JPH11307092A - Nickel hydroxide powder for alkaline storage battery positive electrode active material and its manufacture - Google Patents

Nickel hydroxide powder for alkaline storage battery positive electrode active material and its manufacture

Info

Publication number
JPH11307092A
JPH11307092A JP10107842A JP10784298A JPH11307092A JP H11307092 A JPH11307092 A JP H11307092A JP 10107842 A JP10107842 A JP 10107842A JP 10784298 A JP10784298 A JP 10784298A JP H11307092 A JPH11307092 A JP H11307092A
Authority
JP
Japan
Prior art keywords
nickel hydroxide
cobalt
particle size
hydroxide particles
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10107842A
Other languages
Japanese (ja)
Inventor
Masami Nakayama
政美 中山
Shoichi Tamura
祥一 田村
Minoru Tada
實 多田
Yasuhiro Okamoto
康寛 岡本
Hiroshi Tokunaga
宏 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP10107842A priority Critical patent/JPH11307092A/en
Publication of JPH11307092A publication Critical patent/JPH11307092A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide nickel hydroxide powder for an alkaline storage battery positive electrode active material together with its manufacturing method, having a filling characteristic close to the closest filling, accordingly, having large tapping density, and resultantly, capable of realizing improvement of an active material utilization factor and increase of alkaline storage battery capacity. SOLUTION: Nickel hydroxide powder for an alkaline storage battery positive electrode active material comprises, (a) first nickel hydroxide particles with surfaces covered with cobalt hydroxide or cobalt oxide, having an average particle size ranging from 1 to 5 μm, and having particle size distribution satisfying σ<0.8D50 , where the particle size distribution is regarded as a normal distribution, σ is a standard deviation, and D50 is an average particle diameter, and (b) second nickel hydroxide particles having an average particle size ranging from 10 to 30 μm and having particle size distribution satisfying σ<0.8D50 , where the particle size distribution is regarded as a normal distribution, σ is a standard deviation, and D50 is an average particle diameter, and tapping density thereof ranges from 2.0 to 3.0 g/cc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ蓄電池正
極活物質用水酸化ニッケル粉末及びその製造方法に関す
る。
The present invention relates to a nickel hydroxide powder for a positive electrode active material of an alkaline storage battery and a method for producing the same.

【0002】[0002]

【従来の技術】水酸化ニッケル粉末からなる正極活物質
は、ニッケル−カドミウム蓄電池、ニッケル−水素蓄電
池等のアルカリ蓄電池の正極として、従来、種々の電子
機器、例えば、携帯電話、パソコン等の小型機器の電源
に広く用いられていると共に、近年、電気自動車用の大
型電源としても利用されつつある。そこで、最近、この
ようなアルカリ蓄電池の高容量化が強く求められるに至
っており、特に、正極活物質である水酸化ニッケルの利
用率とタッピング密度の向上が求められており、これま
で、多くの改良が提案されている。
2. Description of the Related Art A positive electrode active material made of nickel hydroxide powder has been used as a positive electrode of alkaline storage batteries such as nickel-cadmium storage batteries and nickel-hydrogen storage batteries, and has conventionally been used in various electronic devices, for example, small devices such as mobile phones and personal computers. In recent years, it has been widely used as a large power supply for electric vehicles. Therefore, recently, there has been a strong demand for higher capacity of such an alkaline storage battery, and in particular, there has been a demand for an improvement in the utilization rate and tapping density of nickel hydroxide, which is a positive electrode active material. Improvements have been proposed.

【0003】活物質である水酸化ニッケルの利用率を向
上させる方法として、導電剤として、金属コバルトや水
酸化コバルトを水酸化ニッケルに添加する方法が提案さ
れている。例えば、水酸化コバルトは、充電時にオキシ
水酸化コバルト(CoOOH)に酸化されて、導電性マ
トリックスを形成し、その結果として、活物質間の導電
性が高まって、利用率を向上させることができる。
As a method for improving the utilization rate of nickel hydroxide as an active material, a method has been proposed in which metallic cobalt or cobalt hydroxide is added to nickel hydroxide as a conductive agent. For example, cobalt hydroxide is oxidized to cobalt oxyhydroxide (CoOOH) during charging to form a conductive matrix, and as a result, conductivity between active materials is increased, and utilization can be improved. .

【0004】例えば、特開平7−22027号公報に
は、(001)面のピークの半価幅が0.4度以上である
β型水酸化コバルトがアルカリ電解液に対して高い反応
性を有するので、そのようなβ型水酸化コバルトを水酸
化ニッケルに混合することによって、従来に比べて、活
物質の利用率を一層向上させることができることが示さ
れている。しかし、一般に、水酸化コバルトは、水酸化
ニッケルと共にペーストとして、正極活物質を保持する
ための多孔性の正極基板に充填する際に、ペースト中に
遍在しやすく、かくして、活物質からなる有効な導電性
ネットワーク(網)が形成され難い。
[0004] For example, Japanese Patent Application Laid-Open No. 7-22027 discloses that β-type cobalt hydroxide having a half-width of the peak on the (001) plane of 0.4 ° or more has high reactivity with an alkaline electrolyte. Therefore, it has been shown that by mixing such β-type cobalt hydroxide with nickel hydroxide, the utilization rate of the active material can be further improved as compared with the related art. However, in general, cobalt hydroxide, as a paste together with nickel hydroxide, tends to be ubiquitous in the paste when it is filled into a porous positive electrode substrate for holding the positive electrode active material, and thus, the effective material comprising the active material A difficult conductive network (net) is hardly formed.

【0005】そこで、水酸化ニッケル又はこれを主成分
とする粒子の表面にコバルト化合物を被覆する方法が提
案されている。例えば、特開昭62−234867号公
報、特開昭62−237667号公報、特開昭62−2
22566号公報等には、水酸化ニッケル粒子の表面に
α型又はβ型の水酸化コバルトを被覆させることが提案
されている。
[0005] Therefore, a method has been proposed in which the surface of nickel hydroxide or particles mainly composed of nickel hydroxide is coated with a cobalt compound. For example, JP-A-62-234867, JP-A-62-237667, JP-A-62-2
No. 22566 proposes to coat the surface of nickel hydroxide particles with α-type or β-type cobalt hydroxide.

