JPH10154508A - Alkaline storage battery, its nickel electrode, and its manufacture - Google Patents

Alkaline storage battery, its nickel electrode, and its manufacture

Info

Publication number
JPH10154508A
JPH10154508A JP8311635A JP31163596A JPH10154508A JP H10154508 A JPH10154508 A JP H10154508A JP 8311635 A JP8311635 A JP 8311635A JP 31163596 A JP31163596 A JP 31163596A JP H10154508 A JPH10154508 A JP H10154508A
Authority
JP
Japan
Prior art keywords
nickel
hydroxide
powder
electrode
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8311635A
Other languages
Japanese (ja)
Other versions
JP3575196B2 (en
Inventor
Hideki Kasahara
英樹 笠原
Yoshitaka Dansui
慶孝 暖水
Koji Yuasa
浩次 湯浅
Hideo Kaiya
英男 海谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31163596A priority Critical patent/JP3575196B2/en
Publication of JPH10154508A publication Critical patent/JPH10154508A/en
Application granted granted Critical
Publication of JP3575196B2 publication Critical patent/JP3575196B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high capacity density alkaline storage battery nickel electrode by forming active material powder through the powder obtained by heat-treating nickel hydroxide powder whose surface is coated through α-Co(OH)2 or by adding heat-treated a type cobalt hydroxide to a main component of spherical nickel hydroxide powder. SOLUTION: Nickel hydroxide powder whose surface is coated by α-Co (OH)2 is heat-treated in temperatures from 100 to 150 deg.C, or the α-CO(OH)2 heat- treated in temperatures from 100 to 150 deg.C is added to nickel hydroxide so as to constitute a nickel electrode. Water of crystallization is eliminated from between α-Co(OH)2 layers by heat-treating so that the cobalt hydroxide having wide layer-to-layer space is formed and the formation of a conductive network can be facilitated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はアルカリ蓄電池、特
にニッケル/水素蓄電池と、その正極であるニッケル極
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline storage battery, particularly a nickel / hydrogen storage battery, and a nickel electrode as a positive electrode thereof.

【0002】[0002]

【従来の技術】近年、二次電池は通信機器等の普及に伴
い高容量化が強く望まれている。これまで、正負極の高
容量化およびセパレータの薄膜化等によって高容量化が
なされてきた。特にニッケル/水素蓄電池は正極規制に
よって電池設計されるため、正極の高容量化が急務とさ
れている。
2. Description of the Related Art In recent years, there has been a strong demand for higher capacity secondary batteries with the spread of communication equipment and the like. Hitherto, high capacity has been achieved by increasing the capacity of the positive and negative electrodes and reducing the thickness of the separator. In particular, since nickel / hydrogen storage batteries are designed by regulating the positive electrode, it is urgently necessary to increase the capacity of the positive electrode.

【0003】以下、上記アルカリ蓄電池用正極として用
いられるニッケル極について説明する。
Hereinafter, a nickel electrode used as the positive electrode for an alkaline storage battery will be described.

【0004】従来、アルカリ蓄電池用の正極としては、
ニッケル粉末を焼結して得た多孔度80%程度の多孔質
焼結基板を硝酸ニッケル水溶液等の塩溶液に含浸し、次
いで、アルカリ水溶液中に浸漬するなどして、前記基板
に水酸化ニッケル活物質を生成させて製造する焼結式極
板がある。このタイプは基板の多孔度をこれ以上向上さ
せるのは困難であり、充填される水酸化ニッケル量を増
加させることができず、高容量化には適していない。
Conventionally, as a positive electrode for an alkaline storage battery,
A porous sintered substrate having a porosity of about 80% obtained by sintering nickel powder is impregnated with a salt solution such as an aqueous solution of nickel nitrate, and then immersed in an aqueous solution of alkali to form a nickel hydroxide on the substrate. There is a sintered electrode plate manufactured by producing an active material. In this type, it is difficult to further improve the porosity of the substrate, and it is not possible to increase the amount of nickel hydroxide to be filled, and is not suitable for increasing the capacity.

【0005】また、非焼結式正極としては、特開昭60
−131765号公報に球状水酸化ニッケルを用いるこ
とが提案されている。これにより、基板に活物質を均一
にかつ高密度に充填することが可能になり、焼結式基板
に比べ高容量化に有効な方法である。この非焼結式基板
に充填する活物質は、球状水酸化ニッケルに導電剤とし
て水酸化コバルト、一酸化コバルトのようなコバルト化
合物や、金属コバルト、金属ニッケル等を添加したもの
が主に用いられ、導電剤によって水酸化ニッケルの利用
率が向上することは広く知られている。
A non-sintered positive electrode is disclosed in
The use of spherical nickel hydroxide is proposed in JP-A-131765. This makes it possible to uniformly and densely fill the substrate with the active material, which is an effective method for increasing the capacity as compared with a sintered substrate. The active material used for filling this non-sintered substrate is mainly spherical nickel hydroxide obtained by adding a cobalt compound such as cobalt hydroxide or cobalt monoxide as a conductive agent, metallic cobalt, metallic nickel, or the like. It is widely known that the conductivity of nickel hydroxide is improved by the conductive agent.

