JPH08203522A - Nickel active substance for alkaline battery and manufacture thereof - Google Patents

Nickel active substance for alkaline battery and manufacture thereof

Info

Publication number
JPH08203522A
JPH08203522A JP7008226A JP822695A JPH08203522A JP H08203522 A JPH08203522 A JP H08203522A JP 7008226 A JP7008226 A JP 7008226A JP 822695 A JP822695 A JP 822695A JP H08203522 A JPH08203522 A JP H08203522A
Authority
JP
Japan
Prior art keywords
active material
nickel
hydroxide
cobalt
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7008226A
Other languages
Japanese (ja)
Inventor
Akifumi Yamawaki
章史 山脇
Mikiaki Tadokoro
幹朗 田所
Yoshitaka Baba
良貴 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP7008226A priority Critical patent/JPH08203522A/en
Publication of JPH08203522A publication Critical patent/JPH08203522A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To provide nickel active substance for an alkaline battery and manufacturing method thereof which can enhance electrode capacity by allowing cobalt compound to sufficiently exhibit its function in a nickel hydroxide active material with which the cobalt compound is compounded. CONSTITUTION: A nickel active substance for an alkaline battery is such one in which a part or the whole of the surfaces of basic particles including nickel hydroxide as its main component is covered with metallic compound including at least cobalt hydroxide. This nickel active substance has its average particle diameter caused by laser diffraction method set to 3μm or more and less than 20μm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルカリ蓄電池用の水
酸化ニッケル活物質に関し、更に詳しくは水酸化ニッケ
ル粒子表面を電子導電性の金属化合物で被覆した水酸化
ニッケル活物質に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel hydroxide active material for alkaline storage batteries, and more particularly to a nickel hydroxide active material in which the surface of nickel hydroxide particles is coated with an electronically conductive metal compound.

【0002】[0002]

【従来の技術】従来、アルカリ蓄電池用正極の基板とし
ては、ニッケル粉末を焼結したいわゆる焼結式基板が主
流であったが、焼結式基板は高多孔度化に限界があるこ
とや活物質の充填作業が煩雑である等から、近年では非
焼結式である発泡ニッケル基板等が使用されるようにな
っている。
2. Description of the Related Art Conventionally, a so-called sinter type substrate obtained by sintering nickel powder has been mainly used as a substrate of a positive electrode for an alkaline storage battery. In recent years, a non-sintered foamed nickel substrate or the like has been used because the work of filling the substance is complicated.

【0003】しかし、発泡ニッケル基板等の高多孔度基
板は、孔径が大きいために充填された活物質の一部は集
電体と直接接触できない。つまり、非焼結式基板は、焼
結式基板に比べ高密度に充填可能であるので、高エネル
ギー密度化や充填作業性の向上の点で有利であるもの
の、活物質と基板との相対的接触面積が小さくなるた
め、電極反応に寄与できない活物質の割合が増加する。
したがって、活物質利用率が悪くなるという欠点があ
る。
However, in a high-porosity substrate such as a foamed nickel substrate, a part of the filled active material cannot directly contact the current collector because of its large pore size. In other words, since the non-sintered substrate can be packed at a higher density than the sintered substrate, it is advantageous in terms of higher energy density and improved filling workability, but the relative ratio between the active material and the substrate is high. Since the contact area becomes smaller, the proportion of active material that cannot contribute to the electrode reaction increases.
Therefore, there is a drawback that the utilization rate of the active material is deteriorated.

【0004】この欠点を改善することを目的とし、活物
質に導電性粉末やコバルト化合物粉末を添加する技術
(特開昭53−41449号公報)や、この技術を更に
発展させ、金属ニッケル粉末(導電性粉末)の表面に金
属コバルト層や3価以上のコバルト化合物層を形成する
技術、或いは金属ニッケル粉末の表面にコバルトとニッ
ケルからなる酸化物層を形成する技術(特開昭59−1
8572号公報、特開昭59−138064号公報、特
開平1−107453号公報)などが、提案されてい
る。
For the purpose of remedying this drawback, a technique of adding conductive powder or cobalt compound powder to an active material (Japanese Patent Laid-Open No. 53-41449) and further development of this technique, metal nickel powder ( A technique for forming a metal cobalt layer or a trivalent or higher valent cobalt compound layer on the surface of a conductive powder) or a technique for forming an oxide layer of cobalt and nickel on the surface of a metal nickel powder (JP-A-59-1).
8572, JP-A-59-138064, JP-A-1-107453) and the like have been proposed.

【0005】これらの技術を用いた場合、活物質粒子間
の導電性が高まるため、活物質利用率が向上するが、十
分に活物質利用率を高めるためには水酸化ニッケルに対
しかなりの量の金属化合物を添加する必要がある。とこ
ろが、金属化合物の添加量を増やすと、その分、電極反
応に直接寄与する水酸化ニッケルの含有量が低下するた
め、活物質のエネルギー密度が低下することになる。
When these techniques are used, the conductivity between the active material particles is increased, so that the utilization rate of the active material is improved. However, in order to sufficiently enhance the utilization rate of the active material, a considerable amount relative to nickel hydroxide is used. It is necessary to add the metal compound. However, if the amount of the metal compound added is increased, the content of nickel hydroxide that directly contributes to the electrode reaction is correspondingly reduced, so that the energy density of the active material is reduced.

【0006】このため、前記従来の技術では、活物質利
用率を向上させることができるものの、それが電極容量
の向上に十分繋がらないという問題があった。
Therefore, although the above-mentioned conventional technique can improve the utilization rate of the active material, it has a problem that it does not sufficiently lead to the improvement of the electrode capacity.

【0007】[0007]

【発明が解決しようとする課題】本発明は、このような
相反する技術的課題を解決するためになされたものであ
り、より少ない量のコバルト化合物の添加でもって導電
性に優れた活物質を得る方法を提供し、これにより活物
質利用率と電極容量の双方を顕著に高めることのできる
アルカリ蓄電池用ニッケル活物質を提供しようとするも
のである。
The present invention has been made in order to solve such conflicting technical problems, and it is possible to obtain an active material excellent in conductivity by adding a smaller amount of a cobalt compound. The present invention aims to provide a method for obtaining the nickel active material for an alkaline storage battery, which can remarkably increase both the utilization rate of the active material and the electrode capacity.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明は、次のように構成される。請求項1記載の発
明は、水酸化ニッケルを主成分とする母粒子の表面の一
部又は全部が、少なくともコバルトの水酸化物を含む金
属化合物で被覆されてなるアルカリ蓄電池用ニッケル活
物質であって、前記ニッケル活物質は、レーザー回折方
式による平均粒子径が3μm以上、20μm以下である
ことを特徴する。
In order to achieve the above object, the present invention is configured as follows. The invention according to claim 1 is a nickel active material for an alkaline storage battery, wherein a part or all of the surface of the mother particles containing nickel hydroxide as a main component is coated with a metal compound containing at least cobalt hydroxide. The nickel active material is characterized in that the average particle diameter by the laser diffraction method is 3 μm or more and 20 μm or less.

【0009】請求項2記載の発明は、請求項1記載のア
ルカリ蓄電池用ニッケル活物質において、前記金属化合
物は、さらにリチウム化合物を含むものであることを特
徴とする。請求項3記載の発明は、請求項1乃至2記載
のアルカリ蓄電池用ニッケル活物質において、前記金属
化合物が、母粒子に対し1重量%以上、15重量%以下
であることを特徴とする。
According to a second aspect of the present invention, in the nickel active material for alkaline storage batteries according to the first aspect, the metal compound further contains a lithium compound. According to a third aspect of the present invention, in the nickel active material for alkaline storage batteries according to the first and second aspects, the content of the metal compound is 1% by weight or more and 15% by weight or less based on the mother particles.