【0006】特に、特開平7−320737号公報に
は、α型水酸化コバルトからなる内層とβ型水酸化コバ
ルトからなる外層とで水酸化ニッケル粒子を二層に被覆
して、不安定なα型水酸化コバルトを比較的安定なβ型
水酸化コバルトで保護することによって、充電時に緻密
な導電性ネットワークを形成して、活物質の利用率を向
上させることが提案されている。
[0006] In particular, Japanese Patent Application Laid-Open No. Hei 7-320737 discloses that an inner layer made of α-type cobalt hydroxide and an outer layer made of β-type cobalt hydroxide are coated with two layers of nickel hydroxide particles to form an unstable α-cobalt hydroxide. It has been proposed that by protecting the type cobalt hydroxide with a relatively stable β-type cobalt hydroxide, a dense conductive network is formed at the time of charging to improve the utilization rate of the active material.

【0007】このように、従来、水酸化ニッケル粒子の
利用率を高めるために、水酸化ニッケル粒子を水酸化コ
バルトにて被覆するための種々の方法が提案されている
が、いずれも、平均粒子径10μm程度の水酸化ニッケ
ル粒子に水酸化コバルトを被覆しており、しかも、いず
れも、水酸化ニッケルに対して、比較的多量の水酸化コ
バルトを配合することが必要である。従って、従来、水
酸化コバルトを被覆した水酸化ニッケル粒子は、タッピ
ング密度が尚、十分ではないので、正極基板への活物質
の充填量が相対的に少なく、電極のエネルギー密度が小
さいという問題があり、また、電極の製造費用を高める
問題もある。
As described above, various methods for coating nickel hydroxide particles with cobalt hydroxide have been proposed to increase the utilization of nickel hydroxide particles. Cobalt hydroxide is coated on nickel hydroxide particles having a diameter of about 10 μm, and in any case, it is necessary to mix a relatively large amount of cobalt hydroxide with nickel hydroxide. Therefore, conventionally, since the tapping density of the nickel hydroxide particles coated with cobalt hydroxide is still insufficient, the amount of the active material charged into the positive electrode substrate is relatively small, and the energy density of the electrode is low. In addition, there is a problem that the manufacturing cost of the electrode is increased.

【0008】そこで、活物質である水酸化ニッケル粒子
のタッピング密度を向上させるために、特開昭63−1
6555号公報には、粒度分布の異なる2種の水酸化ニ
ッケル粒子を混合することによって、タッピング密度を
大きくすることが示されている。しかし、この方法によ
れば、タッピング密度が1.70〜1.85g/ccの範囲
の水酸化ニッケル粉末については、0.2g/cc程度の
タッピング密度の上昇がみられるものの、タッピング密
度が1.95g/cc付近と大きい水酸化ニッケル粉末に
ついては、タッピング密度の増大は、0.1g/ccより
も小さく、タッピング密度の改善は、満足すべきものと
はいえない。
In order to improve the tapping density of nickel hydroxide particles as an active material, JP-A-63-1
No. 6,555 discloses that the tapping density is increased by mixing two types of nickel hydroxide particles having different particle size distributions. However, according to this method, for the nickel hydroxide powder having a tapping density in the range of 1.70 to 1.85 g / cc, although the tapping density is increased by about 0.2 g / cc, the tapping density is not higher than 1 g / cc. For nickel hydroxide powder as large as around .95 g / cc, the increase in tapping density is less than 0.1 g / cc, and the improvement in tapping density is not satisfactory.

【0009】[0009]

【発明が解決しようとする課題】本発明は、水酸化ニッ
ケル粉末にコバルト金属又はコバルト化合物を配合して
なるアルカリ蓄電池正極用活物質における上述したよう
な種々の問題を解決するためになされたものであって、
最密充填に近い充填特性を有し、従って、大きいタッピ
ング密度を有し、その結果、活物質の利用率の向上とア
ルカリ蓄電池の高容量化を実現させることができるアル
カリ蓄電池正極活物質用水酸化ニッケル粉末とその製造
方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned various problems in an active material for a positive electrode of an alkaline storage battery obtained by mixing cobalt metal or a cobalt compound with nickel hydroxide powder. And
It has a filling characteristic close to close packing, and therefore has a large tapping density, and as a result, it is possible to improve the utilization rate of the active material and realize a high capacity of the alkaline storage battery. An object of the present invention is to provide a nickel powder and a method for producing the same.

【0010】[0010]

【課題を解決するための手段】本発明によるアルカリ蓄
電池正極活物質用水酸化ニッケル粉末は、(a) 表面が水
酸化コバルト又は酸化コバルトにて被覆されており、平
均粒子径が1〜5μmの範囲にあると共に、その粒度分
布を正規分布とみなして、標準偏差をσ、平均粒子径を
50とするとき、σ<0.8D50を満たすような粒度分布
を有する第1の水酸化ニッケル粒子と(b) 平均粒子径が
10〜30μmの範囲にあると共に、その粒度分布を正
規分布とみなして、標準偏差をσ、平均粒子径をD50
するとき、σ<0.8D50を満たすような粒度分布を有す
る第2の水酸化ニッケル粒子とからなり、タッピング密
度が2.0〜3.0g/ccの範囲にあることを特徴とす
る。
The nickel hydroxide powder for an active material for a positive electrode of an alkaline storage battery according to the present invention has the following features. (A) The surface is coated with cobalt hydroxide or cobalt oxide, and has an average particle diameter of 1 to 5 μm. The first nickel hydroxide particles having a particle size distribution satisfying σ <0.8D 50 when the standard deviation is σ and the average particle size is D 50 by regarding the particle size distribution as a normal distribution. and (b) with an average particle size in the range of 10 to 30 [mu] m, and considers the particle size distribution and a normal distribution, the standard deviation sigma, when the average particle diameter and D 50, sigma satisfy <0.8D 50 The second nickel hydroxide particles having such a particle size distribution, and the tapping density is in the range of 2.0 to 3.0 g / cc.