【0006】[0006]

【発明が解決しようとする課題】さらに最近では活物質
利用率をより高める方策が検討されていて、例えば特開
平7−320733号公報ではα−Co(OH)2とβ
−Co(OH)2との混合体からなる水酸化コバルト層
で表面が被覆された水酸化ニッケル粒子または水酸化ニ
ッケルを主成分とする固溶体粒子を活物質とするニッケ
ル極が提案されている。
More recently, measures for further increasing the utilization rate of active materials have been studied. For example, Japanese Patent Application Laid-Open No. 7-320733 discloses α-Co (OH) 2 and β-Co (OH) 2.
A nickel electrode has been proposed in which nickel hydroxide particles whose surface is coated with a cobalt hydroxide layer composed of a mixture with -Co (OH) 2 or solid solution particles containing nickel hydroxide as a main component are used as an active material.

【0007】しかしα−Co(OH)2はアルカリ中で
の溶解性が高く、α−Co(OH)2の溶解析出反応は
Co(OH)2⇒HCoO2 -⇒CoHO2、あるいはCo
(OH)2⇒HCoO2 -⇒β−Co(OH)2の2通り考
えられるがCoHO2に進行し易く、またCoHO2は不
活性であることから活物質利用率は低下してしまう。従
ってα−Co(OH)2が混合されているものを単に添
加物として使用することには困難性が予想される。
However, α-Co (OH) 2 has a high solubility in alkali, and the dissolution and precipitation reaction of α-Co (OH) 2 is Co (OH) 2 ⇒ HCoO 2 - ⇒ CoHO 2 , or Co
(OH) 2 ⇒ HCoO 2 - ⇒ β-Co (OH) 2 can be considered, but it easily progresses to CoHO 2 , and since CoHO 2 is inactive, the active material utilization rate decreases. Therefore, it is expected that it is difficult to simply use a mixture of α-Co (OH) 2 as an additive.

【0008】本発明は上記問題点に鑑み、充填密度が高
く容量密度の高いアルカリ蓄電池用ニッケル極を提供す
るものである。
In view of the above problems, the present invention provides a nickel electrode for an alkaline storage battery having a high filling density and a high capacity density.

【0009】[0009]

【課題を解決するための手段】上記問題点を解決するた
めに本発明のアルカリ蓄電池用ニッケル極は、結晶形態
がβ−Co(OH)2に近く、しかし結晶水をもたない
α−Co(OH)2からなる水酸化コバルトで表面が被
覆された水酸化ニッケル粉末を酸化処理することにより
得られた粉末を用いたものであり、電池としての酸化処
理により水酸化コバルトはオキシ水酸化コバルトに転換
される。あるいは球状水酸化ニッケル粉末を主成分と
し、これに熱処理したα型水酸化コバルトを添加物とし
て加えて調整したペーストを用いたものでもある。
In order to solve the above-mentioned problems, a nickel electrode for an alkaline storage battery according to the present invention has a crystal form close to that of β-Co (OH) 2 , but does not have water of crystallization. This is a powder obtained by oxidizing nickel hydroxide powder whose surface is coated with cobalt hydroxide composed of (OH) 2. Cobalt hydroxide is converted to cobalt oxyhydroxide by oxidation treatment as a battery. Is converted to Alternatively, a paste prepared by using a spherical nickel hydroxide powder as a main component and adding an α-type cobalt hydroxide which has been heat-treated as an additive to the powder is used.

【0010】上記水酸化ニッケル粉末表面を被覆してい
るα−Co(OH)2または外部添加物として用いるα
−Co(OH)2の結晶形態は、六方晶系で層状構造を
もってβ−Co(OH)2の層間に結晶水を含んだ構造
をしている。このα−Co(OH)2を熱処理すること
により、層間に含んでいる結晶水を脱離させて、β−C
o(OH)2よりも層間の間隔が広い水酸化コバルトを
得ることができる。また、この層間の広い水酸化コバル
トは、α−Co(OH)2に比べアルカリ溶液中での溶
解性は低く、一方β−Co(OH)2に比べると溶解性
が高いことから電池充電時に活物質間をつなぐ導電ネッ
トワークの形成が容易にでき、しかも結晶層間の間隔が
広いことからβ−Co(OH)2に比べ層間でのプロト
ンの束縛力が小さく、導電性が高い。このことから、金
属多孔質基板の導電性骨格と活物質である水酸化ニッケ
ル粒子あるいは水酸化ニッケル粒子相互間の導電性を向
上させ、深い放電をさせることができる。従って、上記
従来例以上に外部添加物を低減することができ、ニッケ
ル極としての活物質充填密度および容量密度を向上さ
せ、安定した電池特性が得られる。
Α-Co (OH) 2 coating the surface of the nickel hydroxide powder or α used as an external additive
Crystalline form of -Co (OH) 2 is has a layered structure with hexagonal in β-Co (OH) 2 interlayer has a structure containing crystal water. By subjecting the α-Co (OH) 2 to a heat treatment, the water of crystallization contained between the layers is desorbed and β-C
Cobalt hydroxide having a larger interlayer distance than o (OH) 2 can be obtained. In addition, cobalt hydroxide having a wide layer between layers has a lower solubility in an alkaline solution than α-Co (OH) 2 , while it has a higher solubility than β-Co (OH) 2. Since a conductive network connecting the active materials can be easily formed and the spacing between the crystal layers is wide, the binding force of protons between the layers is smaller than that of β-Co (OH) 2 , and the conductivity is high. From this, it is possible to improve the conductivity between the conductive skeleton of the metal porous substrate and the nickel hydroxide particles or the nickel hydroxide particles as the active material, and to perform deep discharge. Therefore, the amount of external additives can be reduced as compared with the conventional example, and the active material filling density and the capacity density as a nickel electrode can be improved, and stable battery characteristics can be obtained.