【0010】請求項4記載の発明は、請求項1乃至3記
載のアルカリ蓄電池用ニッケル活物質において、前記コ
バルトの水酸化物が、2価を超える高次コバルト水酸化
物としてあることを特徴とする。請求項5記載の発明
は、少なくともコバルト塩を含む金属塩溶解液に、平均
粒径が1μm以上、20μm未満の水酸化ニッケルを主
成分とする母粒子を分散させた後、前記母粒子の分散さ
れた金属塩溶解液のPHをアルカリ液で調整し、前記母
粒子を核として少なくともコバルト水酸化物の析出物を
析出させ、前記母粒子の表面に所定量のコバルト水酸化
物を含む被覆層を形成して、レーザー回折方式による平
均粒子径が3μm以上、20μm以下のニッケル活物質
を調製するアルカリ蓄電池用ニッケル活物質の製造方法
である。
According to a fourth aspect of the present invention, in the nickel active material for alkaline storage batteries according to the first to third aspects, the cobalt hydroxide is a higher cobalt hydroxide having a valency higher than 2. To do. According to a fifth aspect of the present invention, mother particles containing nickel hydroxide as a main component having an average particle size of 1 μm or more and less than 20 μm are dispersed in a metal salt solution containing at least a cobalt salt, and then the mother particles are dispersed. The pH of the metal salt solution thus prepared is adjusted with an alkaline solution to deposit at least a cobalt hydroxide precipitate with the mother particles as nuclei, and a coating layer containing a predetermined amount of cobalt hydroxide on the surface of the mother particles. Is formed to prepare a nickel active material having an average particle diameter of 3 μm or more and 20 μm or less by a laser diffraction method, which is a method for producing a nickel active material for an alkaline storage battery.

【0011】請求項6記載の発明は、請求項5記載のア
ルカリ蓄電池用ニッケル活物質の製造方法において、前
記所定量のコバルト水酸化物を含む被覆層が、前記母粒
子に対し1重量%以上、15重量%以下であることを特
徴とする。請求項7記載の発明は、請求項5乃至6記載
のアルカリ蓄電池用ニッケル活物質の製造方法におい
て、少なくともコバルト水酸化物を有する被覆層を形成
した後、当該被覆粒子にアルカリ金属溶液を含浸させ、
酸素存在下で加熱処理することを特徴とする。
According to a sixth aspect of the present invention, in the method for producing a nickel active material for an alkaline storage battery according to the fifth aspect, the coating layer containing the predetermined amount of cobalt hydroxide is 1% by weight or more based on the base particles. 15% by weight or less. The invention according to claim 7 is the method for producing a nickel active material for an alkaline storage battery according to claims 5 to 6, wherein after forming a coating layer having at least cobalt hydroxide, the coated particles are impregnated with an alkali metal solution. ,
The heat treatment is performed in the presence of oxygen.

【0012】請求項8記載の発明は、請求項7記載のア
ルカリ蓄電池用ニッケル活物質の製造方法において、前
記アルカリ金属溶液のアルカリ金属濃度が、15重量%
以上、40重量%以下であることを特徴とする。請求項
9記載の発明は、請求項7乃至8記載のアルカリ蓄電池
用ニッケル活物質の製造方法において、前記アルカリ金
属溶液が、更にリチウムイオンを含有することを特徴と
する。
The invention according to claim 8 is the method for producing a nickel active material for an alkaline storage battery according to claim 7, wherein the alkali metal concentration of the alkali metal solution is 15% by weight.
As described above, the content is 40% by weight or less. The invention according to claim 9 is the method for producing a nickel active material for an alkaline storage battery according to claims 7 to 8, characterized in that the alkali metal solution further contains lithium ions.

【0013】請求項10記載の発明は、請求項7乃至9
記載のアルカリ蓄電池用ニッケル活物質の製造方法にお
いて、前記加熱処理の温度が、50℃以上、150℃以
下であることを特徴とする。
The invention according to a tenth aspect is the seventh to ninth aspects.
In the method for producing a nickel active material for an alkaline storage battery described above, the temperature of the heat treatment is 50 ° C. or higher and 150 ° C. or lower.

【0014】[0014]

【作用】[Action]

(1)本発明にかかるアルカリ蓄電池用ニッケル活物質
では、水酸化ニッケルを主成分とする母粒子の表面の一
部又は全部が、少なくともコバルトの水酸化物を含む金
属化合物で被覆され、かつこの被覆活物質のレーザー回
折方式による平均粒子径を3μm以上、20μm以下に
規定してある。
(1) In the nickel active material for an alkaline storage battery according to the present invention, a part or all of the surface of the mother particles containing nickel hydroxide as a main component is coated with a metal compound containing at least cobalt hydroxide, and The average particle size of the coated active material by the laser diffraction method is specified to be 3 μm or more and 20 μm or less.

【0015】この範囲の粒子径を持った被覆活物質粒子
であると、多孔性電極基板への充填性がよく、充填され
た活物質粒子は隣会う粒子同士で確実に接触することが
できる。そして、この活物質粒子同士の接触は、導電性
のよいコバルト水酸化物の被覆層を介してなされる。し
たがって、電極内に活物質粒子相互による良好な導電ネ
ットワークを形成させることができる。加えて、この粒
径の粒子であると、粒子相互の接触面積が大きくなり、
活物質本体である母粒子の表面にコバルト水酸化物被覆
層を形成した効果が顕著に発揮されるので、より少ない
量のコバルト水酸化物でもって良好な導電ネットワーク
の形成が可能となる。
With the coated active material particles having a particle diameter in this range, the porous electrode substrate can be easily filled, and the filled active material particles can surely come into contact with each other. The active material particles are brought into contact with each other through the coating layer of cobalt hydroxide having good conductivity. Therefore, it is possible to form a good conductive network in the electrode by the mutual active material particles. In addition, the particles having this size increase the contact area between the particles,
Since the effect of forming the cobalt hydroxide coating layer on the surface of the mother particles that are the active material main body is remarkably exhibited, it is possible to form a good conductive network with a smaller amount of cobalt hydroxide.

【0016】つまり、本発明によれば、被覆層を設ける
ことにより相対的に水酸化ニッケル含有量が減少して活
物質のエネルギー密度が低下する、というマイナス要因
を最小にして、被覆層を設けることによるプラス要因
(導電性の向上)を効果的に取り出すことができるの
で、活物質利用率の向上が電極容量の向上に繋がる。本
発明は、次の構成を加えることにより、上記作用効果が
一層顕著なものとなす。
That is, according to the present invention, the coating layer is provided by minimizing the negative factor that the nickel hydroxide content is relatively reduced by providing the coating layer and the energy density of the active material is lowered. Since a positive factor (improvement in conductivity) due to this can be effectively taken out, improvement in utilization rate of the active material leads to improvement in electrode capacity. According to the present invention, the following effects are further enhanced by adding the following configuration.

