JPH11219721A - Alkaline storage battery - Google Patents

Alkaline storage battery

Info

Publication number
JPH11219721A
JPH11219721A JP10021802A JP2180298A JPH11219721A JP H11219721 A JPH11219721 A JP H11219721A JP 10021802 A JP10021802 A JP 10021802A JP 2180298 A JP2180298 A JP 2180298A JP H11219721 A JPH11219721 A JP H11219721A
Authority
JP
Japan
Prior art keywords
hydroxide
lithium
positive electrode
electrolyte
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10021802A
Other languages
Japanese (ja)
Inventor
Futoshi Tanigawa
太志 谷川
Tatsuhiko Suzuki
達彦 鈴木
Takashi Yao
剛史 八尾
Hajime Konishi
始 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10021802A priority Critical patent/JPH11219721A/en
Publication of JPH11219721A publication Critical patent/JPH11219721A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To increase the reaction utilization factor of an active material by adding a specific quantity of lithium hydroxide at its solubility or above to an aqueous solution solved with one or plural materials within a group of cesium hydroxide, rubidium hydroxide, potassium hydroxide and sodium hydroxide at a specific concentration to obtain an alkaline electrolytic solution in the suspended state. SOLUTION: Lithium hydroxide is added at the deposited quantity of 80 g/l or below in an aqueous solution to the aqueous solution solved with an electrolyte selected from cesium hydroxide, rubidium hydroxide, potassium hydroxide and sodium hydroxide at the concentration of 5 mol/1 or above to obtain an alkaline electrolytic solution. The alkaline electrolytic solution is injected into a metal case inserted with an electrode group spirally wound with a nickel positive electrode, a negative electrode and a separator to obtain an alkaline storage battery. A sufficient quantity of alkaline cations, particularly lithium ions, can exist against a positive electrode active material, power acceptability at a high temperature is improved, and a battery capacity is increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル正極と負
極とセパレータとアルカリ電解液とからなる高容量のア
ルカリ蓄電池の、特にアルカリ電解液の改良に関する。
The present invention relates to a high-capacity alkaline storage battery comprising a nickel positive electrode, a negative electrode, a separator and an alkaline electrolyte, and more particularly to an improvement in the alkaline electrolyte.

【0002】[0002]

【従来の技術】近年、アルカリ蓄電池は、携帯機器の普
及に伴いその電源として高容量化が要望されている。特
にニッケル−水素蓄電池は、水酸化ニッケルを主体とし
た活物質からなる正極と、水素吸蔵合金を主体とした負
極からなる二次電池であり、高容量で高信頼性の二次電
池として急速に普及してきている。以下にこのアルカリ
蓄電池の正極について説明する。
2. Description of the Related Art In recent years, with the spread of portable devices, there has been a demand for an alkaline storage battery to have a higher capacity as a power source. In particular, nickel-hydrogen storage batteries are secondary batteries consisting of a positive electrode made of an active material mainly composed of nickel hydroxide and a negative electrode mainly composed of a hydrogen storage alloy, and are rapidly becoming high-capacity and highly reliable secondary batteries. It is becoming popular. Hereinafter, the positive electrode of this alkaline storage battery will be described.

【0003】アルカリ蓄電池用の正極としては、大別し
て焼結式と非焼結式とがある。前者はニッケル粉末を焼
結して得た多孔度80%程度の多孔質ニッケル焼結基板
に、硝酸ニッケル水溶液等のニッケル塩溶液を含浸し、
次いで、アルカリ水溶液に浸漬するなどして多孔質ニッ
ケル焼結基板中に水酸化ニッケル活物質を生成させて製
造するものである。この電極は基板の多孔度をこれ以上
大きくする事が困難であるため、充填される活物質量を
増加させることができず、高容量化には限界がある。
The positive electrode for an alkaline storage battery is roughly classified into a sintered type and a non-sintered type. The former impregnates a nickel salt solution such as a nickel nitrate aqueous solution into a porous nickel sintered substrate having a porosity of about 80% obtained by sintering nickel powder,
Then, a nickel hydroxide active material is produced in the porous nickel sintered substrate by immersing it in an alkaline aqueous solution or the like to produce the substrate. Since it is difficult for this electrode to increase the porosity of the substrate any more, the amount of the filled active material cannot be increased, and there is a limit to increasing the capacity.

【0004】また後者の非焼結式正極としては、例えば
特開昭50−36935号公報に開示された、ニッケル
金属よりなる三次元的に連続した多孔度95%以上のス
ポンジ状多孔体基板に、活物質である水酸化ニッケル粉
末を充填するものである。これは現在高容量の二次電池
の正極として広く用いられている。この非焼結式正極に
おいては高容量化の点から、球状の水酸化ニッケルを多
孔体基板に充填することが提案されている。これはスポ
ンジ状多孔体基板の孔部(ポア)サイズは200〜50
0μm程度であり、このポアに粒径が数μm〜数10μm
の球状水酸化ニッケルを充填するものである。この構成
では、導電ネットワークが保たれるニッケル金属骨格近
傍の水酸化ニッケルは充放電反応がスムーズに進行する
が、骨格から離れた水酸化ニッケルの反応は十分に進ま
ない。そこでこの非焼結式正極では充填した水酸化ニッ
ケルの利用率を向上させるために、活物質である水酸化
ニッケル以外に導電剤を用いている。これで球状の水酸
化ニッケル粒子相互間および水酸化ニッケル粒子と基板
骨格との間を電気的に接続している。この導電剤として
は、水酸化コバルト、一酸化コバルトのようなコバルト
化合物や、金属コバルト、金属ニッケル等が用いられ
る。これにより、非焼結式正極では活物質を高密度に充
填することが可能となり、焼結式正極に比較して高容量
化が図れる。
As the latter non-sintered positive electrode, for example, a sponge-like porous substrate made of nickel metal and having a three-dimensionally continuous porosity of 95% or more disclosed in Japanese Patent Application Laid-Open No. 50-36935 is disclosed. And nickel hydroxide powder as an active material. This is currently widely used as a positive electrode for high capacity secondary batteries. In this non-sintered positive electrode, it has been proposed to fill a porous substrate with spherical nickel hydroxide from the viewpoint of increasing the capacity. This means that the pore size of the sponge-like porous substrate is 200 to 50.
About 0 μm, and the pores have a particle size of several μm to several tens μm.
Is filled with spherical nickel hydroxide. In this configuration, the charge / discharge reaction of nickel hydroxide near the nickel metal skeleton where the conductive network is maintained proceeds smoothly, but the reaction of nickel hydroxide separated from the skeleton does not sufficiently proceed. Therefore, in this non-sintered positive electrode, a conductive agent is used in addition to the active material, nickel hydroxide, in order to improve the utilization of the filled nickel hydroxide. In this way, the spherical nickel hydroxide particles are electrically connected to each other and between the nickel hydroxide particles and the substrate skeleton. As the conductive agent, a cobalt compound such as cobalt hydroxide or cobalt monoxide, metallic cobalt, metallic nickel or the like is used. Thus, the non-sintered positive electrode can be filled with the active material at a high density, and the capacity can be increased as compared with the sintered positive electrode.

