes aluminum (A) in addition to manganese.
l), at least one element selected from the group consisting of cobalt (Co), yttrium (Y), ytterbium (Yb), erbium (Er), and gadolinium (Gd) may be dissolved. Γ in which these elements are dissolved
By using the nickel oxyhydroxide, the oxygen overvoltage of the positive electrode can be further increased. The solid solution amount of these elements is preferably about 0.5 to 5% by weight. The solid solution amount is defined by the following equation.

【0013】他の元素の固溶量(重量%)=(γ型オキ
シ水酸化ニッケル中の他の元素の量)/(γ型オキシ水
酸化ニッケル中のニッケル及び他の元素の合計量)×1
00 また、本発明においては、正極、負極、セパレータ、負
極集電体、及び電解液が、電池缶内の容積の75体積%
以上を占めることが好ましい。これにより、電池缶内に
おける活物質の充填量を高めることができ、放電容量の
高い密閉型アルカリ蓄電池とすることができる。また、
このような放電容量の高い密閉型アルカリ蓄電池におい
て、電池内圧の上昇を抑制し、充放電を繰り返した際に
電解液が外部へ漏出するのを防止することができる。
Solid solution amount of other elements (% by weight) = (amount of other elements in γ-type nickel oxyhydroxide) / (total amount of nickel and other elements in γ-type nickel oxyhydroxide) × 1
Further, in the present invention, the positive electrode, the negative electrode, the separator, the negative electrode current collector, and the electrolyte are 75% by volume of the volume in the battery can.
It is preferable to occupy the above. Thereby, the filling amount of the active material in the battery can can be increased, and a sealed alkaline storage battery having a high discharge capacity can be obtained. Also,
In such a sealed alkaline storage battery having a high discharge capacity, it is possible to suppress an increase in the internal pressure of the battery and to prevent the electrolyte from leaking out when charging and discharging are repeated.

【0014】[0014]

【発明の実施の形態】以下、本発明を実施例に基づいて
さらに詳細に説明するが、本発明は下記の実施例に何ら
限定されるものではなく、その要旨を変更しない範囲に
おいて適宜変更して実施することが可能なものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to the following examples at all, and may be modified as appropriate without departing from the scope of the invention. It can be implemented by

【0015】〔実験1〕この実験1では、正極活物質で
あるγ型オキシ水酸化ニッケルを成形した正極の密度と
クラック発生率、初期容量、充放電サイクル経過に伴う
放電容量、及び漏液電池発生数の関係を調べた。
[Experiment 1] In Experiment 1, the density and crack generation rate, the initial capacity, the discharge capacity of the positive electrode formed from γ-type nickel oxyhydroxide, which is the positive electrode active material, as the charge / discharge cycle progressed, and the leakage battery The relationship between the number of occurrences was examined.

【0016】(実施例1) 〔正極の作製〕 ステップ1:水酸化ニッケルの作製 1.4Mの硫酸ニッケル水溶液500ml、0.37M
の硫酸マンガン水溶液500ml、及び30重量%アン
モニア水溶液1.9Lを1時間混合した。この溶液に、
温度を30℃に保持しながら、10重量%の水酸化ナト
リウム水溶液を滴下して攪拌し、反応溶液のpHを1
1.0の一定値となるように保持して8時間反応させ
た。そして、この生成物をろ過、水洗し、60℃で乾燥
してマンガンを固溶させたα型の水酸化ニッケルを作製
した。この際、α型水酸化ニッケル内のマンガン固溶量
をICP(発光分析法)により定量分析した結果、20
重量%であった。
(Example 1) [Preparation of positive electrode] Step 1: Preparation of nickel hydroxide 500 ml of a 1.4 M nickel sulfate aqueous solution, 0.37 M
Of manganese sulfate aqueous solution and 1.9 L of 30% by weight aqueous ammonia solution were mixed for 1 hour. In this solution,
While maintaining the temperature at 30 ° C., a 10% by weight aqueous solution of sodium hydroxide was added dropwise and stirred to adjust the pH of the reaction solution to 1
The reaction was carried out for 8 hours while maintaining a constant value of 1.0. Then, this product was filtered, washed with water, and dried at 60 ° C. to produce α-type nickel hydroxide in which manganese was dissolved. At this time, the manganese solid solution amount in the α-type nickel hydroxide was quantitatively analyzed by ICP (emission spectrometry),
% By weight.

【0017】ステップ2:酸化処理 酸化剤である10重量%の次亜塩素酸ナトリウム145
0mlと40重量%水酸化ナトリウム水溶液500ml
とを混合した水溶液を用意し、この水溶液を80℃に加
熱した。この水溶液中に、上記ステップ1で作製したマ
ンガンを固溶したα型水酸化ニッケル粉末を100g攪
拌しながら投入し、1時間反応させた。その後、ろ過、
水洗し、60℃で乾燥して、活物質であるマンガンを固
溶したγ型オキシ水酸化ニッケルを作製した。得られた
生成物について、マンガンの固溶量をICPにより定量
分析した結果、ステップ1で作製したα型水酸化ニッケ
ル中の固溶量と同量で、20重量%であった。また、鉄
の2価/3価酸化還元滴定測定法により、生成物のニッ
ケル原子の価数を測定した結果、3.5であった。
Step 2: Oxidation Treatment 10% by weight sodium hypochlorite 145 as an oxidizing agent
0 ml and a 40% by weight aqueous solution of sodium hydroxide 500 ml
Was prepared, and this aqueous solution was heated to 80 ° C. Into this aqueous solution, 100 g of the α-type nickel hydroxide powder in which manganese prepared in Step 1 was dissolved was added with stirring, and reacted for 1 hour. Then filtration,
After washing with water and drying at 60 ° C., γ-type nickel oxyhydroxide in which manganese as an active material was dissolved was prepared. As a result of quantitative analysis of the amount of manganese dissolved in the obtained product by ICP, the amount was 20% by weight, the same as the amount of solid solution in the α-type nickel hydroxide prepared in Step 1. The valence of the nickel atom in the product was measured by a divalent / trivalent redox titration measurement method of iron to be 3.5.