【0017】即ち、前記被覆層として、好ましくはコバ
ルト水酸化物とリチウム化合物とを含有する金属化合物
とするのがよい。このようにすると、被覆層中のリチウ
ムが水酸化ニッケル近傍にあって効果的に作用するの
で、電極の過放電特性が顕著に高まる。また、前記金属
化合物からなる被覆層は、好ましくは水酸化ニッケル母
粒子に対し、1重量%以上、15重量%以下とするのが
よい。なぜなら、水酸化ニッケル表面に被覆層を形成し
た場合、単位活物質重量当たりで見たとき、被覆層分だ
け水酸化ニッケル含有量が少なくなり、活物質のエネル
ギー密度(単位活物質重量当たりの容量)が低下する
が、ここで被覆層の量が上記範囲であると、被覆層によ
る利用率向上効果が水酸化ニッケル含有量の低下を上回
るので、実質的にエネルギー密度の低下を生じない。
That is, the coating layer is preferably a metal compound containing a cobalt hydroxide and a lithium compound. In this case, since lithium in the coating layer is in the vicinity of nickel hydroxide and acts effectively, overdischarge characteristics of the electrode are significantly improved. The coating layer made of the metal compound is preferably 1% by weight or more and 15% by weight or less based on the nickel hydroxide mother particles. This is because, when a coating layer is formed on the surface of nickel hydroxide, the content of nickel hydroxide is reduced by the amount of the coating layer when viewed per unit weight of active material, and the energy density of the active material (capacity per unit weight of active material is reduced. ) Is decreased, but when the amount of the coating layer is in the above range, the effect of improving the utilization factor of the coating layer exceeds the reduction of the nickel hydroxide content, and thus the energy density is not substantially reduced.

【0018】更に、前記被覆層中のコバルト水酸化物
は、好ましくは2価を超える高次コバルトの水酸化物と
するのがよい。2価を超える高次コバルト水酸化物であ
ると、被覆層の導電性が一層高まり、活物質利用率が更
に向上して電極容量が高まる。 (2)本発明にかかるアルカリ蓄電池用ニッケル活物質
の製造方法は、少なくともコバルト塩を溶解した溶液
に、1μm以上、20μm未満の粒径の母粒子を分散さ
せ、この溶液のPHをアルカリで調整することにより、
前記母粒子を核としてコバルト水酸化物の析出物を析出
させて母粒子を被覆するという方法を採用した。
Further, the cobalt hydroxide in the coating layer is preferably a hydroxide of higher cobalt having a valence of more than two. When it is a higher cobalt hydroxide having a valence of more than 2, the conductivity of the coating layer is further increased, the utilization factor of the active material is further improved, and the electrode capacity is increased. (2) In the method for producing a nickel active material for an alkaline storage battery according to the present invention, mother particles having a particle size of 1 μm or more and less than 20 μm are dispersed in a solution in which at least a cobalt salt is dissolved, and pH of the solution is adjusted with alkali. By doing
A method of depositing a cobalt hydroxide precipitate by using the mother particles as nuclei to coat the mother particles was adopted.

【0019】この方法であると、母粒子を核とし母粒子
を取り囲むようにコバルト水酸化物の析出物を析出させ
ることができ、しかも、コバルト塩溶液の濃度、溶液P
H、温度等を制御することにより被覆量や被覆状態を容
易に調整できる。したがって、予め被覆層の厚み(被覆
量で換算可能)を設定し、所望する活物質粒子径からこ
の厚みを減じた粒子径の母粒子をコバルト塩溶液に分散
してやれば、所望粒子径の被覆活物質粒子が得られるの
で、レーザー回折方式による平均粒子径3μm〜20μ
mのニッケル活物質を歩留り良く作製できる。
According to this method, it is possible to deposit the cobalt hydroxide precipitate so as to surround the mother particle with the mother particle as the nucleus, and moreover, the concentration of the cobalt salt solution and the solution P
By controlling H, temperature, etc., the amount and state of coating can be easily adjusted. Therefore, if the thickness of the coating layer (which can be converted by the coating amount) is set in advance and the mother particles having a particle diameter obtained by subtracting this thickness from the desired active material particle diameter are dispersed in the cobalt salt solution, the coating activity of the desired particle diameter can be obtained. Since substance particles are obtained, the average particle diameter by the laser diffraction method is 3 μm to 20 μm.
The nickel active material of m can be produced with good yield.

【0020】このような本発明製造方法は、好ましくは
更に次のような構成を付加するのがよい。即ち、母粒子
に被覆するコバルト水酸化物量が、母粒子に対し1〜1
5重量%となるように行うのがよい。また、被覆工程が
終了した後、当該被覆粒子に対しアルカリ金属溶液を含
浸させ酸素存在下で加熱乾燥するというアルカリ熱処理
を施すのがよい。被覆粒子にアルカリ熱処理を施した場
合、被覆層中のコバルト化合物が導電性に優れた高次の
コバルト化合物に変化するとともに、被覆層のミクロ構
造を電解液が浸透し易い構造に変化させることができ
る。よって、一層利用率の高い活物質が得られる。
The production method of the present invention as described above preferably has the following structure. That is, the amount of cobalt hydroxide coated on the mother particles is 1 to 1 with respect to the mother particles.
It is preferable to carry out so as to be 5% by weight. After the coating step is completed, it is preferable to subject the coated particles to an alkali heat treatment of impregnating with an alkali metal solution and heating and drying in the presence of oxygen. When the coated particles are subjected to an alkali heat treatment, the cobalt compound in the coating layer changes to a higher-order cobalt compound having excellent conductivity, and the microstructure of the coating layer can be changed to a structure in which the electrolytic solution easily penetrates. it can. Therefore, an active material having a higher utilization rate can be obtained.

【0021】更に、このアルカリ熱処理は、15〜40
重量%濃度のアルカリ金属溶液を用い、50〜150℃
の加熱温度で行うのが良く、より好ましくはリチウムイ
オンを添加したアルカリ金属溶液で含浸処理を行うのが
よい。アルカリ金属溶液にリチウムイオンを添加し、リ
チウム含有被覆層と成す方法とした場合、極めて簡単に
被覆活物質粒子の利用率と過放電特性を高めることがで
きる。 この理由は、リチウムイオンが水酸化ニッケル
(母粒子)表面近傍に存在すると、最も量的効率良く過
放電特性を高めるべく作用できるからである。
Further, this alkali heat treatment is carried out for 15 to 40
Using an alkali metal solution having a concentration by weight of 50 to 150 ° C.
It is better to carry out at the heating temperature of 1, and more preferably to carry out the impregnation treatment with an alkali metal solution containing lithium ions. When lithium ions are added to the alkali metal solution to form a lithium-containing coating layer, the utilization rate of the coated active material particles and the overdischarge characteristics can be enhanced very easily. The reason for this is that if lithium ions are present in the vicinity of the surface of nickel hydroxide (base particles), they can act to enhance the over-discharge characteristics most quantitatively and efficiently.

【0022】[0022]

【実施例】以下、実験に基づいて本発明の内容を明らか
にする。実験は、各種ニッケル活物質を作製し、これら
ニッケル活物質を用いて各種電極を作製し、これらの電
極の性能を比較検討するというものである。なお、以下
では、初めにニッケル活物質の作製方法、及び電極の作
製方法の概要を説明し、その後各実験の詳細を説明す
る。
EXAMPLES The contents of the present invention will be clarified below based on experiments. The experiment is to produce various nickel active materials, produce various electrodes using these nickel active materials, and compare the performances of these electrodes. In the following, first, an outline of the method for producing the nickel active material and the method for producing the electrode will be described, and then the details of each experiment will be described.

