JP3575196B2 - Manufacturing method of nickel electrode for alkaline storage battery - Google Patents

Manufacturing method of nickel electrode for alkaline storage battery Download PDF

Info

Publication number
JP3575196B2
JP3575196B2 JP31163596A JP31163596A JP3575196B2 JP 3575196 B2 JP3575196 B2 JP 3575196B2 JP 31163596 A JP31163596 A JP 31163596A JP 31163596 A JP31163596 A JP 31163596A JP 3575196 B2 JP3575196 B2 JP 3575196B2
Authority
JP
Japan
Prior art keywords
nickel
storage battery
hydroxide
alkaline storage
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31163596A
Other languages
Japanese (ja)
Other versions
JPH10154508A (en
Inventor
英樹 笠原
慶孝 暖水
浩次 湯浅
英男 海谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP31163596A priority Critical patent/JP3575196B2/en
Publication of JPH10154508A publication Critical patent/JPH10154508A/en
Application granted granted Critical
Publication of JP3575196B2 publication Critical patent/JP3575196B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はアルカリ蓄電池、特にニッケル/水素蓄電池と、その正極であるニッケル極に関するものである。
【0002】
【従来の技術】
近年、二次電池は通信機器等の普及に伴い高容量化が強く望まれている。これまで、正負極の高容量化およびセパレータの薄膜化等によって高容量化がなされてきた。特にニッケル/水素蓄電池は正極規制によって電池設計されるため、正極の高容量化が急務とされている。
【0003】
以下、上記アルカリ蓄電池用正極として用いられるニッケル極について説明する。
【0004】
従来、アルカリ蓄電池用の正極としては、ニッケル粉末を焼結して得た多孔度80%程度の多孔質焼結基板を硝酸ニッケル水溶液等の塩溶液に含浸し、次いで、アルカリ水溶液中に浸漬するなどして、前記基板に水酸化ニッケル活物質を生成させて製造する焼結式極板がある。このタイプは基板の多孔度をこれ以上向上させるのは困難であり、充填される水酸化ニッケル量を増加させることができず、高容量化には適していない。
【0005】
また、非焼結式正極としては、特開昭60−131765号公報に球状水酸化ニッケルを用いることが提案されている。これにより、基板に活物質を均一にかつ高密度に充填することが可能になり、焼結式基板に比べ高容量化に有効な方法である。この非焼結式基板に充填する活物質は、球状水酸化ニッケルに導電剤として水酸化コバルト、一酸化コバルトのようなコバルト化合物や、金属コバルト、金属ニッケル等を添加したものが主に用いられ、導電剤によって水酸化ニッケルの利用率が向上することは広く知られている。
【0006】
【発明が解決しようとする課題】
さらに最近では活物質利用率をより高める方策が検討されていて、例えば特開平7−320733号公報ではα−Co(OH)2とβ−Co(OH)2との混合体からなる水酸化コバルト層で表面が被覆された水酸化ニッケル粒子または水酸化ニッケルを主成分とする固溶体粒子を活物質とするニッケル極が提案されている。
【0007】
しかしα−Co(OH)2はアルカリ中での溶解性が高く、α−Co(OH)2の溶解析出反応はCo(OH)2⇒HCoO2 -⇒CoHO2、あるいはCo(OH)2⇒HCoO2 -⇒β−Co(OH)2の2通り考えられるがCoHO2に進行し易く、またCoHO2は不活性であることから活物質利用率は低下してしまう。従ってα−Co(OH)2が混合されているものを単に添加物として使用することには困難性が予想される。
【0008】
本発明は上記問題点に鑑み、充填密度が高く容量密度の高いアルカリ蓄電池用ニッケル極を提供するものである。
【0009】
【課題を解決するための手段】
上記問題点を解決するために本発明のアルカリ蓄電池用ニッケル極は、球状水酸化ニッケル粉末を主成分とし、これに熱処理したα型水酸化コバルトを添加物として加えて調整したペーストを用いたものである。
【0010】
上記水酸化ニッケル粉末に対し外部添加物として用いるα−Co(OH)2の結晶形態は、六方晶系で層状構造をもってβ−Co(OH)2の層間に結晶水を含んだ構造をしている。このα−Co(OH)2を熱処理することにより、層間に含んでいる結晶水を脱離させて、β−Co(OH)2よりも層間の間隔が広い水酸化コバルトを得ることができる。また、この層間の広い水酸化コバルトは、α−Co(OH)2に比べアルカリ溶液中での溶解性は低く、一方β−Co(OH)2に比べると溶解性が高いことから電池充電時に活物質間をつなぐ導電ネットワークの形成が容易にでき、しかも結晶層間の間隔が広いことからβ−Co(OH)2に比べ層間でのプロトンの束縛力が小さく、導電性が高い。このことから、金属多孔質基板の導電性骨格と活物質である水酸化ニッケル粒子あるいは水酸化ニッケル粒子相互間の導電性を向上させ、深い放電をさせることができる。従って、上記従来例以上に外部添加物を低減することができ、ニッケル極としての活物質充填密度および容量密度を向上させ、安定した電池特性が得られる。
【0011】
【発明の実施の形態】
請求項に記載の発明は、球状水酸化ニッケル粉末を主成分とし、添加物として100〜150℃で熱処理したα型水酸化コバルトを用いたアルカリ蓄電池用ニッケル極であって、α−Co(OH)2の熱処理は150℃よりも高温で行うと酸化されてしまうため、150℃以下100℃の間で行うことが好ましく、この熱処理により結晶層間に含まれている結晶水が脱離し、β−Co(OH)2よりも層間間隔の広い水酸化コバルトが得られる。この層間の広い水酸化コバルトは、正規のβ−Co(OH)2と比較してアルカリ中での溶解性が高く、導電性ネットワークの形成が容易にでき、また結晶層間でのプロトンの束縛力が小さいため導電性も高い。従って導電剤として用いる外部添加物の量を低減でき、活物質の充填密度および極板の容量密度を向上させることができる。
【0012】
請求項に記載の発明は、前記活物質粒子の重量に対する水酸化コバルト中のCoの比率を規定したもので、これが1重量%よりも少ないと緻密な導電性ネットワ−クを形成するには不十分であり、逆に15重量%よりも多いと水酸化ニッケル活物質の充填量の低下を招いてしまう。これらから球状水酸化ニッケルに対する水酸化コバルト中のCoの比率は1〜15重量%であることが望ましい。
【0013】
以下、本発明のアルカリ蓄電池用ニッケル極について説明する。
【0014】
【実施の形態】
本発明におけるα−Co(OH)2粉末を熱処理することにより得られた水酸化コバルトは、α−Co(OH)2の結晶層間に含まれている結晶水が脱離し、正規のβ−Co(OH)2よりも層間間隔の広い水酸化コバルトが得られる。この層間の広い水酸化コバルトは、β−Co(OH)2と比較してアルカリ中での溶解性が高く導電性ネットワークの形成が容易にでき、また層間でのプロトンの束縛力が小さいため導電性も高い。従って導電剤としての外部添加物の量を低減でき、その分だけ活物質の充填密度および極板としての容量密度を向上させ得る。
【0015】
【実施例】
以下にこのニッケル正極の製造方法およびこの正極を用いたニッケル水素蓄電池について更に詳しく説明する。
【0016】
第1の工程では、α−Co(OH)2粉末を熱処理する。熱処理温度は100、130、150、180、200℃の5通りで行い、それぞれをB1、B2、B3、B4、B5とした。また、熱処理をしなかったものをB0とした。第2の工程は、水酸化ニッケル粉末100部に対して第1工程で得られた水酸化コバルト粉末を10重量%、酸化亜鉛を2重量%加え、純水で含水率を整えてペースト状とし、これをスポンジ状多孔体基板に充填して、ニッケル正極とした。この正極と水素吸蔵合金粉末よりなる負極とを組み合わせて、公知の形式の円筒密閉型ニッケル/水素蓄電池を構成した。
【0017】
上記で構成されたB0〜B5までの6種類の電池について充電は0.1CmAで15時間充電し、放電は0.2CmAで終止電圧1.0まで放電するサイクルを5回行った時の電池容量を測定した。それぞれの電池容量を理論容量(正極に充填した水酸化活物質重量に水酸化ニッケルが1電子反応をするとしたときの電気量289mAh/gを掛けた値)で割った利用率を(表)に示す。
【0018】
【表