【0011】[0011]

【発明の実施の形態】本発明において、第1及び第2の
水酸化ニッケル粒子は、水酸化ニッケルのみからなるも
のでもよく、また、水酸化ニッケルを主成分とするもの
でもよい。水酸化ニッケルを主成分とするものとは、コ
バルト、亜鉛、カドミウム、マグネシウム、カルシウム
及びマンガンから選ばれる少なくとも1種の元素を水酸
化ニッケルに対して、金属換算にて、1〜10重量%の
範囲で含むものである。このような主成分が水酸化ニッ
ケルからなる粒子は、例えば、水溶性のニッケル塩と共
に水溶性の上記元素の塩を含む水溶液を調製し、これに
アルカリを加えて、共沈させれば、例えば、コバルトや
亜鉛等、所要の元素を含む水酸化ニッケルを得ることが
できる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the first and second nickel hydroxide particles may be composed only of nickel hydroxide, or may be composed mainly of nickel hydroxide. The one containing nickel hydroxide as a main component means that at least one element selected from cobalt, zinc, cadmium, magnesium, calcium and manganese is 1 to 10% by weight in terms of metal with respect to nickel hydroxide. It is included in the range. Such a particle whose main component is nickel hydroxide is prepared, for example, by preparing an aqueous solution containing a water-soluble salt of the above element together with a water-soluble nickel salt, adding an alkali thereto, and coprecipitating, for example, , Nickel hydroxide containing required elements such as cobalt and zinc can be obtained.

【0012】本発明によれば、第1の水酸化ニッケル粒
子(以下、水酸化ニッケルの微細粒子ということがあ
る。)は、平均粒子径が1〜5μmの範囲にあると共
に、その粒度分布を正規分布とみなして、標準偏差を
σ、平均粒子径をD50とするとき、σ<0.8D50を満た
すような狭い粒度分布を有し、表面に水酸化コバルト又
は酸化コバルトが被覆されている。上記水酸化コバルト
は、α型水酸化コバルト、β型水酸化コバルトのいずれ
でもよく、また、内層がα型水酸化コバルトからなり、
外層がβ型水酸化コバルトからなる2層構造を有してい
てもよい。
According to the present invention, the first nickel hydroxide particles (hereinafter sometimes referred to as fine particles of nickel hydroxide) have an average particle size in the range of 1 to 5 μm and a particle size distribution of is regarded as a normal distribution, the standard deviation sigma, when the average particle diameter and D 50, sigma <a narrow particle size distribution that satisfies 0.8D 50, with cobalt or cobalt oxide hydroxide is coated on the surface I have. The cobalt hydroxide may be any of α-type cobalt hydroxide and β-type cobalt hydroxide, and the inner layer is made of α-type cobalt hydroxide,
The outer layer may have a two-layer structure made of β-type cobalt hydroxide.

【0013】しかし、この水酸化コバルト又は酸化コバ
ルトの被覆量は、金属コバルトとして、水酸化ニッケル
に対して1〜20重量%の範囲であることが好ましく、
特に、2〜10重量%の範囲であることが好ましい。水
酸化コバルト又は酸化コバルトの被覆量が、金属コバル
トとして、水酸化ニッケルに対して1重量%よりも少な
いときは、水酸化ニッケル粒子を水酸化コバルト又は酸
化コバルトで被覆することによる活物質の利用率の向上
を達成することができず、他方、20重量%を越えると
きは、正極基板への活物質の充填量が相対的に少なく、
電極のエネルギー密度が小さい。また、電極の製造費用
を高めることとなる。
However, the coating amount of the cobalt hydroxide or cobalt oxide is preferably in the range of 1 to 20% by weight based on nickel hydroxide as metal cobalt.
In particular, the content is preferably in the range of 2 to 10% by weight. When the coating amount of cobalt hydroxide or cobalt oxide is less than 1% by weight based on nickel hydroxide as metal cobalt, use of the active material by coating nickel hydroxide particles with cobalt hydroxide or cobalt oxide. When it is not possible to achieve the improvement of the ratio, when it exceeds 20% by weight, the filling amount of the active material into the positive electrode substrate is relatively small,
The energy density of the electrode is small. In addition, the manufacturing cost of the electrode is increased.

【0014】本発明によれば、このように微細で粒度分
布の狭い第1の水酸化ニッケル粒子に平均粒子径が大き
く、粒度分布の狭い第2の水酸化ニッケル粒子を混合す
ることによって、混合物である粉末の充填特性を最密充
填に近づけて、タッピング密度を高めるものである。従
って、本発明によれば、第2の水酸化ニッケル粒子は、
平均粒子径が10〜30μmの範囲にあり、好ましく
は、10〜25μmの範囲にあると共に、その粒度分布
を正規分布とみなして、標準偏差をσ、平均粒子径をD
50とするとき、σ<0.8D50を満たすような狭い粒度分
布を有する。
According to the present invention, by mixing the first nickel hydroxide particles having such a fine and narrow particle size distribution with the second nickel hydroxide particles having a large average particle size and a narrow particle size distribution, a mixture is obtained. The packing property of the powder is close to the closest packing to increase the tapping density. Therefore, according to the present invention, the second nickel hydroxide particles
The average particle size is in the range of 10 to 30 μm, preferably in the range of 10 to 25 μm, and the particle size distribution is regarded as a normal distribution, the standard deviation is σ, and the average particle size is D.
When 50, having a narrow particle size distribution which satisfies sigma <0.8D 50.

【0015】更に、本発明によれば、第1の水酸化ニッ
ケル粒子と第2の水酸化ニッケル粒子との混合割合は、
第1の水酸化ニッケル粒子5〜40重量%に対して、第
2の水酸化ニッケル粒子95〜60重量%であることが
好ましく、特に、第1の水酸化ニッケル粒子10〜35
重量%に対して、第2の水酸化ニッケル粒子90〜65
重量%であることが好ましい。
Further, according to the present invention, the mixing ratio of the first nickel hydroxide particles and the second nickel hydroxide particles is
It is preferable that the second nickel hydroxide particles be 95 to 60% by weight with respect to the first nickel hydroxide particles 5 to 40% by weight, and in particular, the first nickel hydroxide particles 10 to 35%.
% Of the second nickel hydroxide particles 90 to 65% by weight.
% By weight.

【0016】本発明によれば、必要に応じて、第2の水
酸化ニッケル粒子の表面にも、金属コバルトとして、水
酸化ニッケルに対して1〜20重量%の範囲で、水酸化
コバルト又は酸化コバルトを被覆してもよい。
According to the present invention, if necessary, the surface of the second nickel hydroxide particles may be coated with cobalt hydroxide or oxide in the range of 1 to 20% by weight based on nickel hydroxide as metal cobalt. Cobalt may be coated.

【0017】このように、本発明によれば、第1及び第
2の水酸化ニッケル粒子がそれぞれ上記平均粒子径を有
すると共に、その粒度分布が狭いので、それらを上記割
合で混合することによって、最密充填に近い充填特性を
有し、従って、高いタッピング密度を有する水酸化ニッ
ケル粉末を得ることができる。
As described above, according to the present invention, the first and second nickel hydroxide particles each have the above-mentioned average particle diameter and have a narrow particle size distribution. It is possible to obtain a nickel hydroxide powder having a packing property close to close packing, and thus having a high tapping density.