【0005】又、その他の高容量化の手段として、電解
液中に水酸化リチウムを添加して正極の特性を改善する
方法が挙げられる。これは水酸化ニッケルにリチウムイ
オンを取り込ませ、水酸化ニッケルの格子欠陥部分の増
加によるイオン伝導度の増加で充電効率を向上させた
り、あるいは電荷密度が大きい水酸化リチウムで、正極
の酸素発生過電圧を大きくすることにより充電効率を向
上させ、高容量化を図っている。
As another means for increasing the capacity, there is a method of adding lithium hydroxide to the electrolyte to improve the characteristics of the positive electrode. This is achieved by incorporating lithium ions into nickel hydroxide and improving the charging efficiency by increasing the ionic conductivity due to the increase in lattice defects of nickel hydroxide, or by increasing the oxygen generation overvoltage of the positive electrode with lithium hydroxide having a large charge density. The charging efficiency is improved by increasing the size, and the capacity is increased.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
ような活物質を基板に多く詰め込む技術あるいは正極活
物質の利用率を向上させる技術をそのまま用いただけで
は高容量化にも限界があり、さらに改良の余地があっ
た。
However, there is a limit in increasing the capacity if only the technique of packing a large amount of the active material into the substrate or the technique of improving the utilization rate of the positive electrode active material as described above is used. There was room for

【0007】特に一定体積の電池ケース中に正・負極等
の電極構成材料を多く詰め込んだ場合、常温及び高温で
の電池容量が十分に得られない課題があった。これは、
正・負極等の電極構成材料を多く詰め込んだ場合、アル
カリ電解液を注入できる空間が電池内で少なくなり、結
果として正極活物質量に対してアルカリカチオン量が従
来に比べ少なくなっていることに大きく起因しているこ
とがわかった。
[0007] In particular, when a large number of electrode constituent materials such as a positive electrode and a negative electrode are packed in a battery case having a fixed volume, there is a problem that a sufficient battery capacity at ordinary temperature and high temperature cannot be obtained. this is,
When a large amount of electrode constituent materials such as positive and negative electrodes are packed, the space in which the alkaline electrolyte can be injected is reduced in the battery, and as a result, the amount of alkali cations is smaller than the amount of positive electrode active materials compared to the conventional one. It turned out that it was largely caused.

【0008】中でも、電池特性に好影響を与えるリチウ
ムイオンは、水酸化リチウムのアルカリ電解液中への溶
解度が低いため、工業的に比較的安価な水酸化カリウム
もしくは水酸化ナトリウムの単独もしくは混合水溶液中
に少量しか添加されていなかったのが現状である。さら
には、水溶液として所定量金属ケース内に注液し、電池
を作製するといった観点においては、水への溶解度が小
さい水酸化リチウムを多く溶解させる場合には相対的に
他のアルカリ水酸化物の量を減らす必要があり、結果と
して電解液の希薄化が生じて活物質の反応利用率を十分
高めることはできなかった。
[0008] Among them, lithium ion, which has a favorable effect on battery characteristics, has low solubility of lithium hydroxide in an alkaline electrolyte. Therefore, industrially relatively inexpensive potassium hydroxide or sodium hydroxide is used alone or in a mixed aqueous solution. At present, only a small amount was added. Further, from the viewpoint of injecting a predetermined amount of an aqueous solution into a metal case and preparing a battery, when dissolving a large amount of lithium hydroxide having a low solubility in water, a relatively large amount of another alkali hydroxide is dissolved. It was necessary to reduce the amount, and as a result, the electrolyte was diluted, and the reaction utilization of the active material could not be sufficiently increased.

【0009】[0009]

【課題を解決するための手段】上記課題を考慮して本発
明は、ニッケル正極、負極およびセパレータからなる電
極群を内部に挿入した金属ケースに、アルカリ電解液を
所定量注入してなるアルカリ蓄電池において、アルカリ
電解液は、水酸化セシウム、水酸化ルビジウム、水酸化
カリウムおよび水酸化ナトリウムからなる群のうちのい
ずれか単独あるいは複数を溶解した水溶液にその溶解度
以上の水酸化リチウムを添加した懸濁状態の電解液とす
ることより、常温及び高温での電池容量を向上させたも
のである。
SUMMARY OF THE INVENTION In consideration of the above problems, the present invention provides an alkaline storage battery in which a predetermined amount of an alkaline electrolyte is injected into a metal case in which an electrode group including a nickel positive electrode, a negative electrode and a separator is inserted. In, the alkaline electrolyte is cesium hydroxide, rubidium hydroxide, potassium hydroxide and sodium hydroxide alone or a plurality of aqueous solutions in which a lithium hydroxide of the solubility or more is added to an aqueous solution By using the electrolyte solution in the state, the battery capacity at normal temperature and high temperature is improved.