【0023】〔水酸化コバルト被覆Ni活物質の作製〕
先ず、比重が約1.33の硫酸ニッケル水溶液に、25
重量%の水酸化ナトリウム水溶液を徐々に注加し、アン
モニア水でこの溶液のPHを所定PH値に調整して、水
酸化ニッケルを析出させる方法により水酸化ニッケル母
粒子を作製した。この方法では、硫酸ニッケル濃度、水
酸化ナトリウム注加量、溶液PH、溶液温度を調整する
ことにより、溶液から析出する水酸化ニッケルの粒子径
を変化させることができる。そこで、反応温度を約50
℃とし、主にPHを10〜PH14の範囲内で変化させ
る方法により、粒子径の異なる7通りの水酸化ニッケル
粒子を作製した。なお、析出した水酸化ニッケルは、充
分に水洗した後、乾燥した。
[Preparation of Ni Active Material Coated with Cobalt Hydroxide]
First, add 25% to a nickel sulfate solution with a specific gravity of about 1.33.
A nickel hydroxide mother particle was prepared by a method of gradually adding a sodium hydroxide aqueous solution of wt%, adjusting the pH of this solution to a predetermined PH value with ammonia water, and precipitating nickel hydroxide. In this method, the particle size of nickel hydroxide precipitated from the solution can be changed by adjusting the concentration of nickel sulfate, the amount of sodium hydroxide added, the solution PH, and the solution temperature. Therefore, the reaction temperature is about 50
The nickel hydroxide particles having different particle diameters were prepared by a method of changing the pH mainly within the range of 10 to PH14 at 0 ° C. The deposited nickel hydroxide was thoroughly washed with water and then dried.

【0024】このようにして作製した7通りの粒子につ
いて、レーザ回折方式(マイクロトラック粒度分析計;
Leads & Northrup 社製 )で平均粒子径を測定したとこ
ろ、それぞれ、約0.6、2.6、5.5、8.4、1
7.4、19.1、22.5μmであった。以下、これ
ら粒子をNi活物質母粒子と称する。次に、上記Ni活
物質母粒子重量1に約4倍量の水を加え混合分散し、こ
の分散液(スラリー状態)に対し、水酸化ナトリウム液
でPHを10に調整維持しながら、比重約1.30の硫
酸コバルト溶液を滴下して、Ni活物質母粒子の表面に
水酸化コバルトを被覆した。この被覆粒子を水洗・乾燥
して水酸化コバルト被覆Ni活物質粒子となした。
With respect to the seven kinds of particles thus produced, a laser diffraction method (Microtrac particle size analyzer;
Leads & Northrup) to measure the average particle size of about 0.6, 2.6, 5.5, 8.4 and 1, respectively.
It was 7.4, 19.1 and 22.5 μm. Hereinafter, these particles are referred to as Ni active material mother particles. Next, about 4 times the amount of water was added to 1 weight of the above Ni active material mother particles, and mixed and dispersed, and the specific gravity of this dispersion (slurry state) was adjusted while maintaining the pH at 10 with sodium hydroxide solution. The cobalt sulfate solution of 1.30 was added dropwise to coat the surface of the Ni active material mother particles with cobalt hydroxide. The coated particles were washed with water and dried to obtain cobalt hydroxide-coated Ni active material particles.

【0025】ここで、水酸化コバルト被覆Ni活物質粒
子の粒子径は、Ni活物質母粒子の粒径及び被覆層の厚
さで決まり、被覆層の厚さ(被覆量で把握可能)は、前
記硫酸コバルト溶液の濃度又は滴下量を調整することに
より調整することができる。そこで、上記では前記7通
りのNi活物質母粒子をそれぞれ用い、硫酸コバルト溶
液の滴下量を調整する方法により、表1に示す種々の水
酸化コバルト被覆Ni活物質粒子を作製した。
Here, the particle size of the cobalt hydroxide-coated Ni active material particles is determined by the particle size of the Ni active material mother particles and the thickness of the coating layer, and the thickness of the coating layer (which can be grasped by the coating amount) is It can be adjusted by adjusting the concentration or dropping amount of the cobalt sulfate solution. Therefore, in the above, various cobalt hydroxide-coated Ni active material particles shown in Table 1 were produced by the method of adjusting the dropping amount of the cobalt sulfate solution by using each of the above 7 types of Ni active material mother particles.

【0026】なお、このようにして溶液中でNi活物質
粒子を被覆する方法を析出被覆法と称する。 〔水酸化コバルト単純混合Ni活物質の作製〕上記で作
製した平均粒径約8.4μmのNi活物質母粒子に平均
粒径約1μmの水酸化コバルト粉末を7.5重量%添加
し混合して、水酸化コバルト単純混合Ni活物質を作製
した。この製法を単純混合法と称する。
The method of coating the Ni active material particles in the solution in this manner is called a deposition coating method. [Preparation of Cobalt Hydroxide Simple Mixed Ni Active Material] 7.5 wt% of cobalt hydroxide powder having an average particle size of about 1 μm was added to the Ni active material mother particles having an average particle size of about 8.4 μm prepared above and mixed. As a result, a cobalt hydroxide simple mixed Ni active material was produced. This manufacturing method is called a simple mixing method.

【0027】〔高次コバルト被覆Ni活物質の作製〕 (1) 上記で作製した水酸化コバルト被覆Ni活物質粒子
に、アルカリ溶液を前記粒子が湿る程度に含浸させ、酸
素存在下で加熱乾燥する方法により、Ni活物質粒子表
面の水酸化コバルトを2価を超える高次コバルト化合物
とした。高次化処理の詳細な条件は後記実験2、実験
4、実験5においてそれぞれ記載する。
[Preparation of Higher Cobalt-Coated Ni Active Material] (1) The cobalt hydroxide-coated Ni active material particles prepared above are impregnated with an alkaline solution to such an extent that the particles are wet, and dried by heating in the presence of oxygen. By the method described above, the cobalt hydroxide on the surface of the Ni active material particles was changed to a higher cobalt compound having a valence of more than 2. Detailed conditions of the higher-order treatment will be described in Experiment 2, Experiment 4, and Experiment 5 described below, respectively.

【0028】以下、このような高次化の方法をアルカリ
熱処理法とし、このアルカリ熱処理法で処理した被覆N
i活物質を、高次コバルト被覆Ni活物質と称する。 (2) 0.7モル濃度のリチウムイオンを含有したアルカ
リ水溶液を用いたこと以外は、上記アルカリ熱処理法と
同様に処理して、リチウムイオンを含有する高次コバル
ト被覆Ni活物質を作製した。
Hereinafter, such a higher-order method is referred to as an alkali heat treatment method, and the coating N treated by this alkali heat treatment method is used.
The i active material is referred to as a higher cobalt-coated Ni active material. (2) A high-order cobalt-coated Ni active material containing lithium ions was prepared in the same manner as in the alkaline heat treatment method except that an alkaline aqueous solution containing 0.7 molar concentration of lithium ions was used.

【0029】〔ニッケル電極の作製〕上記で作製した各
種ニッケル活物質と、0.2重量%ヒドロキシプロピル
セルロース水溶液とを重量比1:1で混合し活物質スラ
リーを調製した。この活物質スラリーを多孔度95%、
厚み1.6mmの発泡体ニッケルに充填し、乾燥した
後、厚み0.60mmに圧延する方法により、各種ニッ
ケル電極を作製した。
[Production of Nickel Electrode] Various nickel active materials produced above were mixed with a 0.2% by weight aqueous solution of hydroxypropylcellulose at a weight ratio of 1: 1 to prepare an active material slurry. This active material slurry was prepared to have a porosity of 95%,
Various nickel electrodes were prepared by a method in which foamed nickel having a thickness of 1.6 mm was filled, dried and then rolled to a thickness of 0.60 mm.

【0030】表1に、以上で作製した各種Ni活物質の
一覧を示す。
Table 1 shows a list of various Ni active materials produced as described above.