【0018】このような本発明による水酸化ニッケル粉
末は、前記平均粒子径を有する第1又は第2の水酸化ニ
ッケル粒子を製造する第1段階と、得られた水酸化ニッ
ケルの微細粒子を水酸化コバルト又は酸化コバルトで被
覆する第2工程とによって得ることができる。
The nickel hydroxide powder according to the present invention comprises a first step of producing the first or second nickel hydroxide particles having the above average particle diameter, and a step of removing the obtained nickel hydroxide fine particles from water. And a second step of coating with cobalt oxide or cobalt oxide.

【0019】即ち、第1段階においては、水溶性のニッ
ケル塩の水溶液とアンモニウムイオン供給体水溶液とア
ルカリ金属水酸化物の水溶液とを、得られる混合液のp
Hを一定に保持しながら、反応槽に連続的に供給するこ
とによって、水酸化ニッケル粒子を生成させることがで
きる。ここに、得られる混合液のpHや反応時間等を調
節することによって、平均粒子径1〜5μmの第1の水
酸化ニッケル粒子と平均粒子径が10〜30μmの第2
の水酸化ニッケル粒子をいずれも容易に得ることができ
る。このようにして得られた水酸化ニッケルを反応槽か
ら取り出し、このうち、第1の水酸化ニッケル粒子を第
2段階に供する。
That is, in the first step, an aqueous solution of a water-soluble nickel salt, an aqueous solution of an ammonium ion donor, and an aqueous solution of an alkali metal hydroxide are mixed with a p
By continuously supplying H to the reaction tank while keeping H constant, nickel hydroxide particles can be generated. Here, by adjusting the pH and reaction time of the obtained mixed solution, the first nickel hydroxide particles having an average particle diameter of 1 to 5 μm and the second nickel hydroxide particles having an average particle diameter of 10 to 30 μm are adjusted.
Can easily be obtained. The nickel hydroxide thus obtained is taken out of the reaction tank, and the first nickel hydroxide particles are subjected to the second stage.

【0020】上記水溶性のニッケル塩としては、例え
ば、硫酸ニッケル、塩化ニッケル、硝酸ニッケル等を挙
げることができ、アンモニウムイオン供給体水溶液とし
て、アンモニア水、塩化アンモニウム、硫酸アンモニウ
ム等を挙げることができ、また、アルカリ金属水酸化物
として、水酸化ナトリウム、水酸化カリウム、水酸化リ
チウム等を挙げることができる。
Examples of the water-soluble nickel salt include nickel sulfate, nickel chloride and nickel nitrate. Examples of the aqueous ammonium ion donor solution include aqueous ammonia, ammonium chloride and ammonium sulfate. Further, examples of the alkali metal hydroxide include sodium hydroxide, potassium hydroxide, lithium hydroxide and the like.

【0021】第2段階として、上記のようにして得られ
た第1の水酸化ニッケル粒子をスラリーとし、これに水
溶性のコバルト塩の水溶液とアンモニウムイオン供給体
水溶液とアルカリ水酸化物の水溶液を連続的に供給し
て、水酸化コバルトを被覆した第1の水酸化ニッケル粒
子を得ることができる。
In the second step, the first nickel hydroxide particles obtained as described above are made into a slurry, and an aqueous solution of a water-soluble cobalt salt, an aqueous solution of an ammonium ion donor, and an aqueous solution of an alkali hydroxide are added to the slurry. The first nickel hydroxide particles coated with cobalt hydroxide can be continuously supplied to obtain the first nickel hydroxide particles.

【0022】ここに、上記水溶性のコバルト塩として
は、例えば、硫酸コバルト、塩化コバルト、硝酸コバル
ト等を挙げることができる。アンモニウムイオン供給体
とアルカリ水酸化物は、上記と同じものを挙げることが
できる。
Here, examples of the water-soluble cobalt salt include cobalt sulfate, cobalt chloride, and cobalt nitrate. The same thing as the above can be mentioned as an ammonium ion supplier and an alkali hydroxide.

【0023】このような第2段階において、第1の水酸
化ニッケル粒子への水酸化コバルト又は酸化コバルトの
被覆量は、上記第1の水酸化ニッケル粒子のスラリーに
加えるコバルト塩の量によって、適宜に調節することが
できる。通常、第1の水酸化ニッケル粒子のスラリーに
加えるコバルト塩から計算されるコバルト量を水酸化ニ
ッケル粒子への被覆量とすることができる。
In the second step, the coating amount of the cobalt hydroxide or the cobalt oxide on the first nickel hydroxide particles is appropriately determined depending on the amount of the cobalt salt added to the slurry of the first nickel hydroxide particles. Can be adjusted. Usually, the amount of cobalt calculated from the cobalt salt added to the slurry of the first nickel hydroxide particles can be used as the coating amount on the nickel hydroxide particles.

【0024】[0024]

【実施例】以下に実施例を挙げて本発明を説明するが、
本発明はこれら実施例により何ら限定されるものではな
い。
EXAMPLES The present invention will be described below with reference to examples.
The present invention is not limited by these examples.

【0025】実施例1 (第2の水酸化ニッケル粒子の製造)第1段階の反応と
して、10L容量の撹拌機付き反応槽に攪拌下に温度を
50℃に維持しつつ、濃度250g/Lの硫酸ニッケル
と4.0g/Lの硫酸コバルトと11.8g/Lの硫酸亜鉛
を含む混合水溶液と13重量%アンモニア水を連続的に
供給し、この際、混合液のpHを12.0に保持するよう
に、28重量%水酸化ナトリウム水溶液を間欠的に反応
槽に加えて、金属コバルトとしてコバルトが1.5重量%
と金属亜鉛として亜鉛が4.5重量%固溶した平均粒子径
13.3μm、タッピング密度2.15g/ccの第2の水
酸化ニッケル粒子を得た。
Example 1 (Production of Second Nickel Hydroxide Particles) As a first stage reaction, a reaction vessel with a stirrer having a capacity of 10 L was stirred at a temperature of 50 ° C. while maintaining a temperature of 50 ° C. while having a concentration of 250 g / L. A mixed aqueous solution containing nickel sulfate, 4.0 g / L cobalt sulfate and 11.8 g / L zinc sulfate and 13% by weight ammonia water are continuously supplied, and the pH of the mixed solution is maintained at 12.0. As a result, a 28% by weight aqueous solution of sodium hydroxide is intermittently added to the reaction vessel, and cobalt as metal cobalt is 1.5% by weight.
And second nickel hydroxide particles having an average particle diameter of 13.3 μm and a tapping density of 2.15 g / cc in which 4.5% by weight of zinc was dissolved as zinc metal were obtained.