【0011】[0011]

【発明の実施の形態】請求項1に記載の発明は、電池状
態での活物質粒子を規定したものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The first aspect of the present invention specifies active material particles in a battery state.

【0012】請求項3に記載の発明は、α−Co(O
H)2からなる水酸化コバルトで表面が被覆された水酸
化ニッケル粉末を熱処理することにより得られた粉末を
活物質粒子とするものである。
According to a third aspect of the present invention, α-Co (O
H) A powder obtained by heat-treating a nickel hydroxide powder whose surface is coated with cobalt hydroxide composed of 2 is used as active material particles.

【0013】いずれもニッケル極としては外部添加物の
量を低減でき、活物質の充填密度および極板としての容
量密度を向上させることができる。
In each case, the amount of external additives can be reduced as the nickel electrode, and the packing density of the active material and the capacity density as the electrode plate can be improved.

【0014】請求項4に記載の発明は、α−Co(O
H)2からなる水酸化コバルトで表面が被覆された水酸
化ニッケル粉末の熱処理温度と、Coとしての添加量を
規定したものである。熱処理を150℃よりも高い温度
で行うと、水酸化コバルトおよび母体である水酸化ニッ
ケルが酸化されてしまうため、熱処理温度は100〜1
50℃が好ましい。水酸化コバルト中のCoの水酸化ニ
ッケルに対する配合比率は2重量%以下では緻密な導電
性ネットワ−クを形成するには不十分であり、また10
重量%以上では活物質である水酸化ニッケルの充填量の
低下を招いてしまう。これらのことから、球状水酸化ニ
ッケルに対する水酸化コバルト中のCoの比率は2〜1
0重量%であることが望ましい。
According to a fourth aspect of the present invention, an α-Co (O
H) defines the heat treatment temperature of the nickel hydroxide powder whose surface is coated with cobalt hydroxide of 2 ) and the amount of Co added. If the heat treatment is performed at a temperature higher than 150 ° C., cobalt hydroxide and nickel hydroxide as a base are oxidized.
50 ° C. is preferred. If the compounding ratio of Co to nickel hydroxide in cobalt hydroxide is less than 2% by weight, it is insufficient to form a dense conductive network.
If the content is more than the weight percentage, the filling amount of nickel hydroxide as an active material is reduced. From these facts, the ratio of Co in cobalt hydroxide to spherical nickel hydroxide is 2 to 1
It is desirably 0% by weight.

【0015】請求項5に記載の発明は、球状水酸化ニッ
ケル粉末を主成分とし、添加物として100〜150℃
で熱処理したα型水酸化コバルトを用いたアルカリ蓄電
池用ニッケル極であって、α−Co(OH)2の熱処理
は150℃よりも高温で行うと酸化されてしまうため、
150℃以下100℃の間で行うことが好ましく、この
熱処理により結晶層間に含まれている結晶水が脱離し、
β−Co(OH)2よりも層間間隔の広い水酸化コバル
トが得られる。この層間の広い水酸化コバルトは、正規
のβ−Co(OH)2と比較してアルカリ中での溶解性
が高く、導電性ネットワークの形成が容易にでき、また
結晶層間でのプロトンの束縛力が小さいため導電性も高
い。従って導電剤として用いる外部添加物の量を低減で
き、活物質の充填密度および極板の容量密度を向上させ
ることができる。
According to a fifth aspect of the present invention, a spherical nickel hydroxide powder is used as a main component, and the additive is added at 100 to 150 ° C.
Is a nickel electrode for an alkaline storage battery using α-type cobalt hydroxide heat-treated at a temperature of α-Co (OH) 2 , which is oxidized when heat-treated at a temperature higher than 150 ° C.
The heat treatment is preferably performed at a temperature of 150 ° C. or lower and 100 ° C. or less.
Cobalt hydroxide having a wider interlayer distance than β-Co (OH) 2 can be obtained. This cobalt hydroxide having a wide layer between layers has a higher solubility in alkali than regular β-Co (OH) 2 , can easily form a conductive network, and has a binding force of protons between crystal layers. , The conductivity is also high. Therefore, the amount of the external additive used as the conductive agent can be reduced, and the packing density of the active material and the capacity density of the electrode plate can be improved.