【0010】ここで、アルカリ電解液の母液として、好
ましくは5mol/l以上の濃度の水酸化セシウム、水
酸化ルビジウム、水酸化カリウムもしくは水酸化ナトリ
ウムの単独もしくは混合水溶液を用いるとよく、水酸化
リチウムをその溶解度以上に添加することによって常温
は勿論のこと、高温での活物質利用率をよくし、充電受
入性を高めて、高い電池容量が得られる。
Here, as the mother liquor of the alkaline electrolyte, a single or mixed aqueous solution of cesium hydroxide, rubidium hydroxide, potassium hydroxide or sodium hydroxide having a concentration of preferably 5 mol / l or more is preferably used. By adding more than its solubility, it is possible to improve the utilization rate of the active material not only at normal temperature but also at high temperature, increase the charge acceptability, and obtain a high battery capacity.

【0011】また、好ましくはアルカリ水溶液中に懸濁
状態で析出している水酸化リチウム量が80g/l以下
であると、高い容量が得られる電池が作製できる。
Also, preferably, when the amount of lithium hydroxide precipitated in a suspended state in an alkaline aqueous solution is 80 g / l or less, a battery having a high capacity can be produced.

【0012】さらにアルカリ水溶液中に析出している水
酸化リチウム量は、電池の初期の充放電サイクルあるい
は高温放置時において既に電解液中に溶解しているリチ
ウムイオンが正極活物質に水酸化物またはイオンとして
侵入固溶及び/あるいは化学吸着により固定化されてい
く過程で、電解液中のリチウムイオンの減少を補うよう
に溶解し、最終的にすべて溶解しうる量であることが好
ましい。
Further, the amount of lithium hydroxide precipitated in the alkaline aqueous solution is such that lithium ions already dissolved in the electrolyte during the initial charge / discharge cycle of the battery or when left at high temperature are converted into hydroxide or hydroxide by the positive electrode active material. In the process of being immobilized as ions by infiltration solid solution and / or chemisorption, it is preferable to dissolve so as to compensate for the decrease in lithium ions in the electrolytic solution, and to finally dissolve all the ions.

【0013】一方、ニッケル正極と、負極と、セパレー
タと、アルカリ電解液とからなるアルカリ蓄電池であっ
て、この蓄電池中には少なくともリチウムが正極活物質
中と電解液中に存在し、且つ電池内部に存在するすべて
のアルカリ金属元素をそれぞれの水酸化物と見なしたと
き、電池内部に存在する水分量に対してその溶解度以上
存在させている状態であれば同様の効果が得られ、さら
には水酸化リチウムあるいはリチウムイオンが正極活物
質中に固定化され、水酸化リチウムとして電解液中には
遊離析出していない状態であることが好ましい。
On the other hand, there is provided an alkaline storage battery comprising a nickel positive electrode, a negative electrode, a separator, and an alkaline electrolyte, wherein at least lithium is present in the positive electrode active material and the electrolyte, and When all the alkali metal elements present in the battery are regarded as the respective hydroxides, the same effect can be obtained as long as the alkali metal elements are present in a state of being more than the solubility with respect to the amount of water present inside the battery. It is preferable that lithium hydroxide or lithium ion be immobilized in the positive electrode active material and not be precipitated in the electrolyte as lithium hydroxide.

【0014】[0014]

【発明の実施の形態】請求項1記載の発明は、ニッケル
正極と負極をセパレータを渦巻状に捲回した電極群を内
部に挿入した金属ケースに、水酸化セシウム、水酸化ル
ビジウム、水酸化カリウムおよび水酸化ナトリウムから
なる群より選択した単独あるいは複数の電解質を5mo
l/l以上の濃度で溶解した水溶液に、水酸化リチウム
をその溶解度以上でかつ水溶液中の析出量が80g/l
以下の量で添加したアルカリ電解液を所定量注入したこ
とを特徴とするアルカリ蓄電池である。これにより、正
極活物質に対し十分な量のアルカリカチオン、特にリチ
ウムイオンを存在させることができる。これにより高温
での充電受入性が改善されて、電池容量が高まる。
BEST MODE FOR CARRYING OUT THE INVENTION According to the first aspect of the present invention, cesium hydroxide, rubidium hydroxide and potassium hydroxide are placed in a metal case in which an electrode group in which a nickel positive electrode and a negative electrode are spirally wound with a separator inserted therein. And 5 or more electrolytes selected from the group consisting of
In an aqueous solution dissolved at a concentration of 1 / l or more, lithium hydroxide having a solubility equal to or more than its solubility and the amount of precipitation in the aqueous solution is 80 g / l.
An alkaline storage battery characterized in that a predetermined amount of an alkaline electrolyte added in the following amount is injected. As a result, a sufficient amount of alkali cations, particularly lithium ions, can be present in the positive electrode active material. This improves the charge acceptance at high temperatures and increases the battery capacity.