【0031】[0031]

【表1】 〔実験の部〕上記で作製した各種ニッケル電極と、対極
としてのニッケル板と、約25重量%の水酸化カリウム
水溶液とで開放系の簡易セルを作製し、この簡易セルを
用いて各電極の活物質利用率及び単位活物質重量当たり
の電気容量を調べた。なお、簡易セルに使用したニッケ
ル電極の理論容量は、360mAである。
[Table 1] [Experimental Part] A simple open cell was prepared from the various nickel electrodes prepared above, a nickel plate as a counter electrode, and a potassium hydroxide aqueous solution of about 25% by weight. The active material utilization rate and the electric capacity per unit active material weight were examined. The theoretical capacity of the nickel electrode used in the simple cell is 360 mA.

【0032】他方、上記で作製したニッケル電極B1
5 、Eについては、これら電極と水素吸蔵合金電極及
び7〜8.5Nの水酸化カリウムを主成分とする電解液
を用い公知の方法で公称容量1200mAhのニッケル
水素電池を作製し、この電池の過放電特性を調べた(実
験3、6)。活物質利用率及び単位活物質重量当たりの
電気容量は、36mAで24時間連続充填した後、ニッ
ケル板に対し放電終止電圧が−0.8Vになるまで12
0mAで放電するという条件で放電容量を測定し、下数
1、2に従い求めた。
On the other hand, the nickel electrodes B 1 to
Regarding B 5 and E, a nickel-hydrogen battery having a nominal capacity of 1200 mAh was prepared by a known method using these electrodes, a hydrogen storage alloy electrode, and an electrolyte solution containing 7 to 8.5 N potassium hydroxide as a main component. The over-discharge characteristics of No. 3 were investigated (Experiments 3 and 6). The active material utilization rate and the electric capacity per unit active material weight were 12 mA until the discharge end voltage became −0.8 V with respect to the nickel plate after continuously filling at 36 mA for 24 hours.
The discharge capacity was measured under the condition that the battery was discharged at 0 mA, and the discharge capacity was calculated according to the numbers 1 and 2 below.

【0033】[0033]

【数1】 [Equation 1]

【0034】[0034]

【数2】 また、過放電特性は、次の条件で測定した。 1) 1200mAで充電し、電池電圧が極大となったの
ち10mV(−ΔV)だけ減少した時点で充電を止め、
1時間休止する。
[Equation 2] The overdischarge characteristics were measured under the following conditions. 1) Charge the battery at 1200mA, stop charging when the battery voltage reaches a maximum and then decrease by 10mV (-ΔV),
Pause for 1 hour.

【0035】2) 1時間休止後に1200mAで、放電
終止電圧が1.0Vになるまで放電する。 3) 前記放電後、さらに60mAで16時間強制放電す
る。 4) 前記1)〜3)の工程を10サイクル繰り返した
後、更に1)〜2)の工程を5サイクル繰り返す。初回サ
イクルにおける放電容量と、最終サイクル終了後の放電
容量を測定し、その比を過放電特性とした。
2) After resting for 1 hour, discharge at 1200 mA until the discharge end voltage becomes 1.0V. 3) After the discharge, the battery is forcibly discharged at 60 mA for 16 hours. 4) After repeating the steps 1) to 3) for 10 cycles, the steps 1) to 2) are further repeated for 5 cycles. The discharge capacity in the first cycle and the discharge capacity after the end of the final cycle were measured, and the ratio was defined as the overdischarge characteristic.

【0036】なお、各測定値は、基準とする活物質を定
めこの活物質の利用率等を100とした場合における指
数で比較検討した。 (実験1)実験1では、A1 〜A7 を用い、Ni活物質
の平均粒子径と活物質利用率との関係を調べた。
Each measured value was compared and examined by an index when a reference active material was defined and the utilization rate of this active material was set to 100. (Experiment 1) In Experiment 1, A 1 to A 7 were used to examine the relationship between the average particle diameter of the Ni active material and the active material utilization rate.

【0037】その結果を、図1に示す。なお、図1は、
4 の利用率を100として示してあり、破線は水酸化
コバルトと水酸化ニッケルを単純混合したNi活物質
(S)の利用率指数を示す。図1において、平均粒径が
3〜20μmの範囲にある被覆Ni活物質粒子(A 2
6 )の利用率は、単純混合Ni活物質(S)よりも高
い利用率を示す。また、被覆Ni活物質粒子の粒径が6
〜18μmの範囲で更に高い利用率(97%以上)を示
し、この範囲を外れると次第に利用率の低下傾向が大き
くなる。この結果から、析出被覆法で作製した被覆Ni
活物質の粒子径は、好ましくは3〜20μmであり、よ
り好ましくは6〜18μmであることが分かる。
The results are shown in FIG. In addition, in FIG.
AFourThe utilization rate of is shown as 100, and the broken line
Ni active material obtained by simply mixing cobalt and nickel hydroxide
The utilization index of (S) is shown. In FIG. 1, the average particle size is
Coated Ni active material particles in the range of 3 to 20 μm (A 2~
A6) Has a higher utilization rate than the simple mixed Ni active material (S).
Indicates the utilization rate. Further, the diameter of the coated Ni active material particles is 6
Higher utilization rate (over 97%) in the range of ~ 18μm
However, if it goes out of this range, the usage rate will gradually decrease.
It becomes. From this result, the coated Ni produced by the deposition coating method
The particle size of the active material is preferably 3 to 20 μm,
It can be seen that it is more preferably 6 to 18 μm.

【0038】なお、水酸化ニッケル母粒子の粒径が6μ
m未満であると、利用率の低下傾向が大きくなる理由は
明らかでないが、18μmを超えた場合に利用率の低下
が大きくなるのは、粒子相互の接触面積が減少する結
果、活物質間における導電性が悪くなるためではないか
と考えられる。 (実験2)実験2では、A4 、B3 、Sを用い、アルカ
リ熱処理の有無と利用率の関係を調べた。その結果を、
4 の利用率を100として表2に示す。
The particle size of the nickel hydroxide mother particles is 6 μm.
When it is less than m, the reason why the tendency of decrease in the utilization rate becomes large is not clear, but when it exceeds 18 μm, the decrease in utilization rate becomes large because the contact area between the particles decreases as a result It is considered that this is because the conductivity is deteriorated. (Experiment 2) In Experiment 2, A 4 , B 3 , and S were used, and the relationship between the presence or absence of alkali heat treatment and the utilization rate was examined. The result is
Table 2 shows the utilization rate of A 4 as 100.

【0039】[0039]

【表2】 但し、B3 のアルカリ熱処理は、25重量%の水酸化ナ
トリウム水溶液をアルカリ溶液として用い、加熱温度1
00℃で乾燥させるという条件で行った。なお、母粒子
の粒径及び水酸化コバルト量はA4 、B3 、Sとも同様
である(表1参照)。
[Table 2] However, the alkaline heat treatment of B 3 uses a 25 wt% sodium hydroxide aqueous solution as an alkaline solution, and the heating temperature is 1
It was performed under the condition of drying at 00 ° C. The particle size of the mother particles and the amount of cobalt hydroxide are the same for A 4 , B 3 , and S (see Table 1).

【0040】表2から次のことが判る。水酸化コバルト
を析出被覆したA4 は、水酸化コバルトと水酸化ニッケ
ルを単純混合した単純混合Ni活物質Sに比較し、大幅
に活物質利用率が高いが、B3 はこのA4 よりも更に利
用率が高い。このことから、アルカリ熱処理を施すこと
により、活物質利用率を一層高めることができることが
分かる。
The following can be seen from Table 2. A 4 deposited coating cobalt hydroxide compares the simple mixing Ni active materials S which are simply mixed with nickel hydroxide and cobalt hydroxide, it is highly significant utilization of the active material, B 3 rather than the A 4 Furthermore, the utilization rate is high. From this, it is understood that the utilization rate of the active material can be further increased by performing the alkali heat treatment.