【0016】請求項6に記載の発明は、前記活物質粒子
の重量に対する水酸化コバルト中のCoの比率を規定し
たもので、これが1重量%よりも少ないと緻密な導電性
ネットワ−クを形成するには不十分であり、逆に15重
量%よりも多いと水酸化ニッケル活物質の充填量の低下
を招いてしまう。これらから球状水酸化ニッケルに対す
る水酸化コバルト中のCoの比率は1〜15重量%であ
ることが望ましい。
According to a sixth aspect of the present invention, the ratio of Co in cobalt hydroxide to the weight of the active material particles is defined. If the ratio is less than 1% by weight, a dense conductive network is formed. On the other hand, if it is more than 15% by weight, the filling amount of the nickel hydroxide active material will decrease. From these, it is desirable that the ratio of Co in cobalt hydroxide to spherical nickel hydroxide is 1 to 15% by weight.

【0017】請求項7に記載の発明は、熱処理したα−
Co(OH)2からなる水酸化コバルトの層で表面が被
覆された水酸化ニッケル粒子の粒経を規定したもので、
これを適切な範囲とすることで、活物質の充填密度およ
び極板の容量密度が向上する。
The invention according to claim 7 is characterized in that the heat-treated α-
It defines the particle size of nickel hydroxide particles whose surface is coated with a layer of cobalt hydroxide composed of Co (OH) 2 ,
By setting this to an appropriate range, the packing density of the active material and the capacity density of the electrode plate are improved.

【0018】請求項8に記載の発明は、主成分で水酸化
ニッケル粉末の粒径と、α型水酸化コバルトとの組み合
わせにより、活物質の充填密度および極板の容量密度が
向上する。
According to the present invention, the packing density of the active material and the capacity density of the electrode plate are improved by a combination of the particle size of the nickel hydroxide powder as the main component and the α-type cobalt hydroxide.

【0019】請求項9,10に記載の発明は、上記の水
酸化コバルトで表面が被覆された水酸化ニッケル粒子を
熱処理することにより得られた粉末を活物質とするか、
熱処理したα型水酸化コバルトを添加した水酸化ニッケ
ルからなる正極と、水素吸蔵合金からなる負極と、セパ
レータと、アルカリ電解液とを組み合せてニッケル/水
素蓄電池としたものである。
According to a ninth or tenth aspect of the present invention, the powder obtained by heat-treating the nickel hydroxide particles whose surface is coated with cobalt hydroxide is used as an active material,
A nickel / hydrogen storage battery is obtained by combining a heat-treated positive electrode made of nickel hydroxide to which α-type cobalt hydroxide is added, a negative electrode made of a hydrogen storage alloy, a separator, and an alkaline electrolyte.

【0020】以下、本発明のアルカリ蓄電池用ニッケル
極について説明する。
Hereinafter, the nickel electrode for an alkaline storage battery of the present invention will be described.

【0021】[0021]

【実施の形態】本発明におけるα−Co(OH)2から
なる水酸化コバルトで表面が被覆された水酸化ニッケル
粒子を熱処理することにより得られた粉末の水酸化コバ
ルト層、あるいはα−Co(OH)2粉末を熱処理する
ことにより得られた水酸化コバルトは、α−Co(O
H)2の結晶層間に含まれている結晶水が脱離し、正規
のβ−Co(OH)2よりも層間間隔の広い水酸化コバ
ルトが得られる。この層間の広い水酸化コバルトは、β
−Co(OH)2と比較してアルカリ中での溶解性が高
く導電性ネットワークの形成が容易にでき、また層間で
のプロトンの束縛力が小さいため導電性も高い。従って
導電剤としての外部添加物の量を低減でき、その分だけ
活物質の充填密度および極板としての容量密度を向上さ
せ得る。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a cobalt hydroxide layer of powder obtained by heat-treating nickel hydroxide particles whose surface is coated with cobalt hydroxide composed of α-Co (OH) 2 , or α-Co ( OH) 2 powder obtained by heat treatment is α-Co (O
Water of crystallization contained between the crystal layers of H) 2 is eliminated, and cobalt hydroxide having a wider interlayer distance than regular β-Co (OH) 2 is obtained. This wide cobalt hydroxide between the layers
Compared with —Co (OH) 2 , it has higher solubility in alkali and can easily form a conductive network, and has high conductivity due to a small proton binding force between layers. Therefore, the amount of the external additive as the conductive agent can be reduced, and the packing density of the active material and the capacity density as the electrode plate can be improved accordingly.