【0015】請求項2記載の発明は、アルカリ電解液母
液の電解質濃度を5mol/l以上11mol/l以下
としたものであり、この濃度の水酸化セシウム、水酸化
ルビジウム、水酸化カリウムもしくは水酸化ナトリウム
の単独あるいは混合水溶液に、その溶解度以上の水酸化
リチウムを添加したアルカリ電解液を注入したアルカリ
蓄電池である。アルカリ電解液母液の電解質濃度を5m
ol/l以上としたのは、これより低い濃度のアルカリ
電解液にその溶解度以上の水酸化リチウムを添加しても
高い活物質利用率が得られないためである。
According to a second aspect of the present invention, the electrolyte concentration of the alkaline electrolyte mother liquor is 5 mol / l or more and 11 mol / l or less, and cesium hydroxide, rubidium hydroxide, potassium hydroxide or hydroxide having this concentration is used. This is an alkaline storage battery in which an alkaline electrolyte obtained by adding lithium hydroxide having a solubility equal to or higher than its solubility is injected into a single or mixed aqueous solution of sodium. The electrolyte concentration of the alkaline electrolyte mother liquor is 5 m
The reason for setting it to ol / l or more is that a high active material utilization cannot be obtained even if lithium hydroxide having a solubility higher than the solubility is added to an alkaline electrolyte having a lower concentration.

【0016】請求項3記載の発明は、電池内部で水酸化
リチウムあるいはリチウムイオンは時間の経過につれて
正極活物質に固定化されてゆき、これにつれて析出状態
の水酸化リチウムは電解液中に溶出していって、最終的
に水酸化リチウムがアルカリ電解液中に遊離析出してい
ないアルカリ蓄電池である。リチウム元素が電解液中に
アルカリ水酸化物として長期間析出していると、状況に
より電極の充放電反応を阻害して活物質利用率が低下す
る。したがってすべてのリチウム元素は水に溶解状態に
あることが好ましい。
According to a third aspect of the present invention, lithium hydroxide or lithium ions are fixed to the positive electrode active material with the lapse of time inside the battery, and as a result, the precipitated lithium hydroxide elutes into the electrolytic solution. Thus, an alkaline storage battery in which lithium hydroxide is not finally precipitated in the alkaline electrolyte. If the lithium element is precipitated in the electrolyte as an alkali hydroxide for a long period of time, the charge / discharge reaction of the electrode may be inhibited depending on the situation, and the utilization rate of the active material may be reduced. Therefore, it is preferable that all lithium elements are in a dissolved state in water.

【0017】請求項4記載の発明は、ニッケル正極と負
極とセパレータとアルカリ電解液とからなるアルカリ蓄
電池であって、少なくともリチウム元素が正極と電解液
中に存在し、且つ電池内部に存在するすべてのアルカリ
金属元素をそれぞれの水酸化物と見なしたとき、電池内
部に存在する水分量に対してその溶解度以上に存在させ
たものである。この様なアルカリ蓄電池であれば、上記
同様に活物質利用率が高く、常温及び高温での電池容量
を向上させることができる。
According to a fourth aspect of the present invention, there is provided an alkaline storage battery comprising a nickel positive electrode, a negative electrode, a separator, and an alkaline electrolyte, wherein at least lithium element is present in the positive electrode and the electrolyte and is present inside the battery. When each of the alkali metal elements is regarded as a respective hydroxide, the alkali metal element is present in excess of its solubility with respect to the amount of water present inside the battery. With such an alkaline storage battery, the utilization rate of the active material is high similarly to the above, and the battery capacity at normal temperature and high temperature can be improved.

【0018】請求項5記載の発明は、電池内部に存在す
る水酸化リチウムあるいはリチウムイオンのうち電解液
の溶解度以上の部分は正極活物質に固定化され、水酸化
リチウムが電解液中に遊離析出していないことを規定し
たものである。
According to a fifth aspect of the present invention, a portion of the lithium hydroxide or lithium ion present in the battery which is higher than the solubility of the electrolyte is immobilized on the positive electrode active material, and the lithium hydroxide is freely precipitated in the electrolyte. It does not stipulate.

【0019】[0019]

【実施例】以下、本発明を実施例に基づいて詳細に説明
する。しかし本発明は下記実施例のみに限定されるもの
ではなく、その要旨を変更しない範囲において適宜変更
して実施することが可能である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments. However, the present invention is not limited to only the following examples, and can be implemented with appropriate changes within the scope of the present invention.

【0020】(実施例)まず、電池に注入する電解液を
作製した。蒸留水1リットル中に水酸化カリウムが5m
ol,7mol,9mol,11molそれぞれ存在
し、且つ水酸化リチウム一水和物がその溶解度以上で析
出する量が室温で各々40g/lである電解液X1,X
2,X3,X4を作製した。
(Example) First, an electrolytic solution to be injected into a battery was prepared. 5 m of potassium hydroxide in 1 liter of distilled water
ol, 7 mol, 9 mol, and 11 mol, respectively, and the amount of lithium hydroxide monohydrate precipitated at or above its solubility is 40 g / l at room temperature.
2, X3 and X4 were produced.

【0021】又、蒸留水1リットル中に水酸化カリウム
を7mol存在させ、且つこれに水酸化リチウム一水和
物が溶解度以上に析出する量が室温で1g/l,20g
/l,80g/lである電解液X5,X6,X7を作製
した。
Further, 7 mol of potassium hydroxide is present in 1 liter of distilled water, and the amount of lithium hydroxide monohydrate which precipitates in excess of the solubility is 1 g / l, 20 g at room temperature.
/ L, 80 g / l of electrolyte solutions X5, X6 and X7 were prepared.

【0022】別途に、これらのアルカリ電解液を注入す
る電池の電池群を作製した。
Separately, a battery group of batteries into which these alkaline electrolytes were injected was prepared.