【0018】なお、上記の例では、酸化剤として、次亜
塩素酸ナトリウム(NaClO)を使用しているが、他
に過硫酸ナトリウム(Na2 2 8 )を酸化剤として
用いた場合でも、同様の処理が行えることを確認した。
In the above example, sodium hypochlorite (NaClO) is used as the oxidizing agent. However, even when sodium persulfate (Na 2 S 2 O 8 ) is used as the oxidizing agent, It was confirmed that similar processing could be performed.

【0019】ステップ3:電極の作製 上記ステップ2で得られたγ型オキシ水酸化ニッケル粉
末100重量部と黒鉛粉末10重量部と30重量%水酸
化カリウム水溶液10重量部とを、らいかい機で30分
間混合し、得られた正極合剤2.9gをプレス圧3.7
ton/cm2で加圧成形して、外径13.3mm、内
径9mm、高さ13mmの円筒中空状の正極成形体a1
を作製した。電極a1の体積は0.978cm3 であ
り、正極A1の重量は2.9gであったので、正極成形
体a1の密度は3.0g/cm3 となる。なお、電池の
作製においては、この円筒中空状の正極成形体を3個直
列に重ねて、全体として1個の円筒中空状正極として使
用した。
Step 3: Preparation of electrode 100 parts by weight of the γ-type nickel oxyhydroxide powder, 10 parts by weight of graphite powder, and 10 parts by weight of a 30% by weight aqueous solution of potassium hydroxide obtained in the above step 2 were used with a grinder. After mixing for 30 minutes, 2.9 g of the obtained positive electrode mixture was pressed at a pressing pressure of 3.7.
ton / cm 2 , and formed into a hollow cylindrical positive electrode molded article a1 having an outer diameter of 13.3 mm, an inner diameter of 9 mm, and a height of 13 mm.
Was prepared. Volume of the electrode a1 is 0.978cm 3, the weight of the positive electrode A1 was 2.9 g, the density of the positive electrode green body a1 becomes 3.0 g / cm 3. In the production of the battery, three cylindrical hollow positive electrode molded bodies were stacked in series and used as one cylindrical hollow positive electrode as a whole.

【0020】〔負極の作製〕負極活物質としての亜鉛粉
末65重量部と、酸化亜鉛(ZnO)を飽和量含む40
重量%水酸化カリウム水溶液34重量部と、ゲル化剤と
してのアクリル酸樹脂(日本純薬社製、商品名「ジュン
ロンPW150」)1重量部とを混合して、ゲル状の負
極を作製した。
[Production of Negative Electrode] 65 parts by weight of zinc powder as a negative electrode active material and 40 parts of zinc oxide (ZnO) containing a saturated amount.
A gelled negative electrode was prepared by mixing 34 parts by weight of a potassium hydroxide aqueous solution by weight and 1 part by weight of an acrylic resin (trade name “Junron PW150” manufactured by Nippon Pure Chemical Co., Ltd.) as a gelling agent.

【0021】〔電池の作製〕上記の正極及び負極を用い
て、通称「インサイドアウト型」と呼ばれている構造
(電池缶側が正極側、電池蓋側が負極側:「アウトサイ
ド・正極型」とも呼ばれる)で、AAサイズの密閉型ア
ルカリ蓄電池(本発明電池)A1を作製した。なお、放
電容量を正極容量で規定するために、正極と負極との電
気化学的な容量を1:1.2とした(以下の電池も全て
これと同じ容量比にした)。また、負極、正極、セパレ
ータ、負極集電体、及び電解液からなる発電要素体が占
める体積を、電池缶内の容積に対して、80体積%とし
た(以下の電池も全てこれと同じ充填率にした)。
[Preparation of Battery] Using the above-described positive electrode and negative electrode, a structure commonly called “inside-out type” (the battery can side is the positive electrode side, the battery lid side is the negative electrode side: both “outside / positive type”) AA size sealed alkaline storage battery (battery of the present invention) A1 was manufactured. In addition, in order to define the discharge capacity by the positive electrode capacity, the electrochemical capacity between the positive electrode and the negative electrode was set to 1: 1.2 (all the following batteries had the same capacity ratio). Further, the volume occupied by the power generating element body composed of the negative electrode, the positive electrode, the separator, the negative electrode current collector, and the electrolyte was set to 80% by volume with respect to the volume in the battery can (the following batteries were all the same filling). Rate).

【0022】図1は、作製した密閉型アルカリ蓄電池を
示す部分断面図である。図示の密閉型アルカリ蓄電池
は、有底円筒状の正極缶(正極外部端子)1、負極蓋
(負極外部端子)2、絶縁パッキング3、真鍮製の負極
集電棒4、円筒中空状の正極(ニッケル極)5、ビニロ
ンを主材とする円筒フィルム状のセパレータ6、ゲル状
負極(亜鉛極)7などからなる。
FIG. 1 is a partial sectional view showing the manufactured sealed alkaline storage battery. The illustrated sealed alkaline storage battery includes a cylindrical bottomed positive electrode can (positive electrode external terminal) 1, a negative electrode cover (negative electrode external terminal) 2, an insulating packing 3, a negative electrode current collector rod 4 made of brass, and a cylindrical positive electrode (nickel negative electrode). Electrode 5, a cylindrical film-shaped separator 6 mainly composed of vinylon, a gelled negative electrode (zinc electrode) 7, and the like.