Figure 0003575196
【0019】
以上のように本実施例によれば、α−Co(OH)2からなる水酸化コバルトを150℃以下で熱処理したものをペースト中に加えることにより極板としての容量密度を向上させ、利用率も高く安定した電池特性が得られた。
【0020】
なお、実施例において水酸化ニッケル活物質の重量に対する水酸化コバルトのCoの比率を10重量%としたが、これは1重量%よりも少量では緻密な導電性ネットワ−クを形成するには不十分であり、また15重量%よりも多いと、ネットワークの構築は十分でも、相対的に水酸化ニッケル活物質の充填量の低下を招いてしまう。これらのことから、球状水酸化ニッケルに対する水酸化コバルト中のCoの比率は1〜15重量%が望ましい。
【0021】
【発明の効果】
以上のように本発明は、球状水酸化ニッケル粉末を主成分とし、これに添加物として100〜150℃で熱処理したα型水酸化コバルトを加えたニッケル極を用いることによって、正極板の容量密度が向上し、かつ安定した電池特性を得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an alkaline storage battery, particularly a nickel / hydrogen storage battery, and a nickel electrode as a positive electrode thereof.
[0002]
[Prior art]
2. Description of the Related Art In recent years, there has been a strong demand for a secondary battery having a high capacity with the spread of communication devices and the like. Hitherto, high capacity has been achieved by increasing the capacity of the positive and negative electrodes and reducing the thickness of the separator. In particular, since nickel / hydrogen storage batteries are designed by regulating the positive electrode, it is urgently necessary to increase the capacity of the positive electrode.
[0003]
Hereinafter, the nickel electrode used as the positive electrode for the alkaline storage battery will be described.
[0004]
Conventionally, as a positive electrode for an alkaline storage battery, a porous sintered substrate having a porosity of about 80% obtained by sintering nickel powder is impregnated with a salt solution such as a nickel nitrate aqueous solution, and then immersed in an alkaline aqueous solution. For example, there is a sintered electrode plate manufactured by producing a nickel hydroxide active material on the substrate. This type is difficult to further improve the porosity of the substrate, cannot increase the amount of nickel hydroxide to be filled, and is not suitable for increasing the capacity.
[0005]
As a non-sintered positive electrode, use of spherical nickel hydroxide has been proposed in Japanese Patent Application Laid-Open No. 60-131765. This makes it possible to uniformly and densely fill the substrate with the active material, which is an effective method for increasing the capacity as compared with a sintered substrate. The active material used for filling the non-sintered substrate is mainly spherical nickel hydroxide obtained by adding a cobalt compound such as cobalt hydroxide or cobalt monoxide, metallic cobalt, metallic nickel or the like as a conductive agent. It is widely known that the conductivity of nickel hydroxide is improved by the conductive agent.
[0006]
[Problems to be solved by the invention]
More recently, measures for further increasing the utilization rate of the active material have been studied. For example, Japanese Unexamined Patent Publication No. Hei 7-320733 discloses a cobalt hydroxide comprising a mixture of α-Co (OH) 2 and β-Co (OH) 2. A nickel electrode has been proposed in which nickel hydroxide particles whose surface is coated with a layer or solid solution particles containing nickel hydroxide as a main component are used as an active material.
[0007]
However α-Co (OH) 2 has a high solubility in alkali, the dissolution and precipitation reaction of α-Co (OH) 2 Co (OH) 2 ⇒HCoO 2 - ⇒CoHO 2, or Co (OH) 2 ⇒ HCoO 2 ⇒β-Co (OH) 2 can be considered, but it easily progresses to CoHO 2 , and since CoHO 2 is inactive, the active material utilization rate decreases. Therefore, it is expected that it is difficult to simply use a mixture of α-Co (OH) 2 as an additive.
[0008]
The present invention has been made in view of the above problems, and provides a nickel electrode for an alkaline storage battery having a high filling density and a high capacity density.
[0009]
[Means for Solving the Problems]
Nickel electrode for an alkaline storage battery of the present invention to solve the above problems, as a main component a spherical shape nickel hydroxide powder was used a paste adjusted by adding α-type cobalt hydroxide was heat-treated to as additives Things.
[0010]
The crystal form of α-Co (OH) 2 used as an external additive to the nickel hydroxide powder is a hexagonal system having a layered structure and a structure containing water of crystallization between β-Co (OH) 2 layers. I have. By heat-treating this α-Co (OH) 2 , water of crystallization contained between the layers is desorbed, and cobalt hydroxide having a wider space between the layers than β-Co (OH) 2 can be obtained. In addition, cobalt hydroxide having a wide layer between layers has a lower solubility in an alkaline solution than α-Co (OH) 2 , while it has a higher solubility than β-Co (OH) 2. Since a conductive network connecting the active materials can be easily formed, and the spacing between the crystal layers is wide, the binding force of protons between the layers is smaller than that of β-Co (OH) 2 and the conductivity is high. From this, it is possible to improve the conductivity between the conductive skeleton of the metal porous substrate and the nickel hydroxide particles or the nickel hydroxide particles as the active material, and to perform deep discharge. Therefore, the amount of external additives can be reduced more than in the conventional example, and the active material filling density and capacity density as a nickel electrode can be improved, and stable battery characteristics can be obtained.