【0023】正極は、球状水酸化ニッケル粉末に、その
10wt%の水酸化コバルト粉末を添加し、さらに所定
量の純水を加えてペースト調整した。そしてこのペース
トを、ニッケル金属よりなる三次元的に連続した多孔度
95%以上のスポンジ状多孔体基板に充填し、乾燥後圧
延して電極とした。この電極をY1とする。
For the positive electrode, paste was prepared by adding 10 wt% of cobalt hydroxide powder to spherical nickel hydroxide powder and further adding a predetermined amount of pure water. The paste was filled into a sponge-like porous substrate made of nickel metal and continuously three-dimensionally having a porosity of 95% or more, dried, and rolled to form electrodes. This electrode is designated as Y1.

【0024】上記と同様な方法で球状水酸化ニッケル粉
末に、リチウムをあらかじめ含むコバルト化合物粉末を
添加した電極Y2を作製した。ここでリチウムをあらか
じめ含むコバルト化合物は、水酸化コバルトをリチウム
を含む高温アルカリ溶液中で攪拌、加熱酸化処理して得
られたもので、ICPによるその組成分析からコバルト
原子1モルに対し、約0.3モルのLiを含有した化合
物である。
In the same manner as described above, an electrode Y2 was prepared by adding a cobalt compound powder containing lithium in advance to spherical nickel hydroxide powder. Here, the cobalt compound containing lithium in advance was obtained by stirring and heating and oxidizing cobalt hydroxide in a high-temperature alkaline solution containing lithium. It is a compound containing 0.3 mol of Li.

【0025】これら電極Y1,Y2と周知の水素吸蔵合
金を主体とした負極とを、親水化処理を施したポリプロ
ピレン不織布セパレータを介して渦巻状に捲回して電池
ケースに挿入し、注液前の電池Z1,Z2を作製した。
These electrodes Y1 and Y2 and a negative electrode mainly composed of a known hydrogen storage alloy are spirally wound through a hydrophilic polypropylene nonwoven fabric separator and inserted into a battery case. Batteries Z1 and Z2 were produced.

【0026】電池Z1の7つにそれぞれ上記の電解液X
1,X2,X3,X4,X5,X6,X7を一定量注入
し、密閉して電池A,B,C,D,E,F,Gを作製し
た。
The above-mentioned electrolytic solution X was added to each of seven batteries Z1.
A fixed amount of 1, X2, X3, X4, X5, X6, and X7 was injected and sealed, and batteries A, B, C, D, E, F, and G were produced.

【0027】叉、電池Z2に水酸化カリウム主体の水溶
液を一定量注入して密閉した電池Hと、上記電池Z1に
あらかじめ水酸化リチウム一水和物粉末を投入し、その
後水酸化カリウム主体の水溶液を注入した電池Iと、さ
らに、水酸化ニッケル粉末に、10wt%の水酸化コバ
ルト粉末と水酸化リチウム一水和物粉末を添加して粉末
混合攪拌後、ニッケル金属よりなる三次元的に連続した
多孔度95%以上のスポンジ状多孔体基板に充填して乾
燥後圧延した電極を用いた電池Jを作製した。ここで、
電池H,I,Jは電池内部に存在するカリウム量、リチ
ウム量及び水分量が電池Fと同様になるように調整し
た。
Further, a fixed amount of an aqueous solution mainly composed of potassium hydroxide is injected into the battery Z2, and a sealed battery H is charged with lithium hydroxide monohydrate powder in advance into the battery Z1, and then an aqueous solution mainly composed of potassium hydroxide is charged. , And 10 wt% of cobalt hydroxide powder and lithium hydroxide monohydrate powder were added to nickel hydroxide powder, and after mixing and stirring, the mixture was continuously three-dimensionally made of nickel metal. A battery J was prepared using an electrode that was filled into a sponge-like porous substrate having a porosity of 95% or more, dried, and then rolled. here,
The batteries H, I, and J were adjusted so that the amount of potassium, the amount of lithium, and the amount of water existing inside the batteries were the same as those of the battery F.

【0028】(比較例)蒸留水1リットル中に水酸化カ
リウムが3mol存在し、且つ水酸化リチウム一水和物
がその溶解度以上で析出する量が室温で40g/lであ
る電解液X8と、蒸留水1リットル中に水酸化カリウム
が7mol存在し、且つ水酸化リチウム一水和物が溶解
度以上に存在して、その析出する量が室温で120g/
lである電解液X9と、7規定(N)の水酸化カリウム
1リットルに40gの水酸化リチウム一水和物をすべて
溶解させた電解液X10と、7Nの水酸化カリウムのみ
の電解液X11を作製し、これらを電池Z1にそれぞれ
注入して比較例の電池K,L,M,Nを作製した。
(Comparative Example) An electrolytic solution X8 in which 3 mol of potassium hydroxide is present in 1 liter of distilled water and the amount of lithium hydroxide monohydrate that precipitates at or above its solubility is 40 g / l at room temperature, 7 mol of potassium hydroxide is present in 1 liter of distilled water, and lithium hydroxide monohydrate is present in excess of its solubility.
The electrolytic solution X9, which is 1 L, the electrolytic solution X10 in which 40 g of lithium hydroxide monohydrate is completely dissolved in 1 liter of 7N (N) potassium hydroxide, and the electrolytic solution X11 containing only 7N potassium hydroxide The batteries were fabricated and injected into the battery Z1, respectively, to fabricate batteries K, L, M, and N of the comparative example.

【0029】(電池評価)これら実施例の電池A〜J及
び比較例の電池K〜Nは、電解液注液後24時間放置し
た後、充放電を施した。充放電の内容は、水酸化ニッケ
ルの反応が1電子反応であると仮定して289mAh/
gの電気量から算出した正極理論容量に対して20℃で
0.1CmAの電流値により15時間充電し、20℃で
1時間放置した後、20℃で0.2CmAの電流値によ
り電池電圧が1Vになるまで放電を行う操作を2回繰り
返した。そして45℃の雰囲気下で1週間エージングを
施して評価用電池とした。
(Evaluation of Batteries) The batteries A to J of these examples and the batteries K to N of the comparative examples were charged and discharged after being left for 24 hours after injection of the electrolyte. The content of the charge and discharge was 289 mAh / assuming that the reaction of nickel hydroxide was a one-electron reaction.
The battery was charged at a current value of 0.1 CmA at 20 ° C. for 15 hours and left at 20 ° C. for 1 hour with respect to the theoretical capacity of the positive electrode calculated from the amount of electricity in g. The operation of discharging until reaching 1 V was repeated twice. Then, aging was performed for 1 week in an atmosphere of 45 ° C. to obtain a battery for evaluation.