【0022】[0022]

【実施例】以下にこのニッケル正極の製造方法およびこ
の正極を用いたニッケル水素蓄電池について更に詳しく
説明する。
EXAMPLES The method for producing this nickel positive electrode and the nickel-metal hydride storage battery using this positive electrode will be described in more detail below.

【0023】(実施例1)まず第1の工程では、α−C
o(OH)2からなる水酸化コバルトで表面が被覆され
た球状水酸化ニッケル粉末を熱処理する。なお、水酸化
コバルト中のCoの水酸化ニッケルに対する配合比率
は、7重量%とした。
(Embodiment 1) First, in the first step, α-C
A spherical nickel hydroxide powder whose surface is coated with cobalt hydroxide composed of o (OH) 2 is heat-treated. The mixing ratio of Co to nickel hydroxide in cobalt hydroxide was 7% by weight.

【0024】熱処理温度は、100,130,150,
180℃の4通りで行い、それぞれをA1,A2,A3
4とした。また比較のため熱処理をしなかったものを
0とした。第2の工程は、得られた粉末100部に対
して2重量%の酸化亜鉛を加え、純水で含水率を整えて
ペースト状とし、これをスポンジ状多孔体基板に充填し
て、ニッケル正極とした。この正極と水素吸蔵合金粉末
よりなる負極とを組み合わせて、公知の形式の円筒密閉
型ニッケル水素蓄電池を構成した。
The heat treatment temperature is 100, 130, 150,
Carried out in four different 180 ° C., respectively A 1, A 2, A 3 ,
It was A 4. Also those not heat-treated for comparison were the A 0. In the second step, 2 parts by weight of zinc oxide was added to 100 parts of the obtained powder, and the water content was adjusted with pure water to form a paste. And By combining this positive electrode and a negative electrode made of a hydrogen storage alloy powder, a well-known cylindrical sealed nickel-metal hydride battery was formed.

【0025】上記のようにして構成されたA0〜A4まで
の5種類の電池について、充電は0.1CmAで15時
間充電し、放電は0.2CmAで終止電圧1.0まで放
電するサイクルを5回行った時の電池容量を測定した。
それぞれの電池容量を理論容量(正極に充填した活物質
重量に水酸化ニッケルが1電子反応をするとしたときの
電気量289mAh/gを掛けた値)で割った利用率を
(表1)に示す。
With respect to the five types of batteries A 0 to A 4 configured as described above, charging is performed at 0.1 CmA for 15 hours, and discharging is performed at 0.2 CmA to discharge to a final voltage of 1.0. Was performed 5 times, and the battery capacity was measured.
The utilization factor obtained by dividing each battery capacity by the theoretical capacity (a value obtained by multiplying the weight of the active material filled in the positive electrode by the amount of electricity of 289 mAh / g when one-electron reaction is caused by nickel hydroxide) is shown in (Table 1). .

【0026】[0026]

【表1】 [Table 1]

【0027】以上のように本実施例によれば、α−Co
(OH)2からなる水酸化コバルトで表面が被覆された
水酸化ニッケル粒子を150℃以下で熱処理することに
よりα−Co(OH)2の層間に含まれている結晶水が
脱離し、β−Co(OH)2よりも層間間隔の広い水酸
化コバルトが得られる。
As described above, according to this embodiment, α-Co
By subjecting the nickel hydroxide particles whose surface is coated with cobalt hydroxide composed of (OH) 2 to a heat treatment at 150 ° C. or lower, water of crystallization contained between the layers of α-Co (OH) 2 is desorbed, and β- Cobalt hydroxide having a wider interlayer distance than Co (OH) 2 can be obtained.

【0028】この層間の広い水酸化コバルトは、β−C
o(OH)2と比較してアルカリ中での溶解性が高く導
電性ネットワークの形成が容易にでき、また層間でのプ
ロトンの束縛力も小さいため導電性も高く、極板の容量
密度を向上させて安定した電池特性が得られた。
The cobalt hydroxide having a wide interlayer has a β-C
Compared to o (OH) 2 , it has higher solubility in alkalis and facilitates formation of a conductive network. In addition, since the binding force of protons between layers is small, the conductivity is high and the capacity density of the electrode plate is improved. And stable battery characteristics were obtained.

【0029】なお、実施例においては水酸化コバルト中
のCoの比率が7重量%のものを使用したが、水酸化コ
バルト中のCoの比率は2重量%よりも少量では緻密な
導電性ネットワ−クを形成するには不十分であり、また
10重量%よりも多いと水酸化ニッケル活物質の充填量
の低下を招いてしまう。従って、球状水酸化ニッケルに
対する水酸化コバルト中のCoの配合比率は2〜10重
量%であることが望ましい。
In the examples, those having a cobalt ratio of 7% by weight in cobalt hydroxide were used. However, if the ratio of Co in cobalt hydroxide was less than 2% by weight, a dense conductive network was used. It is not sufficient to form a crack, and if it is more than 10% by weight, the filling amount of the nickel hydroxide active material is reduced. Therefore, it is desirable that the compounding ratio of Co in the cobalt hydroxide to the spherical nickel hydroxide is 2 to 10% by weight.