【0023】正極缶1には、正極缶1の円筒部の内周面
に当接させて正極5が収納されており、該円筒中空状の
正極5の内周面には、セパレータ6が外周面を当接させ
て設けられており、セパレータ6の内側には、ゲル状の
負極7が充填されている。負極7の中央部には、正極缶
1と負極蓋2とを電気的に絶縁する絶縁パッキング3に
より一端を支持された負極集電棒(負極集電体)4が挿
入されている。正極缶1の開口部は、負極蓋2により閉
蓋されている。電池内部の密閉は、正極缶1の開口部に
絶縁パッキング3を嵌め込み、その上に負極蓋2を載置
した後、正極缶1の閉口端を内側にかしめることにより
なされている。本実施例の密閉型アルカリ蓄電池におい
て、電極缶は、正極缶1、負極蓋2及び絶縁パッキング
3から構成される。
A positive electrode 5 is housed in the positive electrode can 1 in contact with the inner peripheral surface of the cylindrical portion of the positive electrode can 1, and a separator 6 has an outer peripheral surface on the inner peripheral surface of the cylindrical hollow positive electrode 5. The separator 6 is filled with a gelled negative electrode 7 inside the separator 6. A negative electrode current collector rod (negative electrode current collector) 4 whose one end is supported by an insulating packing 3 that electrically insulates the positive electrode can 1 and the negative electrode lid 2 is inserted into the center of the negative electrode 7. The opening of the positive electrode can 1 is closed by a negative electrode lid 2. The inside of the battery is sealed by inserting an insulating packing 3 into the opening of the positive electrode can 1, placing the negative electrode cover 2 thereon, and caulking the closed end of the positive electrode can 1 inside. In the sealed alkaline storage battery according to the present embodiment, the electrode can includes a positive electrode can 1, a negative electrode lid 2, and an insulating packing 3.

【0024】なお、上記実施例の密閉型アルカリ蓄電池
においては中空状正極として円筒状の正極を用いている
が、本発明はこれに限定されるものではなく、例えば、
角筒状などの中空状正極であってもよい。
Although the sealed alkaline storage battery of the above embodiment uses a cylindrical positive electrode as the hollow positive electrode, the present invention is not limited to this.
It may be a hollow positive electrode such as a rectangular tube.

【0025】(実施例2)上記〔正極の作製〕のステッ
プ3において、正極成形体を作製する際の正極合剤の重
量及びプレス圧を表1に示すように変化させて、円筒中
空状の正極成形体a2〜a7を作製した。正極成形体の
外径、内径及び高さは、正極成形体a1と同じ寸法とし
た。
(Example 2) In step 3 of [Preparation of positive electrode], the weight of the positive electrode mixture and the pressing pressure at the time of preparing the positive electrode molded body were changed as shown in Table 1 to obtain a hollow cylindrical member. Positive electrode molded bodies a2 to a7 were produced. The outer diameter, the inner diameter, and the height of the positive electrode molded body were the same dimensions as the positive electrode molded body a1.

【0026】[0026]

【表1】 [Table 1]

【0027】次に、正極成形体a2〜a7を用い、上記
実施例2と同様にして、電池A2〜A7を作製した。 (比較例1)二酸化マンガン粉末90.5重量部と、黒
鉛粉末4.5重量部と、40重量%水酸化カリウム水溶
液5重量部とを混合し、得られた正極合剤を用いて、密
度3.05g/cm3 の正極成形体を作製した。この正
極成形体を使用したこと以外は、上記実施例1と同様に
して比較電池Xを作製した。
Next, batteries A2 to A7 were produced in the same manner as in Example 2 above, using the molded positive electrodes a2 to a7. (Comparative Example 1) 90.5 parts by weight of manganese dioxide powder, 4.5 parts by weight of graphite powder, and 5 parts by weight of a 40% by weight aqueous potassium hydroxide solution were mixed, and the density was determined using the obtained positive electrode mixture. A positive electrode compact of 3.05 g / cm 3 was produced. A comparative battery X was produced in the same manner as in Example 1 except that this positive electrode molded body was used.

【0028】〔各電池の充放電サイクルにおける放電容
量及び漏液電池発生個数〕上記電池A1〜A7及び比較
電池Xについて、100mAの電流で電池電圧が1Vに
なるまで放電した後、100mAの電流で電池電圧が
1.95V(比較電池Xについては1.65V)に達す
るまで充電を行う工程を1サイクルとする充放電サイク
ル試験を行った。そして、各電池の5サイクル目及び2
0サイクル目における放電容量及び漏液電池発生数を調
べた。各電池それぞれ10個について、放電容量及び漏
液電池発生数を調べた。
[Discharge Capacity and Number of Generated Leakage Batteries in Charge / Discharge Cycle of Each Battery] The batteries A1 to A7 and the comparative battery X were discharged at a current of 100 mA until the battery voltage became 1 V, and then discharged at a current of 100 mA. A charge / discharge cycle test was performed in which the charging process was performed as one cycle until the battery voltage reached 1.95 V (1.65 V for the comparative battery X). Then, the fifth cycle of each battery and the second cycle
The discharge capacity and the number of liquid leakage batteries generated at the 0th cycle were examined. For each of the 10 batteries, the discharge capacity and the number of leaked batteries generated were examined.

【0029】この結果を表2に示す。表2中の5サイク
ル目及び20サイクル目の放電容量は、各電池の1サイ
クル目の放電容量を100とした指数であり、電解液が
漏出しなかった電池の放電容量の平均値である。また、
表2中の漏液電池発生数は20サイクル目の測定値であ
り、充放電サイクル試験を行った電池の個数(10)を
分母とし、分数の分子が「電解液が漏出した漏液電池の
個数」を表している。
Table 2 shows the results. The discharge capacity at the 5th cycle and the 20th cycle in Table 2 is an index with the discharge capacity at the 1st cycle of each battery being 100, and is an average value of the discharge capacity of the battery in which the electrolyte did not leak. Also,
The number of leaked batteries in Table 2 is a measured value at the 20th cycle. The number of batteries (10) subjected to the charge / discharge cycle test is used as a denominator, and the numerator of the fraction is “ Number ".