【0030】常温での電池の活物質利用率は、次のよう
にして求めた。水酸化ニッケルの反応が1電子反応であ
ると仮定して289mAh/gの電気量から算出した正
極理論容量に対して20℃で0.1CmAの電流値によ
り15時間充電、20℃で1時間放置した後、20℃で
0.2CmAの電流値により電池電圧が1Vになるまで
放電した。このとき、実際に放電した容量を正極理論容
量で割った値の百分率を活物質利用率とした。
The active material utilization of the battery at normal temperature was determined as follows. Assuming that the reaction of nickel hydroxide is a one-electron reaction, the positive electrode theoretical capacity calculated from the amount of electricity of 289 mAh / g was charged at 20 ° C. with a current value of 0.1 CmA for 15 hours, and left at 20 ° C. for 1 hour. After that, the battery was discharged at 20 ° C. with a current value of 0.2 CmA until the battery voltage became 1 V. At this time, the percentage of the value obtained by dividing the actually discharged capacity by the theoretical capacity of the positive electrode was defined as the active material utilization rate.

【0031】高温雰囲気下での充電時の活物質利用率は
次の様な評価で求めた。45℃で0.1CmAの電流値
により15時間充電、20℃で3時間放置した後、20
℃で0.2CmAの電流値により電池電圧が1Vになる
まで放電した。このとき、実際に放電した容量を正極理
論容量で割った値の百分率を高温雰囲気下での充電時の
活物質利用率とした。
The active material utilization during charging in a high-temperature atmosphere was determined by the following evaluation. After charging at 45 ° C. with a current value of 0.1 CmA for 15 hours, leaving at 20 ° C. for 3 hours,
The battery was discharged with a current value of 0.2 CmA at 0 ° C. until the battery voltage became 1 V. At this time, the percentage of the value obtained by dividing the actually discharged capacity by the theoretical capacity of the positive electrode was defined as the active material utilization rate at the time of charging in a high-temperature atmosphere.

【0032】以上の評価で得られた結果を(表1),
(表2)および(表3)に示す。
The results obtained in the above evaluation are shown in Table 1 below.
The results are shown in (Table 2) and (Table 3).

【0033】[0033]

【表1】 [Table 1]

【0034】(表1)に示すように、本発明の実施例の
電池A〜Dは比較例の電池K,M,Nよりも常温充電時
の活物質利用率が高く、5mol以上11molまでの水
酸化カリウム水溶液に溶解度以上の水酸化リチウムを添
加したアルカリ電解液を添加すると有効であることが分
かる。
As shown in Table 1, the batteries A to D of the examples of the present invention have higher active material utilization rates at room temperature than the batteries K, M, and N of the comparative examples. It can be seen that it is effective to add an alkaline electrolyte obtained by adding lithium hydroxide having a solubility equal to or higher than the aqueous solution of potassium hydroxide.

【0035】[0035]

【表2】 [Table 2]

【0036】(表2)に示すように、7mol/lと一
定の水酸化カリウム水溶液を用いても、実施例の電池
E,F,Gは、比較例電池のL,M,Nよりも常温及び
高温雰囲気下での充電時の活物質利用率が高い。溶解度
以上に存在し、電解液中に析出している水酸化リチウム
一水和物量が80g/lを越える場合は、活物質利用率
が低下していることが分かる。これは80g/lを越え
る領域では析出物が占める体積が大きく、電池に必要な
電解液量(水溶液量)が不足し、電池の内部抵抗が増加
して、電池容量が低下してしまうためである。
As shown in Table 2, even when a 7 mol / l aqueous solution of potassium hydroxide was used, the batteries E, F, and G of Examples were at room temperature more than the batteries L, M, and N of Comparative Examples. And a high utilization rate of the active material during charging in a high-temperature atmosphere. When the amount of lithium hydroxide monohydrate existing in excess of the solubility and precipitated in the electrolytic solution exceeds 80 g / l, it can be seen that the active material utilization rate is reduced. This is because in a region exceeding 80 g / l, the volume occupied by the precipitate is large, the amount of electrolyte (aqueous solution) required for the battery is insufficient, the internal resistance of the battery is increased, and the battery capacity is reduced. is there.

【0037】また実施例において、溶解度以上に析出し
ている水酸化リチウム一水和物量が20g/lの時最も
高い活物質利用率を示した。この電池を分解した結果、
これ以下では遊離析出する水酸化リチウムが観測されな
かった。このことは、電池の初期の充放電サイクルある
いは高温放置時に、アルカリ電解液中に溶解している一
部の水酸化リチウムあるいはリチウムイオンは正極活物
質中に侵入固溶及び/あるいは化学吸着で固定化された
ものと考えられる。従って、初期の充放電サイクルある
いは高温放置により一部の水酸化リチウムあるいはリチ
ウムイオンを正極活物質中に侵入固溶及び/あるいは化
学吸着で固定化させ、それまで過飽和状態で電解液中に
遊離析出していた水酸化リチウムを、電解液中のリチウ
ムイオンの減少を補うかたちでアルカリ電解液にすべて
溶解させることが好ましい。
In the examples, the highest active material utilization was exhibited when the amount of lithium hydroxide monohydrate precipitated above the solubility was 20 g / l. As a result of disassembling this battery,
Below this, no free-separated lithium hydroxide was observed. This indicates that during the initial charge / discharge cycle of the battery or when left at high temperatures, some lithium hydroxide or lithium ions dissolved in the alkaline electrolyte penetrate into the positive electrode active material and / or are fixed by chemisorption. It is considered to be Therefore, some lithium hydroxide or lithium ions penetrate into the positive electrode active material and are fixed by chemisorption by the initial charge / discharge cycle or by leaving at high temperature, and they are separated and precipitated in the electrolyte in the supersaturated state until then. It is preferable to dissolve all the lithium hydroxide in the alkaline electrolyte so as to compensate for the decrease in lithium ions in the electrolyte.