【0030】(実施例2)第1の工程では、α−Co
(OH)2粉末を熱処理する。熱処理温度は100,1
30,150,180,200℃の5通りで行い、それ
ぞれをB1,B2,B 3,B4,B5とした。また、熱処理
をしなかったものをB0とした。第2の工程は、水酸化
ニッケル粉末100部に対して第1工程で得られた水酸
化コバルト粉末を10重量%、酸化亜鉛を2重量%加
え、純水で含水率を整えてペースト状とし、これをスポ
ンジ状多孔体基板に充填して、ニッケル正極とした。こ
の正極と水素吸蔵合金粉末よりなる負極とを組み合わせ
て、公知の形式の円筒密閉型ニッケル/水素蓄電池を構
成した。
(Embodiment 2) In the first step, α-Co
(OH)TwoHeat treat the powder. Heat treatment temperature is 100,1
Perform at 30, 150, 180, 200 ° C in 5 ways
B each1, BTwo, B Three, BFour, BFiveAnd Also heat treatment
B that did not do0And The second step is hydroxylation
Hydroxide obtained in the first step with respect to 100 parts of nickel powder
10% by weight of cobalt oxide powder and 2% by weight of zinc oxide
Then, adjust the water content with pure water to make a paste,
The nickel-containing positive electrode was filled in a hollow porous substrate. This
Combination of positive electrode and negative electrode made of hydrogen storage alloy powder
To form a well-known cylindrical sealed nickel / hydrogen storage battery.
Done.

【0031】上記で構成されたB0〜B5までの6種類の
電池について充電は0.1CmAで15時間充電し、放
電は0.2CmAで終止電圧1.0まで放電するサイク
ルを5回行った時の電池容量を測定した。それぞれの電
池容量を理論容量(正極に充填した水酸化活物質重量に
水酸化ニッケルが1電子反応をするとしたときの電気量
289mAh/gを掛けた値)で割った利用率を(表
2)に示す。
The above six batteries B 0 to B 5 were charged at 0.1 CmA for 15 hours, and discharged at 0.2 CmA for 5 cycles of discharging to a final voltage of 1.0. The battery capacity at the time of the test was measured. The utilization rate obtained by dividing each battery capacity by the theoretical capacity (a value obtained by multiplying the weight of the hydroxide active material filled in the positive electrode by the amount of electricity of 289 mAh / g when nickel hydroxide performs a one-electron reaction) (Table 2) Shown in

【0032】[0032]

【表2】 [Table 2]

【0033】以上のように本実施例によれば、α−Co
(OH)2からなる水酸化コバルトを150℃以下で熱
処理したものをペースト中に加えることにより極板とし
ての容量密度を向上させ、利用率も高く安定した電池特
性が得られた。
As described above, according to this embodiment, α-Co
By adding cobalt hydroxide consisting of (OH) 2 and heat-treated at 150 ° C. or lower to the paste, the capacity density as an electrode plate was improved, and a high utilization factor and stable battery characteristics were obtained.

【0034】なお、実施例において水酸化ニッケル活物
質の重量に対する水酸化コバルトのCoの比率を10重
量%としたが、これは1重量%よりも少量では緻密な導
電性ネットワ−クを形成するには不十分であり、また1
5重量%よりも多いと、ネットワークの構築は十分で
も、相対的に水酸化ニッケル活物質の充填量の低下を招
いてしまう。これらのことから、球状水酸化ニッケルに
対する水酸化コバルト中のCoの比率は1〜15重量%
が望ましい。
In the examples, the ratio of Co of cobalt hydroxide to the weight of the nickel hydroxide active material was set to 10% by weight. If the ratio was less than 1% by weight, a dense conductive network was formed. Not enough, and 1
When the content is more than 5% by weight, even though the construction of the network is sufficient, the filling amount of the nickel hydroxide active material is relatively reduced. From these facts, the ratio of Co in cobalt hydroxide to spherical nickel hydroxide is 1 to 15% by weight.
Is desirable.

【0035】[0035]