【0030】また、表2には、正極成形体を電池缶内に
挿入する際に生じたクラックの発生率を併せて示してい
る。クラック発生率は、以下の式で定義される。 クラック発生率(%)=(クラックが生じた正極成形体
の個数)/(作製した正極成形体の個数)×100
Table 2 also shows the rate of occurrence of cracks generated when the positive electrode molded body was inserted into the battery can. The crack occurrence rate is defined by the following equation. Crack generation rate (%) = (number of positive electrode molded articles having cracks) / (number of produced positive electrode molded articles) × 100

【0031】[0031]

【表2】 [Table 2]

【0032】正極成形体の密度が2.5〜3.5g/c
3 である電池A1及びA3〜A6においては、充放電
サイクルを経過しても放電容量の低下が小さく、電解液
が外部に漏出していないことがわかる。正極成形体の密
度が本発明の範囲よりも低い電池A2においては、正極
成形体を電池缶内に挿入する際のクラック発生率が大き
く、電池の作製が困難であることがわかる。また、正極
成形体密度が3.7g/cm3 である電池A7において
は、放電容量が若干低くなっていることがわかる。ま
た、電池Xでは、正極活物質として、二酸化マンガンを
使用しているため、充放電サイクルの経過に伴い放電容
量が減少していることがわかる。以上の結果から、正極
成形体の密度としては、2.5〜3.5g/cm3 であ
ることが好ましいことがわかる。
The density of the molded positive electrode is 2.5 to 3.5 g / c.
It can be seen that in the batteries A1 and A3 to A6 of m 3 , the decrease in the discharge capacity is small even after the lapse of the charge / discharge cycle, and the electrolyte does not leak to the outside. In the battery A2 in which the density of the positive electrode molded product is lower than the range of the present invention, the crack generation rate when the positive electrode molded product is inserted into the battery can is large, and it can be seen that the production of the battery is difficult. In addition, it can be seen that in the battery A7 having a positive electrode molded body density of 3.7 g / cm 3 , the discharge capacity is slightly lower. In addition, in the battery X, since manganese dioxide is used as the positive electrode active material, it can be seen that the discharge capacity decreases as the charge / discharge cycle progresses. From the above results, it is understood that the density of the positive electrode molded body is preferably 2.5 to 3.5 g / cm 3 .

【0033】〔実験2〕この実験2では、正極活物質に
固溶されるマンガンの含有量と、充放電サイクル経過に
伴う放電容量及び漏液電池発生数との関係を調べた。
[Experiment 2] In Experiment 2, the relationship between the content of manganese dissolved in the positive electrode active material, the discharge capacity with the passage of charge / discharge cycles, and the number of leaked batteries was examined.

【0034】上記〔実験1〕の(実施例1)のステップ
1において、硫酸ニッケル水溶液に同時に添加する硫酸
マンガン水溶液の濃度を表3に示すように変化させ、マ
ンガンを固溶した水酸化ニッケルを作製した。なお、表
3には本発明電池A1の条件もあわせて示す。得られた
水酸化ニッケルを〔実験1〕のステップ2と同様の方法
で酸化処理し、γ型オキシ水酸化ニッケルを作製した。
得られたγ型オキシ水酸化ニッケルのマンガン含有量を
ICPにより測定し、マンガン固溶量を表3に示した。
In step 1 of (Example 1) of [Experiment 1], the concentration of the aqueous solution of manganese sulfate simultaneously added to the aqueous solution of nickel sulfate was changed as shown in Table 3, and nickel hydroxide in which manganese was dissolved was used. Produced. Table 3 also shows the conditions of the battery A1 of the present invention. The obtained nickel hydroxide was oxidized by the same method as in Step 2 of [Experiment 1] to prepare γ-type nickel oxyhydroxide.
The manganese content of the obtained γ-type nickel oxyhydroxide was measured by ICP, and the manganese solid solution amount is shown in Table 3.

【0035】次に、これらのγ型オキシ水酸化ニッケル
を用いて、上記〔実験1〕の(実施例1)と同様にして
正極成形体を作製し、この正極成形体を用いて電池B1
〜B7を作製した。なお、正極成形体の密度は、すべて
3.0g/cm3 であった。
Next, using these γ-type nickel oxyhydroxides, a molded positive electrode was produced in the same manner as in (Example 1) of [Experiment 1].
To B7. In addition, the density of all the positive electrode molded bodies was 3.0 g / cm 3 .

【0036】[0036]

【表3】 [Table 3]

【0037】上記電池A1及び電池B1〜B7につい
て、上記〔実験1〕と同じ条件で充放電サイクル試験を
行い、その際の1サイクル目、5サイクル目及び20サ
イクル目の放電容量、及び漏液電池発生数を調べた。各
電池それぞれ10個について放電容量及び漏液電池発生
数を調べた。
The battery A1 and the batteries B1 to B7 were subjected to a charge / discharge cycle test under the same conditions as in [Experiment 1]. The discharge capacities at the first, fifth, and 20th cycles, The number of batteries generated was examined. The discharge capacity and the number of occurrences of leaked batteries were examined for each of 10 batteries.

【0038】得られた結果を表4に示す。各電池の1サ
イクル目の放電容量は、電池A1の1サイクル目の放電
容量を100とした指数で示している。また5サイクル
目及び20サイクル目の放電容量は、各電池の1サイク
ル目の放電容量を100とした指数で示しており、電解
液が漏出しなかった電池の放電容量の平均値である。ま
た、漏液電池発生数は20サイクル目の測定値である。
表4には、正極成形体を電池缶内に挿入した際のクラッ
ク発生率も併せて示している。
Table 4 shows the obtained results. The discharge capacity of the first cycle of each battery is indicated by an index with the discharge capacity of the first cycle of the battery A1 as 100. The discharge capacity at the 5th cycle and the 20th cycle is indicated by an index when the discharge capacity at the first cycle of each battery is set to 100, and is an average value of the discharge capacity of the batteries in which the electrolyte did not leak. The number of occurrences of the liquid leakage battery is a measured value at the 20th cycle.
Table 4 also shows the crack occurrence rate when the positive electrode molded body was inserted into the battery can.

【0039】[0039]

【表4】 [Table 4]

【0040】表4に示す結果から明らかなように、電池
A1及び電池B2〜B6においては、初期の放電容量が
高く、充放電サイクルを経過しても放電容量は維持され
ており、漏液電池は認められなかった。
As is evident from the results shown in Table 4, in the battery A1 and the batteries B2 to B6, the initial discharge capacity was high, and the discharge capacity was maintained even after the charge / discharge cycle. Was not found.