【0026】この水酸化ニッケル粒子の走査型電子顕微
鏡写真を図1に示し、粒度分布図を図4に示す。この水
酸化ニッケル粒子の粒度分布を正規分布とみなすとき、
標準偏差σは5.5であって、0.8D50(=10.6)より
も小さい。
FIG. 1 shows a scanning electron micrograph of the nickel hydroxide particles, and FIG. 4 shows a particle size distribution diagram. When considering the particle size distribution of the nickel hydroxide particles as a normal distribution,
The standard deviation σ is 5.5, which is smaller than 0.8D 50 (= 10.6).

【0027】(第1の水酸化ニッケル粒子の製造)第1
段階の反応として、10L容量の撹拌機付き反応槽に攪
拌下に温度を50℃に維持しつつ、濃度250g/Lの
硫酸ニッケルと4.0g/Lの硫酸コバルトと11.8g/
Lの硫酸亜鉛を含む混合水溶液と13重量%アンモニア
水を連続的に供給し、この際、混合液のpHを12.3に
保持するように、28重量%水酸化ナトリウム水溶液を
間欠的に反応槽に加えて、金属コバルトとしてコバルト
が1.5重量%と金属亜鉛として亜鉛が4.5重量%固溶し
た平均粒子径2.6μm、タッピング密度1.80g/cc
の水酸化ニッケル粒子を得た。
(Production of First Nickel Hydroxide Particles)
As a step reaction, while maintaining the temperature at 50 ° C. with stirring in a 10 L reaction vessel equipped with a stirrer, nickel sulfate having a concentration of 250 g / L, 4.0 g / L cobalt sulfate and 11.8 g / L were used.
L of zinc sulfate and 13% by weight of aqueous ammonia are continuously supplied. At this time, a 28% by weight aqueous solution of sodium hydroxide is intermittently reacted so as to maintain the pH of the mixture at 12.3. In addition to the tank, 1.5% by weight of cobalt as metallic cobalt and 4.5% by weight of zinc as metallic zinc were dissolved in an average particle diameter of 2.6 μm and a tapping density of 1.80 g / cc.
To obtain nickel hydroxide particles.

【0028】この水酸化ニッケル粒子の走査型電子顕微
鏡写真を図2に示し、粒度分布図を図5に示す。この水
酸化ニッケル粒子の粒度分布を正規分布とみなすとき、
標準偏差σは1.2であって、0.8D50(=2.1)よりも
小さい。
FIG. 2 shows a scanning electron micrograph of the nickel hydroxide particles, and FIG. 5 shows a particle size distribution diagram. When considering the particle size distribution of the nickel hydroxide particles as a normal distribution,
The standard deviation σ is 1.2, which is smaller than 0.8D 50 (= 2.1).

【0029】この水酸化ニッケル粒子を濾過、水洗した
後、5L容量の反応槽に投入して、スラリー化した。第
2段階の反応として、撹拌しながら、このスラリーに濃
度200g/Lの硫酸コバルト水溶液と13重量%アン
モニア水を連続的に供給しながら、混合液のpHを12.
0に維持するように、28重量%水酸化ナトリウム水溶
液を間欠的に加え、コバルト量が第1の水酸化ニッケル
粒子に対して4重量%に達したときに、硫酸コバルト水
溶液とアンモニア水と水酸化ナトリウム水溶液の反応槽
への供給を停止し、この後、更に、20分間撹拌を続け
た。この後、固形分を濾過、水洗、乾燥して、金属コバ
ルトとして4重量%の水酸化コバルトで被覆された第1
の水酸化ニッケル粒子を得た。
After filtering and washing the nickel hydroxide particles, the nickel hydroxide particles were charged into a 5 L reaction tank to form a slurry. As a reaction in the second step, the pH of the mixed solution was adjusted to 12.2 while continuously supplying a 200 g / L aqueous solution of cobalt sulfate and 13% by weight ammonia water to the slurry with stirring.
0 wt% sodium hydroxide aqueous solution is added intermittently so as to maintain the water content at 0%. When the cobalt content reaches 4 wt% with respect to the first nickel hydroxide particles, the aqueous solution of cobalt sulfate, ammonia water and water are added. The supply of the aqueous sodium oxide solution to the reaction tank was stopped, and thereafter, stirring was further continued for 20 minutes. Thereafter, the solid content was filtered, washed with water and dried, and the first metal coated with 4% by weight of cobalt hydroxide as metal cobalt was used.
To obtain nickel hydroxide particles.

【0030】(アルカリ蓄電池正極活物質用水酸化ニッ
ケル粉末の製造)上記第1の水酸化ニッケル粒子80重
量部と第2の水酸化ニッケル粒子20重量部とを混合し
た。得られた混合粉末は、平均粒子径11.3μm、タッ
ピング密度2.35g/ccであった。この混合粉末の走
査型電子顕微鏡写真を図3に示し、粒度分布図を図6に
示す。
(Production of nickel hydroxide powder for positive electrode active material of alkaline storage battery) 80 parts by weight of the first nickel hydroxide particles and 20 parts by weight of the second nickel hydroxide particles were mixed. The obtained mixed powder had an average particle diameter of 11.3 μm and a tapping density of 2.35 g / cc. FIG. 3 shows a scanning electron micrograph of this mixed powder, and FIG. 6 shows a particle size distribution diagram.

【0031】実施例2 (第2の水酸化ニッケル粒子の製造)実施例1と同様に
して、金属コバルトとしてコバルトが1.5重量%と金属
亜鉛として亜鉛が4.5重量%固溶した平均粒子径22.7
0μm、タッピング密度2.08g/ccの第2の水酸化
ニッケル粒子を得た。この水酸化ニッケル粒子は、その
粒度分布を正規分布とみなすとき、標準偏差σは9.3で
あって、0.8D50(=18.2)よりも小さい。
Example 2 (Production of second nickel hydroxide particles) In the same manner as in Example 1, an average of 1.5% by weight of cobalt as metal cobalt and 4.5% by weight of zinc as metal zinc was dissolved. Particle size 22.7
Second nickel hydroxide particles having a thickness of 0 μm and a tapping density of 2.08 g / cc were obtained. When the particle size distribution of the nickel hydroxide particles is regarded as a normal distribution, the standard deviation σ is 9.3, which is smaller than 0.8D 50 (= 18.2).