【0041】(実験3)実験3では、析出被覆法で作製
したB1 〜B5 を用い、高次コバルト化合物被覆量と単
位活物質重量当たりの電気容量との関係を調べた。その
結果を、B3 を100として図2に示す。図2におい
て、高次コバルト化合物量が1重量%未満、及び15重
量%を超えた場合には、単位活物質重量当たりの電気容
量指数が大きく低下している。このことから、高次コバ
ルト化合物被覆量は、Ni活物質母粒子に対し1〜15
重量%であることが好ましいことが分かる。
(Experiment 3) In Experiment 3, B 1 to B 5 produced by the deposition coating method were used to examine the relationship between the coating amount of the higher order cobalt compound and the electric capacity per unit weight of the active material. The results are shown in FIG. 2 with B 3 as 100. In FIG. 2, when the amount of the high order cobalt compound is less than 1% by weight and exceeds 15% by weight, the electric capacity index per unit weight of the active material is greatly reduced. From this, the higher cobalt compound coating amount is 1 to 15 with respect to the Ni active material mother particles.
It can be seen that it is preferably in weight%.

【0042】なお、図2において、高次コバルト化合物
被覆量が1重量%未満で単位活物質重量当たり容量指数
が急激に低下した理由は、高次コバルト化合物被覆量が
1重量%未満であると、高次コバルト化合物が不足し母
粒子表面を充分に覆うことができない結果、Ni活物質
相互間の導電性が不充分となるためと考えられる。他
方、高次コバルト化合物量が15重量%を超えた場合に
おける単位活物質重量当たり容量指数の急激な低下は、
Ni活物質中の水酸化ニッケル量の相対的な減少による
容量低下の方が、高次コバルト化合物被覆による容量増
加効果よりも大きくなった結果と考えられる。
In FIG. 2, the reason why the volume index per unit weight of the active material was drastically decreased when the high-order cobalt compound coating amount was less than 1% by weight was that the high-order cobalt compound coating amount was less than 1% by weight. It is considered that the high-order cobalt compound is insufficient and the surface of the mother particle cannot be sufficiently covered, resulting in insufficient conductivity between the Ni active materials. On the other hand, when the amount of higher cobalt compound exceeds 15% by weight, the capacity index per unit weight of active material decreases sharply.
It is considered that the capacity decrease due to the relative decrease in the amount of nickel hydroxide in the Ni active material was larger than the capacity increasing effect due to the higher cobalt compound coating.

【0043】(実験4)実験4では、析出被覆法で作製
したC1 〜C4 及びB3 を用い、アルカリ熱処理におけ
るアルカリ溶液の濃度と利用率の関係を調べた。なお、
アルカリ溶液として15〜45重量%の水酸化ナトリウ
ム水溶液を用い、加熱温度は100℃共通とし、他の条
件は表1の通りである。
(Experiment 4) In Experiment 4, C 1 to C 4 and B 3 produced by the deposition coating method were used to examine the relationship between the concentration of the alkaline solution and the utilization rate in the alkaline heat treatment. In addition,
A 15 to 45 wt% sodium hydroxide aqueous solution was used as the alkaline solution, the heating temperature was 100 ° C. in common, and the other conditions are as shown in Table 1.

【0044】実験結果を、B3 の利用率を100として
図3に示す。図3から判るように、アルカリ金属濃度が
15重量%未満、及び40重量%を超えた場合におい
て、利用率指数が顕著に低下した。この理由は、次のよ
うに考えられる。水酸化コバルト被覆Ni活物質粒子を
アルカリ共存化で加熱処理した場合、粒子表面の水酸化
コバルトが、2価を超えるコバルトの化合物に変化し、
被覆層の導電性が高まる。これにより活物質粒子相互の
導電性ネットワークが形成され、全体としての利用率が
向上する。ところが、アルカリ金属濃度が15重量%未
満であると、水酸化コバルトの溶解度が低下し、加熱処
理によって水酸化コバルトが導電性の良好な高次コバル
ト化合物に変化しにくい。よって利用率が充分に向上し
なかったものと考えられる。他方、アルカリ金属濃度が
40重量%を超えると、溶液粘度が著しく高まり、アル
カリ溶液が被覆層に浸透し難くなる結果、高次化反応が
不均一になるためと考えられる。
The experimental results are shown in FIG. 3 with the utilization rate of B 3 being 100. As can be seen from FIG. 3, the utilization index significantly decreased when the alkali metal concentration was less than 15% by weight and more than 40% by weight. The reason for this is considered as follows. When the cobalt hydroxide-coated Ni active material particles are heat-treated in the presence of an alkali, the cobalt hydroxide on the particle surface changes to a compound of cobalt having a valence of more than 2,
The conductivity of the coating layer is increased. As a result, a conductive network between the active material particles is formed, and the utilization rate as a whole is improved. However, if the alkali metal concentration is less than 15% by weight, the solubility of cobalt hydroxide is lowered, and the cobalt hydroxide is unlikely to be converted into a higher-order cobalt compound having good conductivity by heat treatment. Therefore, it is considered that the utilization rate did not improve sufficiently. On the other hand, it is considered that when the alkali metal concentration exceeds 40% by weight, the solution viscosity remarkably increases, and it becomes difficult for the alkali solution to permeate into the coating layer, resulting in nonuniform homogenization reaction.

【0045】以上のことから、アルカリ溶液の濃度は、
15〜40重量%の範囲であるのが好ましい。なお、ア
ルカリとして水酸化ナトリウムの代わりに、例えば水酸
化カリウムなどの他のアルカリ種を用いた場合でも、上
記と同様な結果が得られることが確認されている。
From the above, the concentration of the alkaline solution is
It is preferably in the range of 15 to 40% by weight. It has been confirmed that the same results as above can be obtained even when other alkali species such as potassium hydroxide is used as the alkali instead of sodium hydroxide.

【0046】(実験5)実験5では、析出被覆法で作製
したD1 〜D4 及びB3 を用い、加熱温度を変化させて
アルカリ熱処理における加熱温度と利用率との関係を調
べた。なお、詳細な条件は表1に示す通りである。その
結果を、B3 の利用率を100として図4に示す。図4
から明らかなように、加熱温度が50℃未満、及び15
0℃を超えると、利用率指数の低下が大きくなる。した
がって、アルカリ熱処理における加熱温度は、50℃〜
150℃の範囲で行うのが好ましいことが判る。
(Experiment 5) In Experiment 5, using D 1 to D 4 and B 3 produced by the deposition coating method, the heating temperature was changed and the relationship between the heating temperature and the utilization factor in the alkaline heat treatment was investigated. The detailed conditions are as shown in Table 1. The result is shown in FIG. 4 assuming that the utilization rate of B 3 is 100. FIG.
As is clear from the above, the heating temperature is less than 50 ° C, and
If the temperature exceeds 0 ° C, the utilization index will decrease significantly. Therefore, the heating temperature in the alkali heat treatment is 50 ° C to
It turns out that it is preferable to carry out in the range of 150 ° C.