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 is a nickel electrode for an alkaline storage battery using spherical nickel hydroxide powder as a main component and α-type cobalt hydroxide heat-treated at 100 to 150 ° C. as an additive, and comprises α-Co ( Since the heat treatment of OH) 2 is oxidized when performed at a temperature higher than 150 ° C., it is preferable to perform the heat treatment at a temperature of 150 ° C. or less and 100 ° C. Cobalt hydroxide having a wider interlayer distance than -Co (OH) 2 is obtained. This cobalt hydroxide having a wide interlayer has a higher solubility in alkali than regular β-Co (OH) 2 , can easily form a conductive network, and has a binding force of protons between crystal layers. , The conductivity is also high. Therefore, the amount of the external additive used as the conductive agent can be reduced, and the packing density of the active material and the capacity density of the electrode plate can be improved.
[0012]
The invention according to claim 2 defines the ratio of Co in cobalt hydroxide to the weight of the active material particles. If the ratio is less than 1% by weight, it is necessary to form a dense conductive network. On the other hand, if the content is more than 15% by weight, the amount of the nickel hydroxide active material to be filled is reduced. From these, it is desirable that the ratio of Co in cobalt hydroxide to spherical nickel hydroxide is 1 to 15% by weight.
[0013]
Hereinafter, the nickel electrode for an alkaline storage battery of the present invention will be described.
[0014]
Embodiment
Cobalt hydroxide obtained by heat-treating α -Co (OH) 2 powder that put the present invention, α-Co (OH) 2 in the separated crystal water contained in the crystal layers removal, the normal β Cobalt hydroxide having a wider interlayer distance than -Co (OH) 2 is obtained. Cobalt hydroxide having a wide interlayer has higher solubility in alkali compared to β-Co (OH) 2 and can easily form a conductive network. The nature is also high. Therefore, the amount of the external additive as the conductive agent can be reduced, and the packing density of the active material and the capacity density as the electrode plate can be improved accordingly.
[0015]
【Example】
Hereinafter, a method for producing the nickel positive electrode and a nickel-metal hydride storage battery using the positive electrode will be described in more detail.
[0016]
In the first step, the α-Co (OH) 2 powder is heat-treated. The heat treatment was performed at five heat treatment temperatures of 100, 130, 150, 180 and 200 ° C., and these were designated B 1 , B 2 , B 3 , B 4 and B 5 , respectively. Also, it was the B 0 those that did not heat-treated. In the second step, 10% by weight of the cobalt hydroxide powder obtained in the first step and 2% by weight of zinc oxide are added to 100 parts of the nickel hydroxide powder, and the water content is adjusted with pure water to form a paste. This was filled in a sponge-like porous substrate to obtain a nickel positive electrode. By combining this positive electrode and a negative electrode made of a hydrogen storage alloy powder, a well-known cylindrical sealed nickel / hydrogen storage battery was constructed.
[0017]
Charging the six batteries of up to B 0 .about.B 5 constructed above was charged for 15 hours at 0.1 CmA, discharge when subjected 5 times a cycle of discharging to a final voltage of 1.0 0.2CmA The battery capacity was measured. The utilization rate obtained by dividing each battery capacity by a theoretical capacity (a value obtained by multiplying the weight of the hydroxide active material filled in the positive electrode by the amount of electricity of 289 mAh / g when one-electron reaction occurs with nickel hydroxide) (Table 1 ) Shown in
[0018]
[Table 1 ]
Figure 0003575196
[0019]
As described above, according to the present embodiment, the capacity density as an electrode plate is improved by adding a material obtained by heat-treating cobalt hydroxide composed of α-Co (OH) 2 at 150 ° C. or less to the paste, and increasing the utilization factor. And stable battery characteristics were obtained.
[0020]
In the examples, the ratio of Co of cobalt hydroxide to the weight of the nickel hydroxide active material was set to 10% by weight. However, if it is less than 1% by weight, it is not enough to form a dense conductive network. If it is sufficient, and if it is more than 15% by weight, even if the construction of the network is sufficient, the filling amount of the nickel hydroxide active material is relatively reduced. For these reasons, the ratio of Co in cobalt hydroxide to spherical nickel hydroxide is preferably 1 to 15% by weight.
[0021]
【The invention's effect】
Above, the present invention is mainly composed of spherical shaped nickel hydroxide powder, to which by using a nickel electrode by adding the α-type cobalt hydroxide was heat-treated at 100 to 150 ° C. as an additive, the capacity of the positive electrode plate The density can be improved and stable battery characteristics can be obtained.