【発明の効果】以上のように本発明は、α−Co(O
H)2からなる水酸化コバルトで表面が被覆された水酸
化ニッケル粉末を酸化処理することにより得られた粉末
を活物質粒子とするか、あるいは球状水酸化ニッケル粉
末を主成分とし、これに添加物として100〜150℃
で熱処理したα型水酸化コバルトを加えたニッケル極を
用いることによって、正極板の容量密度が向上し、かつ
安定した電池特性を得ることができる。
As described above, the present invention relates to α-Co (O
H) A powder obtained by oxidizing nickel hydroxide powder whose surface is coated with cobalt hydroxide composed of 2 is used as active material particles, or spherical nickel hydroxide powder is used as a main component and added to this. 100-150 ° C
By using a nickel electrode to which α-type cobalt hydroxide added with the heat treatment is applied, the capacity density of the positive electrode plate can be improved and stable battery characteristics can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 海谷 英男 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Hideo Kaiya 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】結晶形態がβ−Co(OH)2に近く、結
晶水をもたないα−Co(OH)2 を出発物質として
得たオキシ水酸化コバルトで、表面の少なくとも一部分
が被覆された水酸化ニッケル粉末を活物質粒子としたア
ルカリ蓄電池用ニッケル極。
(1) A crystalline form close to β-Co (OH) 2 , and at least a part of the surface is coated with cobalt oxyhydroxide obtained from α-Co (OH) 2 having no water of crystallization as a starting material. Electrode for alkaline storage batteries using nickel hydroxide powder as active material particles.
【請求項2】前記水酸化ニッケル粉末は、その表面の実
質的にすべてがオキシ水酸化コバルトで被覆されている
請求項1記載のアルカリ蓄電池用ニッケル極。
2. The nickel electrode for an alkaline storage battery according to claim 1, wherein substantially all of the surface of said nickel hydroxide powder is coated with cobalt oxyhydroxide.
【請求項3】α−Co(OH)2からなる水酸化コバル
トで表面が被覆された水酸化ニッケル粉末を熱処理し、
前記水酸化コバルトから結晶水を除去することを特徴と
するアルカリ蓄電池用ニッケル極の製造法。
3. A heat treatment of a nickel hydroxide powder having a surface coated with cobalt hydroxide comprising α-Co (OH) 2 ,
A method for producing a nickel electrode for an alkaline storage battery, comprising removing water of crystallization from the cobalt hydroxide.
【請求項4】前記水酸化ニッケル粉末の熱処理温度は、
100〜150℃であり、水酸化ニッケルに対する前記
水酸化コバルト中のCoの重量比率は2〜10重量%で
ある請求項3記載のアルカリ蓄電池用非焼結式ニッケル
極の製造法。
4. The heat treatment temperature of the nickel hydroxide powder is as follows:
The method for producing a non-sintered nickel electrode for an alkaline storage battery according to claim 3, wherein the temperature is 100 to 150 ° C, and the weight ratio of Co in the cobalt hydroxide to nickel hydroxide is 2 to 10% by weight.
【請求項5】球状水酸化ニッケル粉末を主成分とし、こ
れに100〜150℃で熱処理したα型水酸化コバルト
を添加物として加えてペーストを調整するアルカリ蓄電
池用ニッケル極の製造法。
5. A method for producing a nickel electrode for an alkaline storage battery, comprising a spherical nickel hydroxide powder as a main component, and adding an α-type cobalt hydroxide heat-treated at 100 to 150 ° C. as an additive to prepare a paste.
【請求項6】前記水酸化ニッケル粉末に対する前記水酸
化コバルト中のCoの重量比率が1〜15重量%である
請求項5記載のアルカリ蓄電池用非焼結式ニッケル極の
製造法。
6. The method according to claim 5, wherein the weight ratio of Co in the cobalt hydroxide to the nickel hydroxide powder is 1 to 15% by weight.
【請求項7】α−Co(OH)2からなる水酸化コバル
トで表面が被覆された水酸化ニッケル粉末は、その粒径
が約5〜50μmである請求項3記載のアルカリ蓄電池
用ニッケル極の製造法。
7. The nickel electrode for an alkaline storage battery according to claim 3, wherein the nickel hydroxide powder whose surface is coated with cobalt hydroxide composed of α-Co (OH) 2 has a particle size of about 5 to 50 μm. Manufacturing method.
【請求項8】ニッケル極の主成分である水酸化ニッケル
粉末は、その粒径が約5〜50μmである請求項5記載
のアルカリ蓄電池用ニッケル極の製造法。
8. The method for producing a nickel electrode for an alkaline storage battery according to claim 5, wherein the nickel hydroxide powder as a main component of the nickel electrode has a particle size of about 5 to 50 μm.
【請求項9】α−Co(OH)2からなる水酸化コバル
トで表面が被覆された水酸化ニッケル粒子を熱処理する
ことにより得られた粉末を活物質とした正極と、 水素吸蔵合金粉末からなる負極と、 セパレータと、 アルカリ電解液とを組み合せて構成したアルカリ蓄電
池。
9. A positive electrode comprising, as an active material, a powder obtained by heat-treating nickel hydroxide particles having a surface coated with cobalt hydroxide comprising α-Co (OH) 2, and a hydrogen storage alloy powder. An alkaline storage battery composed of a combination of a negative electrode, a separator, and an alkaline electrolyte.
【請求項10】球状水酸化ニッケル粉末を主成分とし、
これに熱処理したα型水酸化コバルトを添加物として加
えた正極と、 水素吸蔵合金粉末からなる負極と、 セパレータと、 アルカリ電解液とを組み合せて構成したアルカリ蓄電
池。
10. A composition comprising a spherical nickel hydroxide powder as a main component,
An alkaline storage battery comprising a combination of a positive electrode to which heat-treated α-type cobalt hydroxide is added as an additive, a negative electrode made of a hydrogen storage alloy powder, a separator, and an alkaline electrolyte.
JP31163596A 1996-11-22 1996-11-22 Manufacturing method of nickel electrode for alkaline storage battery Expired - Lifetime JP3575196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31163596A JP3575196B2 (en) 1996-11-22 1996-11-22 Manufacturing method of nickel electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31163596A JP3575196B2 (en) 1996-11-22 1996-11-22 Manufacturing method of nickel electrode for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH10154508A true JPH10154508A (en) 1998-06-09
JP3575196B2 JP3575196B2 (en) 2004-10-13