【0047】50℃〜150℃の加熱温度で良好な結果
が得られたのは、この範囲の温度であると、コバルトの
高次化が円滑に進み、生成した高次コバルト化合物が活
物質の導電性を一層高めるからである。これに対し、加
熱処理温度が低くなると、水酸化コバルトの溶解度が低
下するため、コバルトの高次化が円滑に進まなくなり、
また被覆層の構造を好適に変化させ得なくなるので、利
用率が低下するものと考えられる。他方、加熱処理温度
が150℃を超えると、母粒子である水酸化ニッケル自
体が不活性な酸化ニッケルに変化するために、利用率が
低下すると考えられる。
At the heating temperature of 50 ° C. to 150 ° C., good results were obtained. When the temperature was within this range, the higher order of cobalt proceeded smoothly, and the produced higher order cobalt compound was the active material. This is because the conductivity is further enhanced. On the other hand, when the heat treatment temperature becomes low, the solubility of cobalt hydroxide decreases, so that the higher order of cobalt does not proceed smoothly,
In addition, the structure of the coating layer cannot be changed appropriately, so that it is considered that the utilization factor decreases. On the other hand, when the heat treatment temperature exceeds 150 ° C., it is considered that the utilization rate decreases because the nickel hydroxide itself, which is the mother particle, changes to inactive nickel oxide.

【0048】(実験6)実験6では、アルカリ熱処理に
おけるアルカリ溶液に0.7モル濃度のリチウムイオン
を配合しアルカリ熱処理を行ったNi活物質Eと、前記
アルカリ溶液にリチウムイオンを配合しないこと以外
は、前記Eと同様に作製したNi活物質B 3 との過放電
特性を比較し、アルカリ溶液にリチウムイオンを配合し
た場合における効果を調べた。
(Experiment 6) In Experiment 6, the alkali heat treatment was performed.
Lithium ion of 0.7 molar concentration in alkaline solution
Ni active material E, which is obtained by blending
Other than not adding lithium ion to the alkaline solution
Is a Ni active material B prepared in the same manner as in E above. 3Over discharge with
Compare the characteristics, mix the alkaline solution with lithium ions
The effect in the case of

【0049】その結果、アルカリ溶液にリチウムイオン
を配合したE電池における過放電特性は、B3 電池の過
放電特性を100としたとき、105であった。この結
果から、アルカリ溶液にリチウムイオンを配合すると、
過放電特性が顕著に向上することが分かる。上記の結果
は、次のように考えられる。リチウムイオンを配合した
アルカリ金属溶液を用いてアルカリ熱処理を行うと、被
覆層にリチウムを存在させることができる。したがっ
て、リチウムがその作用効果を最も効率的に発揮できる
水酸化ニッケル近傍に存在するため、添加量が少なくと
も充分に過放電特性を高めることができると考えられ
る。このことから、電解液にリチウムを配合する場合よ
りも、本方法による場合の方が、少ない量のリチウムで
過放電特性を高めることができる。
As a result, the overdischarge characteristic of the E battery in which lithium ions were mixed in the alkaline solution was 105 when the overdischarge characteristic of the B 3 battery was 100. From this result, when lithium ion is added to the alkaline solution,
It can be seen that the overdischarge characteristics are remarkably improved. The above results are considered as follows. When alkali heat treatment is performed using an alkali metal solution containing lithium ions, lithium can be present in the coating layer. Therefore, it is considered that since the lithium is present in the vicinity of nickel hydroxide where the action and effect can be most efficiently exhibited, the addition amount can at least sufficiently enhance the overdischarge characteristics. From this, in the case of this method, the over-discharge characteristics can be improved with a smaller amount of lithium than in the case of adding lithium to the electrolytic solution.

【0050】なお、上記実験では、母粒子として水酸化
ニッケルからなる粒子を用いたが、水酸化ニッケルと固
溶体を形成する他の金属化合物を1種または2種以上配
合してなる母粒子を用いることができることは勿論であ
る。このような金属化合物として、例えば亜鉛、カドミ
ウム、マグネシウム、カルシウム等の化合物が挙げられ
る。
In the above experiment, particles made of nickel hydroxide were used as the mother particles, but mother particles made by mixing one kind or two or more kinds of other metal compounds forming a solid solution with nickel hydroxide are used. Of course, you can do that. Examples of such metal compounds include compounds such as zinc, cadmium, magnesium and calcium.

【0051】[0051]

【発明の効果】以上の説明から明らかなように、本発明
のニッケル活物質粒子は、導電性が高く、利用率、過放
電特性に優れる。よって、このようなニッケル活物質を
用いて構成されたアルカリ蓄電池は、多様な使用条件に
おいて高い性能を発揮できる電池となる。
As is apparent from the above description, the nickel active material particles of the present invention have high conductivity and excellent utilization factor and overdischarge characteristics. Therefore, the alkaline storage battery configured using such a nickel active material is a battery that can exhibit high performance under various usage conditions.

【0052】また、本発明アルカリ蓄電池用ニッケル活
物質の製造方法は、上記特性を有するニッケル活物質を
簡易かつ歩留りよく製造できる。したがって、本発明製
造方法によれば、利用率及び過放電特性に優れたニッケ
ル活物質を安価に提供できるという効果が得られる。
Further, according to the method for producing a nickel active material for alkaline storage batteries of the present invention, the nickel active material having the above-mentioned characteristics can be produced easily and with good yield. Therefore, according to the manufacturing method of the present invention, it is possible to obtain the effect that the nickel active material having excellent utilization factor and overdischarge characteristic can be provided at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】水酸化ニッケル母粒子の平均粒子径と活物質利
用率(指数)との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the average particle size of nickel hydroxide mother particles and the active material utilization rate (index).

【図2】水酸化ニッケル母粒子に対する高次コバルト化
合物被覆量と単位活物質重量当たりの電気容量(指数)
の関係を示すグラフである。
Fig. 2 Coating amount of higher cobalt compound on nickel hydroxide mother particles and electric capacity (index) per unit active material weight
It is a graph which shows the relationship of.

【図3】アルカリ熱処理におけるアルカリ金属溶液の濃
度と活物質利用率(指数)との関係を示すグラフであ
る。
FIG. 3 is a graph showing the relationship between the concentration of an alkali metal solution and the active material utilization rate (index) in an alkali heat treatment.