【0038】[0038]

【表3】 [Table 3]

【0039】(表3)に示すように、実施例の電池H,
I,Jは実施例の電池Fと同様の効果が得られ、比較例
の電池Mよりも常温雰囲気下での充電時の活物質利用率
が高い。従って、電池の状態で比較例電池K,Lと同様
な状態にならない範囲で、少なくともリチウムが正極活
物質中と電解液中に存在し、且つ電池内部に存在するす
べてのアルカリ金属元素をそれぞれの水酸化物と見なし
たとき、電池内部に存在する水分量に対してその溶解度
以上に存在していれば良いことが分かる。
As shown in (Table 3), the batteries H,
I and J have the same effects as the battery F of the example, and have a higher active material utilization rate at the time of charging at room temperature than the battery M of the comparative example. Therefore, at least lithium is present in the positive electrode active material and the electrolytic solution, and all the alkali metal elements present inside the battery are not changed to the same state as the comparative example batteries K and L in the battery state. When it is considered as a hydroxide, it can be understood that it is sufficient that the hydroxide is present in excess of its solubility with respect to the amount of water existing inside the battery.

【0040】以上の評価は、アルカリ電解液として水酸
化カリウム単独水溶液を用い、これに水酸化リチウムを
添加したアルカリ水溶液を用いて行った。しかし、水酸
化カリウム単独水溶液に代えて水酸化セシウム、水酸化
ルビジウム、水酸化ナトリウムの単独液やこれと水酸化
カリウムもしくは水酸化ナトリウムの混合水溶液に水酸
化リチウムを添加したアルカリ水溶液を用いても、その
電解質濃度が上記の範囲内にあれば、水酸化リチウム量
は変化しても上記とほぼ同様な効果が得られる。
The above evaluation was performed using an aqueous solution of potassium hydroxide alone as an alkaline electrolyte and an aqueous alkaline solution to which lithium hydroxide was added. However, it is also possible to use an aqueous solution of cesium hydroxide, rubidium hydroxide and sodium hydroxide alone or an aqueous alkali solution obtained by adding lithium hydroxide to a mixed aqueous solution of potassium hydroxide and sodium hydroxide instead of the aqueous solution of potassium hydroxide alone. If the electrolyte concentration is within the above range, substantially the same effects as above can be obtained even if the amount of lithium hydroxide changes.

【0041】[0041]