【0041】一方、電池B1においては、充放電サイク
ルを経過しても放電容量は維持されるが、漏液電池発生
数が高くなっている。これは、γ型オキシ水酸化ニッケ
ル内のマンガン固溶量が少ないため、酸素過電圧の上昇
が不十分であったためと考えられる。また、電池B7に
おいては、マンガンの固溶量が多いため、充放電サイク
ルを経過しても放電容量は維持されるが、初期の段階か
ら十分な放電容量が得られていない。以上のことから、
マンガン固溶量としては、5〜50重量%が好ましいこ
とがわかる。
On the other hand, in the battery B1, the discharge capacity is maintained even after the charging / discharging cycle, but the number of occurrences of the liquid leakage battery is high. This is presumably because the amount of manganese solid solution in the γ-type nickel oxyhydroxide was small and the oxygen overvoltage was insufficiently increased. Further, in the battery B7, since the manganese has a large amount of solid solution, the discharge capacity is maintained even after the charge / discharge cycle, but a sufficient discharge capacity has not been obtained from the initial stage. From the above,
It is understood that the manganese solid solution amount is preferably 5 to 50% by weight.

【0042】〔実験3〕この実験3では、正極活物質で
あるγ型オキシ水酸化ニッケルのニッケル原子の価数と
放電容量及び漏液電池発生数の関係を調べた。
[Experiment 3] In Experiment 3, the relationship between the valence of nickel atoms of γ-type nickel oxyhydroxide, which is a positive electrode active material, the discharge capacity, and the number of liquid leakage batteries was examined.

【0043】上記〔実験1〕の(実施例1)のステップ
2で、酸化剤である10重量%次亜塩素酸ナトリウム水
溶液の量を、1450mlから、1350ml、140
0ml、1600mlと変化させて正極活物質を作製し
た。得られたγ型オキシ水酸化ニッケルのニッケルの価
数は、鉄の2価/3価酸化還元滴定法により測定した結
果、それぞれ3.3、3.4、3.8であった。
In step 2 of (Example 1) of [Experiment 1], the amount of the 10% by weight aqueous solution of sodium hypochlorite as the oxidizing agent was changed from 1450 ml to 1350 ml,
The positive electrode active material was prepared by changing the amount to 0 ml and 1600 ml. The valence of nickel in the obtained γ-type nickel oxyhydroxide was 3.3, 3.4, and 3.8, respectively, as measured by a divalent / trivalent redox titration method of iron.

【0044】次いで、上記の正極活物質を用いて、上記
(実施例1)と同様にして正極成形体を作製し、電池C
1〜C3を作製した。なお、得られた正極成形体の密度
は、いずれも3.0g/cm3 であった。
Next, using the above-mentioned positive electrode active material, a molded positive electrode was produced in the same manner as in the above (Example 1).
1 to C3 were produced. In addition, the density of each of the obtained positive electrode molded bodies was 3.0 g / cm 3 .

【0045】上記電池A及び電池C1〜C3について、
上記〔実験1〕と同じ条件で充放電サイクル試験を行
い、その際の1サイクル目及び20サイクル目の放電容
量、及び漏液電池発生率を調べた。
With respect to the battery A and the batteries C1 to C3,
A charge-discharge cycle test was performed under the same conditions as in [Experiment 1], and the discharge capacity at the first cycle and the 20th cycle and the leakage battery generation rate were examined.

【0046】その結果を表5に示す。表5中の1サイク
ル目の放電容量は、電池A1の1サイクル目の放電容量
を100とした指数で示しており、また、20サイクル
目の放電容量は、各電池の1サイクル目の放電容量を1
00とした指数で示しており、電解液が漏出しなかった
電池の放電容量の平均値である。また、正極成形体を電
池缶内に導入した際のクラック発生率を表5に併せて示
す。
Table 5 shows the results. The discharge capacity at the first cycle in Table 5 is indicated by an index when the discharge capacity at the first cycle of the battery A1 is set to 100, and the discharge capacity at the 20th cycle is the discharge capacity at the first cycle of each battery. 1
The index is set to 00, and is an average value of the discharge capacity of the battery in which the electrolyte did not leak. Table 5 also shows the crack occurrence rate when the positive electrode molded body was introduced into the battery can.

【0047】[0047]

【表5】 [Table 5]

【0048】表5に示すように、電池A1及び電池C2
及びC3においては、充放電サイクル経過に伴う放電容
量が高く、電解液の漏出は認められなかった。しかしな
がら、電池C1においては、初期の放電容量が低くなっ
ていた。これは、正極活物質中のニッケル原子の価数が
低いため、十分な電池容量が得られなかったことによる
ものと考えられる。従って、正極活物質としてのγ型オ
キシ水酸化ニッケル中のニッケル原子の価数は、3.4
〜3.8の範囲内が好ましいことがわかる。
As shown in Table 5, the batteries A1 and C2
In C3 and C3, the discharge capacity with the passage of the charge / discharge cycle was high, and no leakage of the electrolytic solution was observed. However, in the battery C1, the initial discharge capacity was low. This is considered to be due to the fact that a sufficient battery capacity was not obtained because the valence of nickel atoms in the positive electrode active material was low. Therefore, the valence of the nickel atom in the γ-type nickel oxyhydroxide as the positive electrode active material is 3.4.
It can be seen that the range of ~ 3.8 is preferable.

【0049】〔実験4〕この実験4では、マンガン以外
の元素のγ型オキシ水酸化ニッケルへの固溶と、初期容
量、充放電サイクル経過に伴う放電容量、及び漏液電池
発生率の関係を調べた。
[Experiment 4] In Experiment 4, the relationship between the solid solution of elements other than manganese in γ-type nickel oxyhydroxide, the initial capacity, the discharge capacity with the progress of the charge / discharge cycle, and the rate of occurrence of the liquid leakage battery was measured. Examined.