【図4】アルカリ熱処理における加熱温度と活物質利用
率(指数)との関係を示すグラフである。
FIG. 4 is a graph showing a relationship between a heating temperature and an active material utilization rate (index) in alkali heat treatment.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ニッケルを主成分とする母粒子の
表面の一部又は全部が、少なくともコバルトの水酸化物
を含む金属化合物で被覆されてなるアルカリ蓄電池用ニ
ッケル活物質であって、 前記ニッケル活物質は、レーザー回折方式による平均粒
子径が3μm以上、20μm以下であることを特徴する
アルカリ蓄電池用ニッケル活物質。
1. A nickel active material for an alkaline storage battery, wherein a part or all of the surface of mother particles containing nickel hydroxide as a main component is coated with a metal compound containing at least cobalt hydroxide, The nickel active material is a nickel active material for an alkaline storage battery, which has an average particle diameter of 3 μm or more and 20 μm or less according to a laser diffraction method.
【請求項2】 前記金属化合物は、さらにリチウム化合
物を含むものであることを特徴とする請求項1記載のア
ルカリ蓄電池用ニッケル活物質。
2. The nickel active material for an alkaline storage battery according to claim 1, wherein the metal compound further contains a lithium compound.
【請求項3】 前記金属化合物が、母粒子に対し1重量
%以上、15重量%以下であることを特徴とする請求項
1乃至2記載のアルカリ蓄電池用ニッケル活物質。
3. The nickel active material for an alkaline storage battery according to claim 1, wherein the metal compound is contained in an amount of 1% by weight or more and 15% by weight or less based on the mother particles.
【請求項4】 前記コバルトの水酸化物が、2価を超え
る高次コバルト水酸化物としてあることを特徴とする請
求項1乃至3記載のアルカリ蓄電池用ニッケル活物質。
4. The nickel active material for an alkaline storage battery according to claim 1, wherein the hydroxide of cobalt is a high-order cobalt hydroxide having a valence of more than two.
【請求項5】 少なくともコバルト塩を含む金属塩溶解
液に、平均粒径が1μm以上、20μm未満の水酸化ニ
ッケルを主成分とする母粒子を分散させた後、前記母粒
子の分散された金属塩溶解液のPHをアルカリ液で調整
し、前記母粒子を核として少なくともコバルト水酸化物
の析出物を析出させ、前記母粒子の表面に所定量のコバ
ルト水酸化物を含む被覆層を形成して、レーザー回折方
式による平均粒子径が3μm以上、20μm以下のニッ
ケル活物質を調製するアルカリ蓄電池用ニッケル活物質
の製造方法。
5. A metal salt solution containing at least a cobalt salt, wherein mother particles having an average particle diameter of 1 μm or more and less than 20 μm and containing nickel hydroxide as a main component are dispersed, and then the metal in which the mother particles are dispersed is dispersed. The pH of the salt solution is adjusted with an alkaline solution to deposit at least a cobalt hydroxide precipitate with the mother particles as nuclei to form a coating layer containing a predetermined amount of cobalt hydroxide on the surface of the mother particles. A method for producing a nickel active material for an alkaline storage battery, which comprises preparing a nickel active material having an average particle size of 3 μm or more and 20 μm or less by a laser diffraction method.
【請求項6】 前記所定量のコバルト水酸化物を含む被
覆層が、前記母粒子に対し1重量%以上、15重量%以
下であることを特徴とする請求項5記載のアルカリ蓄電
池用ニッケル活物質の製造方法。
6. The nickel active material for an alkaline storage battery according to claim 5, wherein the coating layer containing the predetermined amount of cobalt hydroxide is 1% by weight or more and 15% by weight or less with respect to the mother particles. Method of manufacturing substance.
【請求項7】 少なくともコバルト水酸化物を有する被
覆層を形成した後、当該被覆粒子にアルカリ金属溶液を
含浸させ、酸素存在下で加熱処理することを特徴とする
請求項5乃至6記載のアルカリ蓄電池用ニッケル活物質
の製造方法。
7. The alkali according to claim 5, wherein after forming a coating layer having at least cobalt hydroxide, the coated particles are impregnated with an alkali metal solution and heat-treated in the presence of oxygen. A method for producing a nickel active material for a storage battery.
【請求項8】 前記アルカリ金属溶液のアルカリ金属濃
度が、15重量%以上、40重量%以下であることを特
徴とする請求項7記載のアルカリ蓄電池用ニッケル活物
質の製造方法。
8. The method for producing a nickel active material for an alkaline storage battery according to claim 7, wherein the alkali metal concentration of the alkali metal solution is 15% by weight or more and 40% by weight or less.
【請求項9】 前記アルカリ金属溶液が、更にリチウム
イオンを含有することを特徴とする請求項7乃至8記載
のアルカリ蓄電池用ニッケル活物質の製造方法。
9. The method for producing a nickel active material for an alkaline storage battery according to claim 7, wherein the alkali metal solution further contains lithium ions.
【請求項10】 前記加熱処理の温度が、50℃以上、
150℃以下であることを特徴とする請求項7乃至9記
載のアルカリ蓄電池用ニッケル活物質の製造方法。
10. The temperature of the heat treatment is 50 ° C. or higher,
It is 150 degreeC or less, The manufacturing method of the nickel active material for alkaline storage batteries of Claim 7 thru | or 9 characterized by the above-mentioned.
JP7008226A 1995-01-23 1995-01-23 Nickel active substance for alkaline battery and manufacture thereof Pending JPH08203522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7008226A JPH08203522A (en) 1995-01-23 1995-01-23 Nickel active substance for alkaline battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7008226A JPH08203522A (en) 1995-01-23 1995-01-23 Nickel active substance for alkaline battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH08203522A true JPH08203522A (en) 1996-08-09

Family

ID=11687260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7008226A Pending JPH08203522A (en) 1995-01-23 1995-01-23 Nickel active substance for alkaline battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH08203522A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275631A (en) * 1996-12-27 1998-10-13 Canon Inc Powder material, electrode structure, manufacture of them, and secondary battery
JP2005251755A (en) * 1996-12-27 2005-09-15 Canon Inc Powder material, electrode structure, manufacturing method of powder material and electrode structure, and secondary battery
US20150311511A1 (en) * 2012-11-20 2015-10-29 Sumitomo Metal Mining Co., Ltd. Coated nickel hydroxide powder for alkali secondary battery positive electrode active material and method of producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275631A (en) * 1996-12-27 1998-10-13 Canon Inc Powder material, electrode structure, manufacture of them, and secondary battery
JP2005251755A (en) * 1996-12-27 2005-09-15 Canon Inc Powder material, electrode structure, manufacturing method of powder material and electrode structure, and secondary battery
JP4533216B2 (en) * 1996-12-27 2010-09-01 キヤノン株式会社 Powder material, electrode structure, manufacturing method thereof, and secondary battery
US20150311511A1 (en) * 2012-11-20 2015-10-29 Sumitomo Metal Mining Co., Ltd. Coated nickel hydroxide powder for alkali secondary battery positive electrode active material and method of producing same
US10680239B2 (en) * 2012-11-20 2020-06-09 Sumitomo Metal Mining Co., Ltd. Coated nickel hydroxide powder for alkali secondary battery positive electrode active material and method of producing same

Similar Documents

Publication Publication Date Title
JP3738052B2 (en) Nickel electrode active material, nickel electrode and nickel alkaline storage battery using the same, and production method thereof
JP3249326B2 (en) Nickel active material for alkaline storage battery and method for producing the same
EP0851520B1 (en) Nickel-hydrogen secondary battery and process for producing electrode therefor
JPH11149921A (en) Alkali storage battery and surface treatment method of its positive electrode substance
JP2000021401A (en) Nickel hydroxide powder for alkaline battery and nickel hydroxide electrode using the same
JPWO2019181788A1 (en) Compound for positive electrode
JP4514265B2 (en) Electrode and non-aqueous electrolyte secondary battery
JP4321997B2 (en) Positive electrode active material for alkaline storage battery, and positive electrode and alkaline storage battery using the same
EP1297581B1 (en) Doped manganese dioxides
JP3617203B2 (en) Manufacturing method of nickel metal hydride secondary battery
JP2002056844A (en) Method of manufacturing positive electrode active material for alkaline storage battery, nickel electrode using this positive electrode active material, and alkaline storage battery using this nickel electrode
JP2889669B2 (en) Non-sintered nickel positive electrode plate for alkaline storage batteries
JPH08203522A (en) Nickel active substance for alkaline battery and manufacture thereof
JPH11307092A (en) Nickel hydroxide powder for alkaline storage battery positive electrode active material and its manufacture
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3229800B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3454627B2 (en) Method for producing positive electrode active material for alkaline storage battery and alkaline storage battery
JP3249324B2 (en) Nickel active material for alkaline storage battery and its manufacturing method
JPH10154508A (en) Alkaline storage battery, its nickel electrode, and its manufacture
JP3407983B2 (en) Method for producing non-sintered positive electrode for alkaline storage battery
JP3454613B2 (en) Nickel active material for alkaline storage battery and method for producing the same
JP3530327B2 (en) Method for producing hydrogen storage alloy electrode
JP3540558B2 (en) Method for producing nickel hydroxide electrode for alkaline storage battery and nickel hydroxide electrode obtained by this method
JP2001236959A (en) Non-sintered alkali cell positive electrode
KR100288472B1 (en) Nickel electrode active material, nickel electrode using same, nickel alkaline storage battery and manufacturing method thereof