【発明の効果】以上のように、本発明のアルカリ蓄電池
では、ニッケル正極、負極およびセパレータからなる電
極群を内部に挿入した金属ケースに、水酸化セシウム、
水酸化ルビジウム、水酸化カリウムおよび水酸化ナトリ
ウムからなる群より選択した単独あるいは複数の電解質
を5mol/l以上の濃度で溶解した水溶液に、水酸化
リチウムをその溶解度以上でかつ水溶液中の析出量が8
0g/l以下の量で添加したアルカリ電解液を所定量注
入したことによって、常温及び高温雰囲気下での電池容
量を飛躍的に向上させることができる。
As described above, in the alkaline storage battery according to the present invention, cesium hydroxide, cesium hydroxide, and a metal case in which an electrode group including a nickel positive electrode, a negative electrode, and a separator are inserted.
In an aqueous solution in which a single or a plurality of electrolytes selected from the group consisting of rubidium hydroxide, potassium hydroxide and sodium hydroxide are dissolved at a concentration of 5 mol / l or more, lithium hydroxide has a solubility of not less than its solubility and the amount of precipitation in the aqueous solution is 8
By injecting a predetermined amount of the alkaline electrolyte added in an amount of 0 g / l or less, it is possible to dramatically improve the battery capacity under normal temperature and high temperature atmosphere.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小西 始 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hajime Konishi 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ニッケル正極、負極およびセパレータを渦
巻状に捲回した電極群を内部に挿入した金属ケースに、
水酸化セシウム、水酸化ルビジウム、水酸化カリウムお
よび水酸化ナトリウムからなる群より選択した単独ある
いは複数の電解質を5mol/l以上の濃度で溶解した
水溶液に、水酸化リチウムをその溶解度以上でかつ水溶
液中の析出量が80g/l以下の量で添加したアルカリ
電解液を所定量注入したことを特徴とするアルカリ蓄電
池。
1. A metal case in which an electrode group in which a nickel positive electrode, a negative electrode and a separator are spirally wound is inserted therein.
Lithium hydroxide is dissolved in an aqueous solution in which a single or a plurality of electrolytes selected from the group consisting of cesium hydroxide, rubidium hydroxide, potassium hydroxide and sodium hydroxide are dissolved at a concentration of 5 mol / l or more, and the solubility is equal to or higher than that of lithium hydroxide. An alkaline storage battery, characterized in that a predetermined amount of an alkaline electrolyte added at a deposition amount of 80 g / l or less is injected.
【請求項2】前記水酸化セシウム、水酸化ルビジウム、
水酸化カリウムおよび水酸化ナトリウムからなる群より
選択した単独あるいは複数の電解質の水溶液中の溶解濃
度は、5mol/l以上11mol/l以下である請求
項1記載のアルカリ蓄電池。
2. The cesium hydroxide, rubidium hydroxide,
The alkaline storage battery according to claim 1, wherein the concentration of a single or a plurality of electrolytes selected from the group consisting of potassium hydroxide and sodium hydroxide in an aqueous solution is 5 mol / l or more and 11 mol / l or less.
【請求項3】前記水酸化リチウムの添加量は、電解液中
に溶解しているリチウムイオンが電池の初期の充放電サ
イクルあるいは高温放置時に正極活物質に水酸化物また
はイオンとして固定化あるいは挿入されていく過程で、
電解液中のリチウムイオンの減少を補うように溶解し、
最終的にすべて溶解しうる量であることを特徴とする請
求項1記載のアルカリ蓄電池。
3. The amount of lithium hydroxide added is such that lithium ions dissolved in the electrolyte are fixed or inserted as hydroxides or ions into the positive electrode active material during the initial charge / discharge cycle of the battery or at high temperature. In the process of being done,
Dissolve to compensate for the decrease in lithium ions in the electrolyte,
2. The alkaline storage battery according to claim 1, wherein the total amount of the alkaline storage battery is completely soluble.
【請求項4】ニッケル正極と、負極と、セパレータと、
アルカリ電解液とからなるアルカリ蓄電池であって、少
なくともリチウム元素がニッケル正極中とアルカリ電解
液中に存在し、且つ電池内部に存在するすべてのアルカ
リ金属元素をそれぞれの水酸化物と見なしたとき、その
アルカリ水酸化物の総量は、電池内部に存在する水分量
に対してその溶解度以上であることを特徴とするアルカ
リ蓄電池。
4. A nickel positive electrode, a negative electrode, a separator,
An alkaline storage battery comprising an alkaline electrolyte, wherein at least a lithium element is present in the nickel positive electrode and the alkaline electrolyte, and all the alkali metal elements present inside the battery are regarded as respective hydroxides. An alkaline storage battery, wherein the total amount of the alkali hydroxide is equal to or higher than its solubility with respect to the amount of water present inside the battery.
【請求項5】電池内部に存在する水酸化リチウムあるい
はリチウムイオンのうち電解液の溶解度以上の部分は正
極活物質に固定化され、水酸化リチウムが電解液中に遊
離析出していないことを特徴とする請求項4記載のアル
カリ蓄電池。
5. A portion of the lithium hydroxide or lithium ion present in the battery which is higher than the solubility of the electrolyte is fixed to the positive electrode active material, and lithium hydroxide is not freely precipitated in the electrolyte. The alkaline storage battery according to claim 4, wherein
JP10021802A 1998-02-03 1998-02-03 Alkaline storage battery Pending JPH11219721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10021802A JPH11219721A (en) 1998-02-03 1998-02-03 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10021802A JPH11219721A (en) 1998-02-03 1998-02-03 Alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH11219721A true JPH11219721A (en) 1999-08-10

Family

ID=12065201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10021802A Pending JPH11219721A (en) 1998-02-03 1998-02-03 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH11219721A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6605384B2 (en) * 2000-03-01 2003-08-12 Sanyo Electric Co., Ltd. Alkaline storage battery that can be used with stability in a wide temperature range
CN116526026A (en) * 2022-12-30 2023-08-01 郑州佛光发电设备股份有限公司 Electrolyte for low-temperature metal fuel cell and fuel cell comprising same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6605384B2 (en) * 2000-03-01 2003-08-12 Sanyo Electric Co., Ltd. Alkaline storage battery that can be used with stability in a wide temperature range
CN116526026A (en) * 2022-12-30 2023-08-01 郑州佛光发电设备股份有限公司 Electrolyte for low-temperature metal fuel cell and fuel cell comprising same
CN116526026B (en) * 2022-12-30 2024-03-19 郑州佛光发电设备股份有限公司 Electrolyte for low-temperature metal fuel cell and fuel cell comprising same

Similar Documents

Publication Publication Date Title
WO1992008251A1 (en) Hydrogen-storing electrode, nickel electrode, and nickel-hydrogen battery
JP4321997B2 (en) Positive electrode active material for alkaline storage battery, and positive electrode and alkaline storage battery using the same
JP3617203B2 (en) Manufacturing method of nickel metal hydride secondary battery
JP4474722B2 (en) Alkaline storage battery and positive electrode for alkaline storage battery used therefor
JP2004538609A (en) Alkaline secondary electrochemical power generator with zinc positive electrode
JPH117950A (en) Non-sintered nickel electrode for alkali storage battery
JP3623320B2 (en) Nickel electrode active material and nickel electrode using the nickel electrode active material
JPH11219721A (en) Alkaline storage battery
JP3788485B2 (en) Alkaline storage battery
JP3575196B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
JPH117949A (en) Non-sintered nickel electrode for alkali storage battery
JP3183073B2 (en) Active material for nickel electrode and method for producing the same
JP3744642B2 (en) Nickel-metal hydride storage battery and method for manufacturing the same
JP4147748B2 (en) Nickel positive electrode and nickel-hydrogen storage battery
JP3436060B2 (en) Nickel-hydrogen storage battery
JPH10289714A (en) Nickel-hydrogen storage battery
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JP3619703B2 (en) Method for producing nickel electrode for alkaline storage battery
JP2735887B2 (en) Zinc active material for alkaline storage battery and method for producing the same
JP3436059B2 (en) Nickel-hydrogen storage battery
JP3482478B2 (en) Nickel-metal hydride storage battery
JPH01187768A (en) Nickel electrode for alkali battery
JP3073259B2 (en) Nickel electrode for alkaline storage battery
JP2589750B2 (en) Nickel cadmium storage battery