Claims (2)

球状水酸化ニッケル粉末を主成分とし、これに100〜150℃で熱処理したα型水酸化コバルトを添加物として加えてペーストを調整するアルカリ蓄電池用ニッケル極の製造法。A method for producing a nickel electrode for an alkaline storage battery, comprising a spherical nickel hydroxide powder as a main component, and adding an α-type cobalt hydroxide heat-treated at 100 to 150 ° C. as an additive to prepare a paste. 前記水酸化ニッケル粉末に対する前記水酸化コバルト中のCoの重量比率が1〜15重量%である請求項記載のアルカリ蓄電池用非焼結式ニッケル極の製造法。Preparation of non-sintered nickel electrode for an alkaline storage battery according to claim 1 wherein the weight ratio of Co is 1-15 wt% in the cobalt hydroxide relative to the nickel hydroxide powder.
JP31163596A 1996-11-22 1996-11-22 Manufacturing method of nickel electrode for alkaline storage battery Expired - Lifetime JP3575196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31163596A JP3575196B2 (en) 1996-11-22 1996-11-22 Manufacturing method of nickel electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31163596A JP3575196B2 (en) 1996-11-22 1996-11-22 Manufacturing method of nickel electrode for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH10154508A JPH10154508A (en) 1998-06-09
JP3575196B2 true JP3575196B2 (en) 2004-10-13