【0050】(実施例3)〔実験1〕の〔正極の作製〕
において、硫酸ニッケル水溶液及び硫酸マンガン水溶液
と同時に0.0049Mの硫酸エルビウム水溶液500
mlを添加したこと以外は、〔実験1〕と同様にして、
電池D1を作製した。このときのエルビウム及びマンガ
ンの固溶量をICP(発光分析)により定量した結果、
エルビウムの固溶量は1重量%、マンガンの固溶量は2
0重量%であった。
(Example 3) [Production of positive electrode] in [Experiment 1]
, An aqueous solution of 0.0049 M erbium sulfate at the same time as an aqueous solution of nickel sulfate and an aqueous solution of manganese sulfate
except that ml was added, in the same manner as in [Experiment 1].
Battery D1 was made. As a result of quantifying the solid solution amounts of erbium and manganese at this time by ICP (emission analysis),
The amount of erbium is 1% by weight, and the amount of manganese is 2
It was 0% by weight.

【0051】(実施例4)〔実験1〕の〔正極の作製〕
において、硫酸ニッケル水溶液及び硫酸マンガン水溶液
と同時に0.0048Mの硫酸イッテルビウム水溶液5
00mlを添加したこと以外は、〔実験1〕と同様にし
て、電池D2を作製した。このときのイッテルビウム及
びマンガンの固溶量をICP(発光分析)により定量し
た結果、イッテルビウムの固溶量は1重量%、マンガン
の固溶量は20重量%であった。
(Example 4) [Preparation of positive electrode] in [Experiment 1]
And a 0.0048 M aqueous ytterbium sulfate solution at the same time as the aqueous nickel sulfate solution and the aqueous manganese sulfate solution.
A battery D2 was made in the same manner as in [Experiment 1] except that 00 ml was added. At this time, the amount of solid solution of ytterbium and manganese was determined by ICP (emission analysis). As a result, the amount of solid solution of ytterbium was 1% by weight, and the amount of solid solution of manganese was 20% by weight.

【0052】(実施例5)〔実験1〕の〔正極の作製〕
において、硫酸ニッケル水溶液及び硫酸マンガン水溶液
と同時に0.0092Mの硫酸イットリウム水溶液50
0mlを添加したこと以外は、〔実験1〕と同様にし
て、電池D3を作製した。このときのイットリウム及び
マンガンの固溶量をICP(発光分析)により定量した
結果、イットリウムの固溶量は1重量%、マンガンの固
溶量は20重量%であった。
(Example 5) [Production of positive electrode] in [Experiment 1]
At the same time as the aqueous nickel sulfate solution and the aqueous manganese sulfate solution,
A battery D3 was made in the same manner as in [Experiment 1] except that 0 ml was added. As a result of quantifying the amount of yttrium and manganese dissolved at this time by ICP (emission spectroscopy), the amount of yttrium was 1% by weight and the amount of manganese was 20% by weight.

【0053】(実施例6)〔実験1〕の〔正極の作製〕
において、硫酸ニッケル水溶液及び硫酸マンガン水溶液
と同時に0.0052Mの硫酸ガドリニウム水溶液50
0mlを添加したこと以外は、〔実験1〕と同様にし
て、電池D4を作製した。このときのガドリニウム及び
マンガンの固溶量をICP(発光分析)により定量した
結果、ガドリニウムの固溶量は1重量%、マンガンの固
溶量は20重量%であった。
(Example 6) [Preparation of positive electrode] in [Experiment 1]
At the same time as the aqueous nickel sulfate solution and the aqueous manganese sulfate solution,
A battery D4 was made in the same manner as in [Experiment 1] except that 0 ml was added. As a result of quantifying the solid solution amounts of gadolinium and manganese at this time by ICP (emission analysis), the solid solution amount of gadolinium was 1% by weight, and the solid solution amount of manganese was 20% by weight.

【0054】(実施例7)〔実験1〕の〔正極の作製〕
において、硫酸ニッケル水溶液及び硫酸マンガン水溶液
と同時に0.030Mの硫酸アルミニウム水溶液500
mlを添加したこと以外は、〔実験1〕と同様にして、
電池D5を作製した。このときのアルミニウム及びマン
ガンの固溶量をICP(発光分析)により定量した結
果、アルミニウムの固溶量は1重量%、マンガンの固溶
量は20重量%であった。
(Example 7) [Production of positive electrode] in [Experiment 1]
, A nickel sulfate aqueous solution and a manganese sulfate aqueous solution simultaneously with a 0.030 M aluminum sulfate aqueous solution 500
except that ml was added, in the same manner as in [Experiment 1].
Battery D5 was made. As a result of quantifying the solid solution amount of aluminum and manganese at this time by ICP (emission analysis), the solid solution amount of aluminum was 1% by weight, and the solid solution amount of manganese was 20% by weight.

【0055】(実施例8)〔実験1〕の〔正極の作製〕
において、硫酸ニッケル水溶液及び硫酸マンガン水溶液
と同時に0.0014Mの硫酸コバルト水溶液500m
lを添加したこと以外は、〔実験1〕と同様にして、電
池D6を作製した。このときのコバルト及びマンガンの
固溶量をICP(発光分析)により定量した結果、コバ
ルトの固溶量は1重量%、マンガンの固溶量は20重量
%であった。
(Example 8) [Production of positive electrode] in [Experiment 1]
500m of 0.0014M cobalt sulfate aqueous solution at the same time as nickel sulfate aqueous solution and manganese sulfate aqueous solution
A battery D6 was made in the same manner as in [Experiment 1] except that 1 was added. At this time, the amount of solid solution of cobalt and manganese was determined by ICP (emission analysis). As a result, the amount of solid solution of cobalt was 1% by weight, and the amount of solid solution of manganese was 20% by weight.

【0056】(実施例9)〔実験1〕の〔正極の作製〕
において、硫酸ニッケル水溶液及び硫酸マンガン水溶液
と同時に0.0025Mの硫酸エルビウム水溶液500
ml及び0.0046Mの硫酸イットリウム500ml
を添加したこと以外は、〔実験1〕と同様にして、電池
D7を作製した。このときのエルビウム、イットリウム
及びマンガンの固溶量をICP(発光分析)により定量
した結果、エルビウム及びイットリウムの固溶量はそれ
ぞれ0.5重量%、マンガンの固溶量は20重量%であ
った。
(Example 9) [Preparation of positive electrode] in [Experiment 1]
, A nickel sulfate aqueous solution and a manganese sulfate aqueous solution at the same time as a 0.0025 M erbium sulfate aqueous solution 500
ml and 500 ml of 0.0046M yttrium sulfate
A battery D7 was made in the same manner as in [Experiment 1] except that was added. As a result of quantifying the amount of erbium, yttrium and manganese dissolved at this time by ICP (emission analysis), the amount of erbium and yttrium was 0.5% by weight and the amount of manganese was 20% by weight, respectively. .