Family

ID=18019648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31163596A Expired - Lifetime JP3575196B2 (en) 1996-11-22 1996-11-22 Manufacturing method of nickel electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3575196B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102800859A (en) * 2012-08-30 2012-11-28 上海锦众信息科技有限公司 Preparation method of cobalt-wrapped nickelous hydroxide
EP3206243A1 (en) 2016-02-12 2017-08-16 FDK Corporation Positive electrode active material for alkaline secondary battery and alkaline secondary battery including the positive electrode active material
US10177385B2 (en) 2015-11-16 2019-01-08 Fdk Corporation Positive electrode active material for nickel-hydrogen secondary battery, nickel-hydrogen secondary battery including the positive electrode active material, and method of evaluating positive electrode active material
CN111268749A (en) * 2020-02-21 2020-06-12 桂林理工大学 α -Ni (OH) regulated by changing content of intercalated water molecules2Method for lithium storage performance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102800859A (en) * 2012-08-30 2012-11-28 上海锦众信息科技有限公司 Preparation method of cobalt-wrapped nickelous hydroxide
US10177385B2 (en) 2015-11-16 2019-01-08 Fdk Corporation Positive electrode active material for nickel-hydrogen secondary battery, nickel-hydrogen secondary battery including the positive electrode active material, and method of evaluating positive electrode active material
EP3206243A1 (en) 2016-02-12 2017-08-16 FDK Corporation Positive electrode active material for alkaline secondary battery and alkaline secondary battery including the positive electrode active material
US11228027B2 (en) 2016-02-12 2022-01-18 Fdk Corporation Positive electrode active material for alkaline secondary battery and alkaline secondary battery including the positive electrode active material
CN111268749A (en) * 2020-02-21 2020-06-12 桂林理工大学 α -Ni (OH) regulated by changing content of intercalated water molecules2Method for lithium storage performance

Also Published As

Publication number Publication date
JP3575196B2 (en) 2004-10-13

Similar Documents

Publication Publication Date Title
US6033805A (en) Nickel-hydrogen secondary battery and process for producing electrode therefor
JP3191751B2 (en) Alkaline storage battery and surface treatment method for positive electrode active material thereof
JP4496704B2 (en) Manufacturing method of nickel metal hydride battery
JP3661045B2 (en) Alkaline storage battery
JP2004071304A (en) Positive active material for alkaline storage battery, positive electrode using it, and alkaline storage battery
JP4159161B2 (en) Positive electrode active material for alkaline storage battery, method for producing the same, and method for producing positive electrode for alkaline storage battery using the positive electrode active material
JP4017302B2 (en) Alkaline storage battery and method for manufacturing the same
JPH1125967A (en) Nickel electrode active material for alkaline storage battery and its manufacture
JPH10154508A (en) Alkaline storage battery, its nickel electrode, and its manufacture
JPH10162820A (en) Manufacture of hydrogen storage alloy for alkaline storage battery
JPH0950805A (en) Nickel electrode for alkaline storage battery and active material for nickel electrode and its manufacturing method and alkaline storage battery
JP4061048B2 (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
JP3433008B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP3744642B2 (en) Nickel-metal hydride storage battery and method for manufacturing the same
JP3543607B2 (en) Alkaline storage battery
JP3639494B2 (en) Nickel-hydrogen storage battery
JP2001093520A (en) Hydrogen storage alloy electrode and preparation thereof
JP3619703B2 (en) Method for producing nickel electrode for alkaline storage battery
WO2012014895A1 (en) Sintered nickel cathode, method of manufacturing same, and alkaline storage battery employing the sintered nickel cathode
JPH11238507A (en) Alkaline storage battery
US6171728B1 (en) Nickel electrode for akaline storage cell and manufacturing method of the same
JP4357133B2 (en) Hydrogen storage alloy for electrode, hydrogen storage alloy electrode and alkaline storage battery
JPH08203522A (en) Nickel active substance for alkaline battery and manufacture thereof
JP3540558B2 (en) Method for producing nickel hydroxide electrode for alkaline storage battery and nickel hydroxide electrode obtained by this method
JP2001345099A (en) Active material for nickel positive electrode and nickel- hydrogen secondary cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040628

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

EXPY Cancellation because of completion of term