Family

ID=18019648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31163596A Expired - Lifetime JP3575196B2 (en) 1996-11-22 1996-11-22 Manufacturing method of nickel electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3575196B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102800859A (en) * 2012-08-30 2012-11-28 上海锦众信息科技有限公司 Preparation method of cobalt-wrapped nickelous hydroxide
JP6643054B2 (en) 2015-11-16 2020-02-12 Fdk株式会社 Evaluation method of positive electrode active material for nickel-metal hydride secondary battery
JP6643132B2 (en) 2016-02-12 2020-02-12 Fdk株式会社 Positive electrode active material for alkaline secondary battery and alkaline secondary battery containing this positive electrode active material
CN111268749A (en) * 2020-02-21 2020-06-12 桂林理工大学 α -Ni (OH) regulated by changing content of intercalated water molecules2Method for lithium storage performance

Also Published As

Publication number Publication date
JPH10154508A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
JP3738052B2 (en) Nickel electrode active material, nickel electrode and nickel alkaline storage battery using the same, and production method thereof
EP0851520B1 (en) Nickel-hydrogen secondary battery and process for producing electrode therefor
JP4710225B2 (en) Method for producing nickel electrode material
US6136473A (en) Hydrogen absorbing electrode, nickel electrode and alkaline storage battery
US20050238960A1 (en) Non-sintered type positive electrode and alkaline storage battery using the same
JP2004071304A (en) Positive active material for alkaline storage battery, positive electrode using it, and alkaline storage battery
JP3575196B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
JP4159161B2 (en) Positive electrode active material for alkaline storage battery, method for producing the same, and method for producing positive electrode for alkaline storage battery using the positive electrode active material
KR100596117B1 (en) Alkaline Storage Battery and Process for the Production Thereof
JPH10261412A (en) Alkaline storage battery nickel positive electrode and its manufacture
JP4474722B2 (en) Alkaline storage battery and positive electrode for alkaline storage battery used therefor
JP3573925B2 (en) Metal-hydride alkaline storage battery and method of manufacturing the same
JP3744642B2 (en) Nickel-metal hydride storage battery and method for manufacturing the same
JPH0950805A (en) Nickel electrode for alkaline storage battery and active material for nickel electrode and its manufacturing method and alkaline storage battery
JP4061048B2 (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
JP3639494B2 (en) Nickel-hydrogen storage battery
JP3204275B2 (en) Nickel electrode for alkaline storage battery
JP4147748B2 (en) Nickel positive electrode and nickel-hydrogen storage battery
JP3619703B2 (en) Method for producing nickel electrode for alkaline storage battery
JPH11238507A (en) Alkaline storage battery
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JP3416174B2 (en) Nickel positive electrode for alkaline storage batteries
US6171728B1 (en) Nickel electrode for akaline storage cell and manufacturing method of the same
JP4357133B2 (en) Hydrogen storage alloy for electrode, hydrogen storage alloy electrode and alkaline storage battery
JP3135239B2 (en) Nickel positive electrode for batteries

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040628

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

EXPY Cancellation because of completion of term