【0057】上記実施例3〜9において、得られたγ型
オキシ水酸化ニッケルのニッケル原子の価数はいずれも
3.5であり、これらを用いて得られた正極成形体の密
度はいずれも3.0g/cm3 であった。上記の固溶元
素の異なる7種の電池D1〜D7について、〔実験1〕
と同様の条件にて充放電サイクル試験を行い、その際の
5サイクル目及び20サイクル目の放電容量、及び漏液
電池発生率を調べた。放電容量は、各電池の1サイクル
目の放電容量を100とした指数であり、電解液が漏出
しなかった電池の放電容量の平均値である。結果を表6
に示す。
In Examples 3 to 9 described above, the valence of nickel atoms of the obtained γ-type nickel oxyhydroxide is 3.5, and the density of the positive electrode molded article obtained by using any of these is 3.5. It was 3.0 g / cm 3 . Regarding the seven types of batteries D1 to D7 having different solid solution elements, [Experiment 1]
A charge / discharge cycle test was performed under the same conditions as those described above, and the discharge capacity at the 5th cycle and the 20th cycle and the leakage battery generation rate at that time were examined. The discharge capacity is an index with the discharge capacity of the first cycle of each battery as 100, and is an average value of the discharge capacity of the battery in which the electrolyte did not leak. Table 6 shows the results
Shown in

【0058】[0058]

【表6】 [Table 6]

【0059】表6に示すように、正極活物質であるγ型
オキシ水酸化ニッケルに、マンガン以外の元素として、
エルビウム、イッテルビウム、イットリウム、ガドリニ
ウム、アルミニウム及びコバルトから選ばれる1種以上
の元素が固溶された場合においても、充放電サイクルの
長期にわたり、放電容量の低下が小さく、電解液の外部
への漏出が認められないことがわかる。
As shown in Table 6, γ-type nickel oxyhydroxide as a positive electrode active material was
Even when one or more elements selected from erbium, ytterbium, yttrium, gadolinium, aluminum, and cobalt are dissolved, the decrease in discharge capacity is small over a long charge-discharge cycle, and leakage of the electrolyte to the outside is prevented. It turns out that it is not recognized.

【0060】[0060]

【発明の効果】以上のように、本発明によれば、充放電
サイクルの長期にわたって電解液が外部に漏出しにく
く、かつ放電容量の高い放電スタートの密閉型アルカリ
蓄電池とすることができる。
As described above, according to the present invention, it is possible to obtain a sealed alkaline storage battery having a high discharge capacity and a low discharge capacity, in which the electrolyte does not easily leak to the outside over a long charge / discharge cycle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に従う一実施例の密閉型アルカリ蓄電池
を示す部分断面図。
FIG. 1 is a partial sectional view showing a sealed alkaline storage battery of one embodiment according to the present invention.

【符号の説明】[Explanation of symbols]

1…正極缶 2…負極蓋 3…絶縁パッキング 4…負極集電棒 5…正極 6…セパレータ 7…ゲル状負極 DESCRIPTION OF SYMBOLS 1 ... Positive electrode can 2 ... Negative electrode cover 3 ... Insulating packing 4 ... Negative current collector rod 5 ... Positive electrode 6 ... Separator 7 ... Gelled negative electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木本 衛 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 伊藤 靖彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H003 AA04 BA00 BB02 BB04 BD00 BD04 5H016 AA01 BB00 EE05 HH08 5H028 AA01 BB00 CC17 EE01 EE05 FF02 HH03  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Mamoru Kimoto 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Yasuhiko Ito 2-chome Keihanhondori, Moriguchi-shi, Osaka No.5-5 Sanyo Electric Co., Ltd. F term (reference) 5H003 AA04 BA00 BB02 BB04 BD00 BD04 5H016 AA01 BB00 EE05 HH08 5H028 AA01 BB00 CC17 EE01 EE05 FF02 HH03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電池缶と、前記電池缶と電気的に接触す
るように前記電池缶内に配置される、γ型オキシ水酸化
ニッケルからなる正極活物質を成形した中空状の正極
と、前記正極の内側に配置される、亜鉛を負極活物質と
した負極と、前記正極と前記負極の間に配置されるセパ
レータと、前記負極内に挿入された状態で配置される負
極集電体と、前記正極、前記負極、及び前記セパレータ
内に含浸される電解液とを備える密閉型アルカリ蓄電池
であって、 前記γ型オキシ水酸化ニッケルがマンガンを固溶してお
り、かつ前記正極成形体の密度が2.5〜3.5g/c
3 であることを特徴とする密閉型アルカリ蓄電池。
1. A battery can, a hollow positive electrode formed of a positive electrode active material made of γ-type nickel oxyhydroxide, which is disposed in the battery can so as to be in electrical contact with the battery can; A negative electrode having zinc as a negative electrode active material, disposed inside the positive electrode, a separator disposed between the positive electrode and the negative electrode, and a negative electrode current collector disposed in a state inserted into the negative electrode, A sealed alkaline storage battery comprising the positive electrode, the negative electrode, and an electrolyte impregnated in the separator, wherein the γ-type nickel oxyhydroxide has manganese as a solid solution, and a density of the positive electrode molded body. Is 2.5 to 3.5 g / c
m 3 is a sealed alkaline storage battery.
【請求項2】 前記マンガンの固溶量が、5〜50重量
%であることを特徴とする請求項1に記載の密閉型アル
カリ蓄電池。
2. The sealed alkaline storage battery according to claim 1, wherein the solid solution amount of the manganese is 5 to 50% by weight.
【請求項3】 初回放電前の前記γ型オキシ水酸化ニッ
ケル中のニッケル原子の価数が3.4〜3.8価である
請求項1または2に記載の密閉型アルカリ蓄電池。
3. The sealed alkaline storage battery according to claim 1, wherein the valence of the nickel atom in the γ-type nickel oxyhydroxide before the first discharge is 3.4 to 3.8.
【請求項4】 前記γ型オキシ水酸化ニッケルに、マン
ガン以外に、さらにアルミニウム(Al)、コバルト
(Co)、イットリウム(Y)、イッテルビウム(Y
b)、エルビウム(Er)及びガドリニウム(Gd)よ
りなる群から選ばれた少なくとも1種の元素が固溶して
いる請求項1、2または3に記載の密閉型アルカリ蓄電
池。
4. The γ-type nickel oxyhydroxide may further contain aluminum (Al), cobalt (Co), yttrium (Y), ytterbium (Y) in addition to manganese.
4. The sealed alkaline storage battery according to claim 1, wherein at least one element selected from the group consisting of b), erbium (Er), and gadolinium (Gd) is dissolved.
【請求項5】 前記正極成形体が円筒状であることを特
徴とする請求項1〜4のいずれか1項に記載の密閉型ア
ルカリ蓄電池。
5. The sealed alkaline storage battery according to claim 1, wherein the positive electrode molded body has a cylindrical shape.
JP17580199A 1999-06-22 1999-06-22 Sealed alkaline storage battery Expired - Fee Related JP3728143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17580199A JP3728143B2 (en) 1999-06-22 1999-06-22 Sealed alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17580199A JP3728143B2 (en) 1999-06-22 1999-06-22 Sealed alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2001006665A true JP2001006665A (en) 2001-01-12
JP3728143B2 JP3728143B2 (en) 2005-12-21