【0032】更に、実施例1と同様にして、金属コバル
トとしてコバルトが1.5重量%と金属亜鉛として亜鉛が
4.5重量%固溶した平均粒子径12.50μm、タッピン
グ密度2.05g/ccの第2の水酸化ニッケル粒子を得
た。この水酸化ニッケル粒子は、その粒度分布を正規分
布とみなすとき、標準偏差σは5.3であって、0.8D 50
(=10.0)よりも小さい。
Further, in the same manner as in Example 1,
1.5% by weight of cobalt as zinc and zinc as zinc metal
4.5 wt% solid solution average particle size 12.50 μm, tapping
Nickel hydroxide particles having a density of 2.05 g / cc were obtained.
Was. The nickel hydroxide particles have a regular distribution of the particle size distribution.
When considered as cloth, the standard deviation σ is 5.3 and 0.8D 50
(= 10.0).

【0033】(第1の水酸化ニッケル粒子の製造)第1
段階の反応として、10L容量の撹拌機付き反応槽に攪
拌下に温度を50℃に維持しつつ、濃度250g/Lの
硫酸ニッケルと4.0g/Lの硫酸コバルトと11.8g/
Lの硫酸亜鉛を含む混合水溶液と13重量%アンモニア
水を連続的に供給し、この際、混合液のpHを12.3に
保持するように、28重量%水酸化ナトリウム水溶液を
間欠的に反応槽に加えて、金属コバルトとしてコバルト
が1.5重量%と金属亜鉛として亜鉛が4.5重量%固溶し
た平均粒子径3.71μm、タッピング密度1.68g/c
cの水酸化ニッケル粒子を得た。この水酸化ニッケル粒
子は、その粒度分布を正規分布とみなすとき、標準偏差
σは1.6であって、0.8D50(=2.97)よりも小さ
い。
(Production of First Nickel Hydroxide Particles)
As a step reaction, while maintaining the temperature at 50 ° C. with stirring in a 10 L reaction vessel equipped with a stirrer, nickel sulfate having a concentration of 250 g / L, 4.0 g / L cobalt sulfate and 11.8 g / L were used.
L of zinc sulfate and 13% by weight of aqueous ammonia are continuously supplied. At this time, a 28% by weight aqueous solution of sodium hydroxide is intermittently reacted so as to maintain the pH of the mixture at 12.3. In addition to the tank, 1.5% by weight of cobalt as metallic cobalt and 4.5% by weight of zinc as metallic zinc were solid-solved, having an average particle size of 3.71 μm and a tapping density of 1.68 g / c.
Thus, nickel hydroxide particles (c) were obtained. When the particle size distribution of the nickel hydroxide particles is regarded as a normal distribution, the standard deviation σ is 1.6, which is smaller than 0.8D 50 (= 2.97).

【0034】この水酸化ニッケル粒子を濾過、水洗した
後、5L容量の反応槽に投入して、スラリー化した。第
2段階の反応として、撹拌しながら、このスラリーに濃
度250g/Lの硫酸コバルト水溶液と13重量%アン
モニア水を連続的に供給しながら、混合液のpHを12.
0に維持するように、28重量%水酸化ナトリウム水溶
液を間欠的に加え、コバルト量が第1の水酸化ニッケル
粒子に対して4重量%に達したときに、硫酸コバルト水
溶液とアンモニア水と水酸化ナトリウム水溶液の反応槽
への供給を停止して、反応を終了した。反応の終了後、
20分間撹拌を続けた。この後、固形分を濾過、水洗、
乾燥して、金属コバルトとして4重量%の水酸化コバル
トで被覆された第1の水酸化ニッケル粒子を得た。
After the nickel hydroxide particles were filtered and washed with water, they were charged into a 5 L reaction tank to form a slurry. As a reaction in the second step, the pH of the mixed solution was adjusted to 12.2 while continuously supplying an aqueous solution of cobalt sulfate having a concentration of 250 g / L and aqueous ammonia of 13% by weight to the slurry with stirring.
0 wt% sodium hydroxide aqueous solution is added intermittently so as to maintain 0 wt%, and when the amount of cobalt reaches 4 wt% with respect to the first nickel hydroxide particles, aqueous cobalt sulfate solution, aqueous ammonia and water are added. The supply of the aqueous sodium oxide solution to the reaction tank was stopped to terminate the reaction. After the reaction is over,
Stirring was continued for 20 minutes. After this, the solid is filtered, washed with water,
After drying, first nickel hydroxide particles coated with 4% by weight of cobalt hydroxide as metal cobalt were obtained.

【0035】(アルカリ蓄電池正極活物質用水酸化ニッ
ケル粉末の製造)上記第1の水酸化ニッケル粒子と第2
の水酸化ニッケル粒子とを表1に示す割合にて混合し、
得られた混合粉末について、平均粒子径とタッピング密
度を測定した。結果を表1に示す。
(Production of Nickel Hydroxide Powder for Cathode Active Material of Alkaline Storage Battery)
And nickel hydroxide particles in the ratio shown in Table 1,
About the obtained mixed powder, the average particle diameter and the tapping density were measured. Table 1 shows the results.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【発明の効果】以上のように、本発明によれば、平均粒
子径が1〜5μmの範囲にあると共に、所期の狭い粒度
分布を有する微細な第1の水酸化ニッケル粒子と平均粒
子径が10〜30μmの範囲にあると共に、所期の狭い
粒度分布を有する第2の水酸化ニッケル粒子とを所定の
割合で混合することによって、これら粒子の混合物の充
填特性を最密充填に近づけることができ、かくして、タ
ッピング密度を大幅に増大させることができる。即ち、
本発明によれば、通常、タッピング密度が2.0〜3.0g
/ccの範囲にある水酸化ニッケル粉末を得ることがで
きる。従って、本発明による水酸化ニッケル粉末によれ
ば、正極基板の単位体積当たりの活物質の充填量を増加
させることができ、結果として、アルカリ蓄電池の高容
量化を実現することができる。
As described above, according to the present invention, the fine first nickel hydroxide particles having an average particle diameter in the range of 1 to 5 μm and having a narrow desired particle size distribution and the average particle diameter Is in the range of 10 to 30 μm, and by mixing the second nickel hydroxide particles having an intended narrow particle size distribution at a predetermined ratio, to bring the packing characteristics of the mixture of these particles closer to the closest packing. Thus, the tapping density can be greatly increased. That is,
According to the present invention, the tapping density is usually 2.0 to 3.0 g.
/ Cc of nickel hydroxide powder can be obtained. Therefore, according to the nickel hydroxide powder of the present invention, the amount of the active material per unit volume of the positive electrode substrate can be increased, and as a result, the capacity of the alkaline storage battery can be increased.

【0038】更に、本発明によれば、水酸化コバルト又
は酸化コバルトにて被覆されている微細な第1の水酸化
ニッケル粒子が平均粒子径の大きい第2の水酸化ニッケ
ルの粒子の周囲に配置されるので、導電性ネットワーク
の形成を高めて、活物質の利用率を高めることができ、
しかも、第1の水酸化ニッケル粒子のみが水酸化コバル
ト又は酸化コバルトにて被覆されているので、用いるコ
バルト量を低減することができ、電極の製造費用を低減
することができる。
Further, according to the present invention, fine first nickel hydroxide particles coated with cobalt hydroxide or cobalt oxide are arranged around second nickel hydroxide particles having a large average particle diameter. It is possible to enhance the formation of the conductive network and increase the utilization rate of the active material,
Moreover, since only the first nickel hydroxide particles are coated with cobalt hydroxide or cobalt oxide, the amount of cobalt used can be reduced, and the manufacturing cost of the electrode can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、実施例1において得られた第2の水酸化ニ
ッケル粒子の走査型電子顕微鏡写真である。
FIG. 1 is a scanning electron micrograph of the second nickel hydroxide particles obtained in Example 1.

【図2】は、実施例1において得られた水酸化コバルト
による被覆前の微細な水酸化ニッケル粒子の走査型電子
顕微鏡写真である。
FIG. 2 is a scanning electron micrograph of fine nickel hydroxide particles before coating with cobalt hydroxide obtained in Example 1.

【図3】は、実施例1において得られた本発明による水
酸化ニッケル粉末の走査型電子顕微鏡写真である。
FIG. 3 is a scanning electron micrograph of the nickel hydroxide powder according to the present invention obtained in Example 1.

【図4】は、図1に示す第2の水酸化ニッケル粒子の粒
度分布図である。
FIG. 4 is a particle size distribution diagram of the second nickel hydroxide particles shown in FIG.

【図5】は、図2に示す微細な水酸化ニッケル粒子の粒
度分布図である。
FIG. 5 is a particle size distribution diagram of the fine nickel hydroxide particles shown in FIG.

【図6】は、図3に示す本発明による水酸化ニッケル粉
末の粒度分布図である。
FIG. 6 is a particle size distribution diagram of the nickel hydroxide powder according to the present invention shown in FIG.

フロントページの続き (72)発明者 岡本 康寛 大阪府堺市戎島町5丁1番地 堺化学工業 株式会社堺事業所内 (72)発明者 徳永 宏 大阪府堺市戎島町5丁1番地 堺化学工業 株式会社堺事業所内Continued on the front page (72) Inventor Yasuhiro Okamoto 5-1 Ebisshima-cho, Sakai City, Osaka Sakai Chemical Industry Co., Ltd. Sakai Works Co., Ltd. (72) Inventor Hiroshi Tokunaga 5-1-1 Ebisshima-cho, Sakai City, Osaka Stock Sakai Chemical Co., Ltd. Company Sakai Office

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】(a) 表面が水酸化コバルト又は酸化コバル
トにて被覆されており、平均粒子径が1〜5μmの範囲
にあると共に、その粒度分布を正規分布とみなして、標
準偏差をσ、平均粒子径をD50とするとき、σ<0.8D
50を満たすような粒度分布を有する第1の水酸化ニッケ
ル粒子と(b) 平均粒子径が10〜30μmの範囲にある
と共に、その粒度分布を正規分布とみなして、標準偏差
をσ、平均粒子径をD50とするとき、σ<0.8D50を満
たすような粒度分布を有する第2の水酸化ニッケル粒子
とからなり、 タッピング密度が2.0〜3.0g/ccの範囲にあるアル
カリ蓄電池正極活物質用水酸化ニッケル粉末。
(1) The surface is coated with cobalt hydroxide or cobalt oxide, has an average particle size in the range of 1 to 5 μm, and its particle size distribution is regarded as a normal distribution. when the average particle diameter and D 50, sigma <0.8D
The first nickel hydroxide particles having a particle size distribution satisfying 50 and (b) the average particle size is in the range of 10 to 30 μm, and the particle size distribution is regarded as a normal distribution, the standard deviation is σ, the average particle size is when the diameter and D 50, sigma <consists of a second nickel hydroxide particles having a particle size distribution satisfying the 0.8D 50, alkali tapping density is in the range of 2.0 to 3.0 g / cc Nickel hydroxide powder for storage battery positive electrode active material.
【請求項2】第1の水酸化ニッケル粒子における水酸化
コバルト又は酸化コバルトの被覆量が金属コバルトとし
て水酸化ニッケルに対して1〜20重量%の範囲にある
請求項1に記載の水酸化ニッケル粉末。
2. The nickel hydroxide according to claim 1, wherein the coating amount of the cobalt hydroxide or the cobalt oxide in the first nickel hydroxide particles is in the range of 1 to 20% by weight based on the nickel hydroxide as the metal cobalt. Powder.
【請求項3】第1の水酸化ニッケル粒子5〜40重量%
と第2の水酸化ニッケル粒子95〜60重量%とからな
る請求項1又は2に記載の水酸化ニッケル粉末。
3. 5% to 40% by weight of first nickel hydroxide particles
3. The nickel hydroxide powder according to claim 1, comprising 95 to 60% by weight of the second nickel hydroxide particles.
【請求項4】第1の水酸化ニッケル及び/又は第2の水
酸化ニッケルがコバルト、亜鉛、カドミウム、マグネシ
ウム、カルシウム及びマンガンから選ばれる少なくとも
1種を水酸化ニッケルに対して、金属換算にて、1〜1
0重量%の範囲で含むものである請求項1から3のいず
れかに記載の水酸化ニッケル粉末。
4. The method according to claim 1, wherein the first nickel hydroxide and / or the second nickel hydroxide is at least one selected from cobalt, zinc, cadmium, magnesium, calcium and manganese in terms of metal with respect to nickel hydroxide. , 1-1
The nickel hydroxide powder according to any one of claims 1 to 3, which is contained in a range of 0% by weight.
JP10107842A 1998-04-17 1998-04-17 Nickel hydroxide powder for alkaline storage battery positive electrode active material and its manufacture Pending JPH11307092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10107842A JPH11307092A (en) 1998-04-17 1998-04-17 Nickel hydroxide powder for alkaline storage battery positive electrode active material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10107842A JPH11307092A (en) 1998-04-17 1998-04-17 Nickel hydroxide powder for alkaline storage battery positive electrode active material and its manufacture

Publications (1)

Publication Number Publication Date
JPH11307092A true JPH11307092A (en) 1999-11-05

Family

ID=14469449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10107842A Pending JPH11307092A (en) 1998-04-17 1998-04-17 Nickel hydroxide powder for alkaline storage battery positive electrode active material and its manufacture

Country Status (1)

Country Link
JP (1) JPH11307092A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002007238A1 (en) * 2000-07-18 2002-01-24 Ovonic Battery Company, Inc. Nickel hydroxide electrode material and method for making the same
JP2006059807A (en) * 2004-07-23 2006-03-02 M & G Eco Battery Institute Co Ltd Nickel electrode and alkali storage battery using the same
JP2006515950A (en) * 2002-09-28 2006-06-08 ヴァルタ オートモーティヴ システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Active nickel mixed hydroxide-cathode material for alkaline storage battery and method for producing the same
JP2006151795A (en) * 2004-10-27 2006-06-15 Sumitomo Chemical Co Ltd Spherical nickel hydroxide powder and method for producing same
US9716271B2 (en) 2014-03-12 2017-07-25 Gs Yuasa International Ltd. Nickel hydroxide for alkaline secondary battery and alkaline secondary battery
CN111033830A (en) * 2017-08-28 2020-04-17 三井金属矿业株式会社 Positive electrode active material for all-solid-state lithium secondary battery
CN114171727A (en) * 2021-10-27 2022-03-11 深圳市豪鹏科技股份有限公司 Positive electrode material, positive electrode slurry, positive plate and nickel-metal hydride battery
US11824188B2 (en) 2017-08-14 2023-11-21 Mitsui Mining & Smelting Co., Ltd. Positive electrode active material for all-solid-state lithium secondary batteries

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6416903B1 (en) * 1998-08-17 2002-07-09 Ovonic Battery Company, Inc. Nickel hydroxide electrode material and method for making the same
WO2002007238A1 (en) * 2000-07-18 2002-01-24 Ovonic Battery Company, Inc. Nickel hydroxide electrode material and method for making the same
JP2004504698A (en) * 2000-07-18 2004-02-12 オヴォニック バッテリー カンパニー インコーポレイテッド Nickel hydroxide electrode material and its manufacturing method
JP2012119323A (en) * 2000-07-18 2012-06-21 Ovonic Battery Co Inc Nickel hydroxide electrode material and method for producing the same
JP2006515950A (en) * 2002-09-28 2006-06-08 ヴァルタ オートモーティヴ システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Active nickel mixed hydroxide-cathode material for alkaline storage battery and method for producing the same
JP2006059807A (en) * 2004-07-23 2006-03-02 M & G Eco Battery Institute Co Ltd Nickel electrode and alkali storage battery using the same
JP2006151795A (en) * 2004-10-27 2006-06-15 Sumitomo Chemical Co Ltd Spherical nickel hydroxide powder and method for producing same
US9716271B2 (en) 2014-03-12 2017-07-25 Gs Yuasa International Ltd. Nickel hydroxide for alkaline secondary battery and alkaline secondary battery
US11824188B2 (en) 2017-08-14 2023-11-21 Mitsui Mining & Smelting Co., Ltd. Positive electrode active material for all-solid-state lithium secondary batteries
CN111033830A (en) * 2017-08-28 2020-04-17 三井金属矿业株式会社 Positive electrode active material for all-solid-state lithium secondary battery
CN114171727A (en) * 2021-10-27 2022-03-11 深圳市豪鹏科技股份有限公司 Positive electrode material, positive electrode slurry, positive plate and nickel-metal hydride battery

Similar Documents

Publication Publication Date Title
EP0353837B1 (en) A nickel electrode for an alkaline battery
EP0571630B1 (en) Method for production of nickel plate and alkali storage battery
EP0817291B1 (en) Non-sintered nickel electrode for alkaline storage battery, alkaline storage battery including the same, and method for production of non-sintered nickel electrode for alkaline storage battery
JP3249326B2 (en) Nickel active material for alkaline storage battery and method for producing the same
US6558842B2 (en) Positive active material for alkaline battery and electrode using the same
JPH11149921A (en) Alkali storage battery and surface treatment method of its positive electrode substance
US20050238960A1 (en) Non-sintered type positive electrode and alkaline storage battery using the same
JP3617203B2 (en) Manufacturing method of nickel metal hydride secondary battery
JPH11307092A (en) Nickel hydroxide powder for alkaline storage battery positive electrode active material and its manufacture
JPH10241697A (en) Alkaline storage battery electrode and manufacture thereof
JP2002056844A (en) Method of manufacturing positive electrode active material for alkaline storage battery, nickel electrode using this positive electrode active material, and alkaline storage battery using this nickel electrode
JP2889669B2 (en) Non-sintered nickel positive electrode plate for alkaline storage batteries
JP4017302B2 (en) Alkaline storage battery and method for manufacturing the same
JPS5916271A (en) Manufacture of positive active material for alkaline battery
JP2000082463A (en) Nickel positive electrode active material for alkaline battery and its manufacture
JPH0950805A (en) Nickel electrode for alkaline storage battery and active material for nickel electrode and its manufacturing method and alkaline storage battery
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3249414B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery
JP2000058062A (en) Non-sintered nickel positive electrode for alkaline storage battery
JPH11238507A (en) Alkaline storage battery
JP4212129B2 (en) Nickel electrode for alkaline storage battery and method for producing the same
JPH10154508A (en) Alkaline storage battery, its nickel electrode, and its manufacture
JP3239743B2 (en) Method for producing positive electrode for alkaline storage battery
JPH0745282A (en) Nickel electrode for alkaline storage battery
JP2003109586A (en) Manufacturing method of nickel electrode active material paste, nickel electrode active material paste, nickel electrode and alkali storage battery