Family

ID=16002495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17580199A Expired - Fee Related JP3728143B2 (en) 1999-06-22 1999-06-22 Sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3728143B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100336250C (en) * 2002-08-30 2007-09-05 东芝电池株式会社 Nickel based compound positive electrode material primary cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676819A (en) * 1992-08-31 1994-03-18 Sanyo Electric Co Ltd Electrode plate for cylindrical battery and manufacture thereof
JPH10125318A (en) * 1996-10-24 1998-05-15 Matsushita Electric Ind Co Ltd Positive active material and positive electrode for alkaline storage battery
JPH10149821A (en) * 1996-09-20 1998-06-02 Matsushita Electric Ind Co Ltd Positive electrode for alkaline storage battery
JPH10214621A (en) * 1997-01-30 1998-08-11 Sanyo Electric Co Ltd Sealed alkaline storage battery
JPH10270040A (en) * 1997-03-25 1998-10-09 Sanyo Electric Co Ltd Non-sintered nickel electrode for alkaline storage battery
JPH10289714A (en) * 1997-04-14 1998-10-27 Matsushita Electric Ind Co Ltd Nickel-hydrogen storage battery
JPH10334913A (en) * 1997-05-30 1998-12-18 Matsushita Electric Ind Co Ltd Alkaline storage battery and its manufacture
JPH10334910A (en) * 1997-05-29 1998-12-18 Toshiba Battery Co Ltd Manufacture of positive electrode mix for alkaline battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676819A (en) * 1992-08-31 1994-03-18 Sanyo Electric Co Ltd Electrode plate for cylindrical battery and manufacture thereof
JPH10149821A (en) * 1996-09-20 1998-06-02 Matsushita Electric Ind Co Ltd Positive electrode for alkaline storage battery
JPH10125318A (en) * 1996-10-24 1998-05-15 Matsushita Electric Ind Co Ltd Positive active material and positive electrode for alkaline storage battery
JPH10214621A (en) * 1997-01-30 1998-08-11 Sanyo Electric Co Ltd Sealed alkaline storage battery
JPH10270040A (en) * 1997-03-25 1998-10-09 Sanyo Electric Co Ltd Non-sintered nickel electrode for alkaline storage battery
JPH10289714A (en) * 1997-04-14 1998-10-27 Matsushita Electric Ind Co Ltd Nickel-hydrogen storage battery
JPH10334910A (en) * 1997-05-29 1998-12-18 Toshiba Battery Co Ltd Manufacture of positive electrode mix for alkaline battery
JPH10334913A (en) * 1997-05-30 1998-12-18 Matsushita Electric Ind Co Ltd Alkaline storage battery and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100336250C (en) * 2002-08-30 2007-09-05 东芝电池株式会社 Nickel based compound positive electrode material primary cell

Also Published As

Publication number Publication date
JP3728143B2 (en) 2005-12-21

Similar Documents

Publication Publication Date Title
JP3239076B2 (en) Sealed alkaline storage battery
US20040053114A1 (en) Method for manufacturing nickel hydrogen battery
US3288643A (en) Process for making charged cadmium electrodes
JP3631016B2 (en) Sealed alkaline storage battery
JP2000067910A (en) Sealed alkaline zing storage battery
JP2001006665A (en) Sealed alkaline storage battery
JP2001093525A (en) Sealed alkaline battery
JP3663071B2 (en) Sealed alkaline zinc storage battery
JPH11345613A (en) Positive electrode active material for alkaline storage battery, positive electrode for alkaline storage battery using the same and alkaline storage battery
JP2000277104A (en) Sealed type alkaline storage battery
JP2001006668A (en) Sealed alkaline storage battery
JP3913412B2 (en) Sealed alkaline storage battery
JP3433035B2 (en) Sealed alkaline storage battery
JP3902351B2 (en) Sealed alkaline storage battery
JP2000251924A (en) Sealed alkaline zinc storage battery
JP2000357511A (en) Sealed alkaline storage battery
WO2007013374A1 (en) Alkaline primary battery
JP2003077469A (en) Nickel electrode material, its manufacturing method, nickel electrode and alkaline battery
JP2001093569A (en) Sealed alkaline storage battery
JP3663072B2 (en) Sealed alkaline zinc storage battery
JP2000251925A (en) Sealed alkaline zinc storage battery
JP2003168473A (en) Cylinder type storage battery
JP2001035489A (en) Sealed alkaline storage battery
JP2559593B2 (en) Sealed nickel-cadmium battery and its charging method
JP2000311683A (en) Sealed alkaline storage battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees