JP2001345099A - Active material for nickel positive electrode and nickel- hydrogen secondary cell - Google Patents

Active material for nickel positive electrode and nickel- hydrogen secondary cell

Info

Publication number
JP2001345099A
JP2001345099A JP2001089498A JP2001089498A JP2001345099A JP 2001345099 A JP2001345099 A JP 2001345099A JP 2001089498 A JP2001089498 A JP 2001089498A JP 2001089498 A JP2001089498 A JP 2001089498A JP 2001345099 A JP2001345099 A JP 2001345099A
Authority
JP
Japan
Prior art keywords
nickel
positive electrode
compound
active material
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001089498A
Other languages
Japanese (ja)
Other versions
JP4147748B2 (en
Inventor
Yoshitaka Dansui
慶孝 暖水
Tatsuhiko Suzuki
達彦 鈴木
Hideki Kasahara
英樹 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001089498A priority Critical patent/JP4147748B2/en
Publication of JP2001345099A publication Critical patent/JP2001345099A/en
Application granted granted Critical
Publication of JP4147748B2 publication Critical patent/JP4147748B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nickel-hydrogen secondary cell having excellent high- temperature charging efficiency. SOLUTION: The nickel-hydrogen secondary cell having excellent high- temperature charging efficiency can be provided by using a positive electrode comprising nickel hydroxide particles and at least one of rare earth compounds obtained by treating a rare earth oxide with an aqueous alkali solution and an oxidizing agent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ蓄電池に
用いることができる正極活物質およびニッケル−水素二
次電池に関するものである。
The present invention relates to a positive electrode active material and a nickel-hydrogen secondary battery which can be used for an alkaline storage battery.

【0002】[0002]

【従来の技術】近年、アルカリ蓄電池は、携帯機器の普
及に伴い、その高容量化が要望されている。特にニッケ
ル−水素二次電池は、水酸化ニッケルを主体とした活物
質からなる正極と、水素吸蔵合金を活物質とした負極か
らなる二次電池であり、高容量で高信頼性の二次電池と
して急速に普及してきている。
2. Description of the Related Art In recent years, with the spread of portable devices, higher capacity of alkaline storage batteries has been demanded. In particular, a nickel-hydrogen secondary battery is a secondary battery consisting of a positive electrode made of an active material mainly composed of nickel hydroxide and a negative electrode made of a hydrogen storage alloy as an active material, and has a high capacity and high reliability. It is spreading rapidly.

【0003】以下に従来のアルカリ蓄電池の正極につい
て説明する。
Hereinafter, the positive electrode of a conventional alkaline storage battery will be described.

【0004】アルカリ蓄電池の正極としては、大別して
焼結式と非焼結式とがある。前者はニッケル粉末を焼結
して得た多孔度80%程度の多孔質ニッケル焼結基板
に、硝酸ニッケル水溶液等のニッケル塩溶液を含浸し、
次いで、アルカリ水溶液に浸漬するなどして多孔質ニッ
ケル焼結基板中に水酸化ニッケル活物質を生成させて製
造するものである。この電極は基板の多孔度をこれ以上
大きくすることが困難であるため、充填される活物質量
を増加させることができず、高容量化には限界がある。
The positive electrodes of alkaline storage batteries are roughly classified into a sintered type and a non-sintered type. The former impregnates a nickel salt solution such as a nickel nitrate aqueous solution into a porous nickel sintered substrate having a porosity of about 80% obtained by sintering nickel powder,
Then, a nickel hydroxide active material is produced in the porous nickel sintered substrate by immersing it in an alkaline aqueous solution or the like to produce the substrate. Since it is difficult for this electrode to further increase the porosity of the substrate, the amount of the active material to be filled cannot be increased, and there is a limit to increasing the capacity.

【0005】また後者の非焼結式正極としては、例え
ば、特開昭50−36935号公報に開示された、ニッ
ケル金属よりなる三次元的に連続した多孔度95%以上
のスポンジ状多孔体基板に、活物質である水酸化ニッケ
ルを充填するものである。これは現在高容量の二次電池
の正極として広く用いられている。
As the latter non-sintered type positive electrode, for example, a sponge-like porous substrate made of nickel metal and having a three-dimensionally continuous porosity of 95% or more disclosed in Japanese Patent Application Laid-Open No. 50-36935 is disclosed. Is filled with nickel hydroxide as an active material. This is currently widely used as a positive electrode for high capacity secondary batteries.

【0006】この非焼結式正極においては、高容量化の
点から、球状の水酸化ニッケルを多孔体基板に充填する
ことが提案されている。これはスポンジ状多孔体基板の
孔部(ポアサイズは200〜500μm程度)に粒径が
数μm〜数10μmの球状水酸化ニッケルを充填するも
のである。
In this non-sintered type positive electrode, it has been proposed to fill a porous substrate with spherical nickel hydroxide from the viewpoint of increasing the capacity. In this method, the pores (pore size of about 200 to 500 μm) of the sponge-like porous substrate are filled with spherical nickel hydroxide having a particle size of several μm to several tens μm.

【0007】この構成では、ニッケル金属骨格近傍の水
酸化ニッケルは導電ネットワークが保たれ、充放電反応
がスムーズに進行するが、骨格から離れた水酸化ニッケ
ルの反応は十分に進まない。
In this configuration, the nickel hydroxide in the vicinity of the nickel metal skeleton maintains the conductive network, and the charge / discharge reaction proceeds smoothly, but the reaction of the nickel hydroxide separated from the skeleton does not sufficiently proceed.

【0008】そこでこの非焼結式正極においては、充填
した水酸化ニッケルの利用率を向上させるために、活物
質である水酸化ニッケル以外に導電剤を用いて、これで
球状の水酸化ニッケル粒子間を電気的に接続させてい
る。
In order to improve the utilization rate of the filled nickel hydroxide, a conductive agent is used in this non-sintered positive electrode in addition to nickel hydroxide as an active material. They are electrically connected.

【0009】この導電剤としては、水酸化コバルト、一
酸化コバルトのようなコバルト化合物や、金属コバル
ト、金属ニッケル等が用いられる。これにより、非焼結
式正極では活物質を高密度に充填することが可能とな
り、焼結式正極に比較し高容量化が図れる。
As the conductive agent, a cobalt compound such as cobalt hydroxide or cobalt monoxide, metallic cobalt, metallic nickel or the like is used. Thus, the non-sintered positive electrode can be filled with the active material at a high density, and the capacity can be increased as compared with the sintered positive electrode.

【0010】また、高容量で過放電特性に優れサイクル
特性向上への市場要望にあわせた、高容量ニッケル−水
素二次電池用正極活物質の製造方法として、コバルト化
合物を活物質である水酸化ニッケルに被覆し、そのコバ
ルト化合物をアルカリ酸化処理することにより高次コバ
ルト酸化物にする方法が特開平8−148145号公報
に、その製造方法の改良が特開平9−73900号公報
に開示されている。
A method for producing a positive electrode active material for a high-capacity nickel-hydrogen secondary battery, which meets the market demand for high-capacity, excellent over-discharge characteristics and improved cycle characteristics, uses a cobalt compound as an active material. JP-A-8-148145 discloses a method of coating nickel with a cobalt compound and subjecting the cobalt compound to an alkali oxidation treatment, and JP-A-9-73900 discloses an improvement of the production method. I have.

【0011】この方法はコバルト化合物を被覆した水酸
化ニッケル粉末を加熱空気中で流動化させるか分散させ
ながら、アルカリ水溶液を噴霧する方法である。これに
より従来外部添加剤としてコバルト化合物を添加してい
た製造方法に比較して活物質利用率、高率放電特性等の
電池特性を向上させ高エネルギー密度のアルカリ蓄電池
を製造することができる。
This method is a method of spraying an aqueous alkali solution while fluidizing or dispersing nickel hydroxide powder coated with a cobalt compound in heated air. This makes it possible to manufacture an alkaline storage battery having a high energy density by improving the battery characteristics such as the active material utilization rate and the high-rate discharge characteristics as compared with a manufacturing method in which a cobalt compound is added as an external additive.

【0012】また、ニッケル−水素二次電池は電池の温
度が高い場合、充電の効率が低下する現象が起こる。こ
の課題に対してはニッケル−水素二次電池に用いる電解
液の最適化や高温充電効率を向上させる、カルシウム化
合物、酸化イットリウム、酸化イッテルビウム等の希土
類酸化物の正極活物質への添加が行われている。例えば
特開平9−92279号公報などに開示されている。
[0012] When the temperature of the nickel-hydrogen secondary battery is high, a phenomenon occurs in which the charging efficiency is reduced. In order to solve this problem, a rare earth oxide such as a calcium compound, yttrium oxide, or ytterbium oxide is added to a positive electrode active material to optimize an electrolytic solution used in a nickel-hydrogen secondary battery and improve high-temperature charging efficiency. ing. For example, it is disclosed in JP-A-9-92279.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、より高
容量で、なおかつ高温度での充電効率を向上させるため
に、従来の添加物の正極への添加量を増やしても、充電
効率をこれ以上向上させることは困難であった。
However, in order to improve the charging efficiency at a higher capacity and at a higher temperature, even if the amount of the conventional additive added to the positive electrode is increased, the charging efficiency is further improved. It was difficult to do.

【0014】本発明は上記問題点に鑑み、添加剤の活性
化を行い、少量の添加で高温充電効率を向上させたニッ
ケル−水素二次電池を提供することを主たる目的とした
ものである。
The present invention has been made in view of the above problems, and has as its main object to provide a nickel-hydrogen secondary battery in which an additive is activated and a high-temperature charging efficiency is improved by adding a small amount.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
に、本発明は水酸化ニッケル粒子と、希土類酸化物をア
ルカリ水溶液と酸化剤で処理して得ることのできる希土
類化合物の少なくとも1種とを含む活物質を作製し、こ
れを正極に用いてニッケル−水素二次電池を構成したも
のである。
In order to achieve the above-mentioned object, the present invention provides a method for producing a composition comprising nickel hydroxide particles and at least one rare earth compound obtainable by treating a rare earth oxide with an aqueous alkali solution and an oxidizing agent. An active material containing is prepared, and this is used as a positive electrode to constitute a nickel-hydrogen secondary battery.

【0016】これによって、高温充電効率に優れたニッ
ケル−水素二次電池を提供することが可能となる。
Thus, it is possible to provide a nickel-hydrogen secondary battery having excellent high-temperature charging efficiency.

【0017】[0017]

【発明の実施の形態】本発明は、水酸化ニッケル粒子
と、希土類酸化物をアルカリ水溶液と酸化剤で処理して
得ることのできる希土類化合物の少なくとも1種とを含
む、ニッケル正極活物質に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nickel positive electrode active material comprising nickel hydroxide particles and at least one rare earth compound obtainable by treating a rare earth oxide with an aqueous alkaline solution and an oxidizing agent.

【0018】希土類酸化物をアルカリ水溶液と酸化剤で
処理して活性化することによって得られた希土類化合物
を正極の添加剤として使用することによって、少量の添
加により、高温充電効率を上げることができる。
By using a rare earth compound obtained by treating a rare earth oxide with an aqueous alkali solution and an oxidizing agent to activate the rare earth oxide as an additive for the positive electrode, high-temperature charging efficiency can be improved by adding a small amount of the rare earth compound. .

【0019】希土類酸化物は、スカンジウム、イットリ
ウム、プロメチウム、ガドリニウム、テルビウム、ジス
プロシウム、ホルミウム、エリビウム、ツリウム、イッ
テルビウム、フテチウムの式M23(Mは希土類元素)
で示される酸化物、好ましくは、イットリウム、ルテチ
ウム、イッテルビウム、ホルミウム、エリビウム、ツリ
ウム、さらに好ましくは、イットリウム、ルテチウム、
イッテルビウムの酸化物である。これらの任意の組み合
わせを使用することもできる。
The rare earth oxides are scandium, yttrium, promethium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and phthalium, of the formula M 2 O 3 (M is a rare earth element)
An oxide represented by, preferably, yttrium, lutetium, ytterbium, holmium, erbium, thulium, more preferably, yttrium, lutetium,
It is an oxide of ytterbium. Any combination of these can also be used.

【0020】アルカリ水溶液は、好ましくは、水酸化リ
チウム、水酸化ナトリウム、水酸化カリウムから選ばれ
る少なくとも1種を含む水溶液である。
The alkaline aqueous solution is preferably an aqueous solution containing at least one selected from lithium hydroxide, sodium hydroxide and potassium hydroxide.

【0021】酸化剤は、好ましくは、次亜塩素酸ナトリ
ウム水溶液または次亜塩素酸カリウム水溶液の少なくと
も1種を含んでいる。
The oxidizing agent preferably contains at least one of an aqueous solution of sodium hypochlorite or an aqueous solution of potassium hypochlorite.

【0022】希土類化合物の添加量の総量は、水酸化ニ
ッケル粒子に対して好ましくは0.1〜4.0重量%で
ある。
The total amount of the rare earth compound added is preferably 0.1 to 4.0% by weight based on the nickel hydroxide particles.

【0023】希土類化合物を複数使用した場合、たとえ
ば、イットリウム化合物とルテチウム化合物を使用した
場合、それぞれの使用量は、イットリウム化合物の重量
を(100−X)重量%、ルテチウム化合物の重量をX
重量%としたとき、50≧X≧5であることが好まし
い。
When a plurality of rare earth compounds are used, for example, when an yttrium compound and a lutetium compound are used, the amounts of the yttrium compound and the weight of the lutetium compound are (100-X) and (X), respectively.
When expressed as% by weight, it is preferable that 50 ≧ X ≧ 5.

【0024】また、たとえば、イッテルビウム化合物と
ルテチウム化合物を使用した場合、それぞれの使用量
は、イッテルビウム化合物の重量を(100−X)重量
%、ルテチウム化合物の重量をX重量%としたとき、5
0≧X≧5であることが好ましい。
Further, for example, when the ytterbium compound and the lutetium compound are used, the amount of each is 5% when the weight of the ytterbium compound is (100-X) weight% and the weight of the lutetium compound is X weight%.
It is preferable that 0 ≧ X ≧ 5.

【0025】また、本発明は、水酸化ニッケル粒子と、
上記に記載した添加剤とを含む正極と、水素吸蔵合金を
主体とする負極と、セパレータとを含むニッケル−水素
二次電池に関する。水酸化ニッケル粒子、水素吸蔵合
金、セパレータなどの構成要素は特に限定されず、当業
界において公知のものを使用することができる。たとえ
ば、水酸化ニッケル粒子としては、コバルト、亜鉛、カ
ドミウム等の金属イオンを固溶させた水酸化ニッケル固
溶体粒子を使用することができ、また、導電剤として、
水酸化コバルトや一酸化コバルトのようなコバルト化合
物や金属コバルト、金属ニッケルなどを加えてもよい。
Also, the present invention provides a method for producing a nickel hydroxide particle, comprising:
The present invention relates to a nickel-hydrogen secondary battery including a positive electrode including the additive described above, a negative electrode mainly including a hydrogen storage alloy, and a separator. Components such as nickel hydroxide particles, a hydrogen storage alloy, and a separator are not particularly limited, and those known in the art can be used. For example, as the nickel hydroxide particles, cobalt, zinc, nickel hydroxide solid solution particles in which metal ions such as cadmium are dissolved can be used, and as a conductive agent,
A cobalt compound such as cobalt hydroxide or cobalt monoxide, metal cobalt, metal nickel, or the like may be added.

【0026】本発明はいかなる理論にも拘束されるもの
ではないが、本発明者らは下記のように推察している。
Although the present invention is not bound by any theory, the present inventors speculate as follows.

【0027】特開平9−92279号公報に開示された
発明では、希土類酸化物を正極の添加剤として使用して
いる。添加された希土類酸化物は、電池内にはいると、
水酸化物に変化すると共に、微量ではあるが電解液に溶
解する。このときの反応で電解液のH2Oが消費され
る。電池の充電効率は電解液の濃度に依存し、高濃度に
なると、低下する。電池内で電解液中のH2Oを消費す
ると電池内の電解液濃度が上昇し、充電効率が低下する
おそれがある。そこで、本発明では予め、電池外でかか
る処理を行ったものである。
In the invention disclosed in JP-A-9-92279, a rare earth oxide is used as an additive for the positive electrode. When the added rare earth oxide enters the battery,
It changes to hydroxide and dissolves in the electrolyte, albeit in a trace amount. The reaction at this time consumes H 2 O of the electrolytic solution. The charging efficiency of the battery depends on the concentration of the electrolytic solution, and decreases as the concentration increases. When H 2 O in the electrolyte is consumed in the battery, the concentration of the electrolyte in the battery increases, and the charging efficiency may decrease. Therefore, in the present invention, such processing is performed in advance outside the battery.

【0028】更にこの電池外でのアルカリ水溶液と酸化
剤との処理により、希土類酸化物は、活性の高い希土類
水酸化物前駆体を形成すると考えられる。希土類水酸化
物は結晶性の高い物質であるが、本願で添加剤として使
用する希土類水酸化物前駆体は希土類水酸化物の結晶構
造に比べて乱れた結晶構造を有している。希土類水酸化
物前駆体はアルカリや水分子を配位したようなものであ
ろうと推測され、このような前駆体は電解液との界面に
おいて希土類水酸化物よりも多くの活性点を持つのでは
ないかと推測される。
Further, it is considered that the rare earth oxide forms a highly active rare earth hydroxide precursor by the treatment of the alkaline aqueous solution and the oxidizing agent outside the battery. Rare earth hydroxide is a substance having high crystallinity, but the rare earth hydroxide precursor used as an additive in the present application has a crystal structure that is more disordered than the crystal structure of the rare earth hydroxide. It is speculated that rare earth hydroxide precursors would be like coordination of alkali and water molecules, and such precursors may have more active sites at the interface with the electrolyte than rare earth hydroxides. It is guessed.

【0029】したがって、本発明は希土類水酸化物前駆
体、好ましくは、イットリウム水酸化物前駆体、ルテチ
ウム水酸化物前駆体、イッテルビウム水酸化物前駆体を
添加剤として使用するものである。本明細書において、
希土類水酸化物前駆体とは、希土類酸化物をアルカリ水
溶液と酸化剤で処理して得られた希土類化合物をいい、
本発明の目的を害さない範囲で未反応の希土類酸化物
や、希土類水酸化物を含んでいてもよい。
Therefore, the present invention uses a rare earth hydroxide precursor, preferably a yttrium hydroxide precursor, a lutetium hydroxide precursor, or a ytterbium hydroxide precursor as an additive. In this specification,
The rare earth hydroxide precursor refers to a rare earth compound obtained by treating a rare earth oxide with an aqueous alkali solution and an oxidizing agent,
Unreacted rare earth oxides and rare earth hydroxides may be contained within a range not to impair the object of the present invention.

【0030】希土類水酸化物前駆体は、希土類水酸化物
や希土類酸化物と、たとえば重量変化に基づき区別でき
ると推測される。酸化物は400℃程度まで加熱しても
ほとんど重量変化せず、水酸化物は、水酸化物から酸化
物に変化するため、約200℃〜300℃で重量変化す
る。前駆体は、約100℃での物理的吸着水の脱離のた
め、また100℃以上での結晶水の脱離のため、約10
0℃で重量変化を示す。
It is presumed that the rare earth hydroxide precursor can be distinguished from the rare earth hydroxide or the rare earth oxide based on, for example, a change in weight. Oxide hardly changes in weight even when heated to about 400 ° C., and hydroxide changes in weight from about 200 ° C. to 300 ° C. because it changes from hydroxide to oxide. The precursor is reduced to about 10% due to the elimination of physically adsorbed water at about 100 ° C. and the crystallization water at 100 ° C. or higher.
Shows weight change at 0 ° C.

【0031】[0031]

【実施例】(実施例1)酸化イットリウム5gを水酸化
ナトリウム30wt%水溶液200cm3の中に入れ攪
拌した。この懸濁液の中に20%次亜塩素酸ナトリウム
水溶液を100cm3徐々に加えた。酸素の発泡が終了
した後、溶液をろ過して沈殿物を水洗した。この沈殿物
を真空乾燥機で乾燥し水酸化イットリウム前駆体の粉末
を得た。
EXAMPLES Example 1 5 g of yttrium oxide was placed in 200 cm 3 of a 30 wt% aqueous solution of sodium hydroxide and stirred. 100 cm 3 of a 20% aqueous sodium hypochlorite solution was gradually added to the suspension. After the completion of oxygen bubbling, the solution was filtered and the precipitate was washed with water. The precipitate was dried with a vacuum dryer to obtain a powder of a yttrium hydroxide precursor.

【0032】次に、水酸化ニッケル粉末300gと、水
酸化コバルト粉末30gと、酸化亜鉛6gと、上記処理
で得られた粉末3gと水を混合しペースト状とした。こ
のペーストを発泡メタルに充填、乾燥、圧延して正極板
とした。圧延後の正極板厚さは750μm程度となっ
た。この電極の理論容量(水酸化ニッケルが1電子反応
であると仮定して289mAh/gとして計算する)は
1300mAhであった。
Next, 300 g of nickel hydroxide powder, 30 g of cobalt hydroxide powder, 6 g of zinc oxide, 3 g of the powder obtained by the above treatment and water were mixed to form a paste. This paste was filled in a foamed metal, dried and rolled to obtain a positive electrode plate. The thickness of the positive electrode plate after rolling was about 750 μm. The theoretical capacity of this electrode (calculated as 289 mAh / g assuming that nickel hydroxide is a one-electron reaction) was 1300 mAh.

【0033】負極は、AB5型水素吸蔵合金と、炭素材
1重量%と、PTFE1重量%と水を加えて調整したペ
ーストを塗布し、乾燥した後、圧延した。圧延後の電極
の厚さは420μmであった。この電極の理論容量は1
900mAhであった。
The negative electrode includes a AB 5 type hydrogen storage alloy, carbon material and 1% by weight, the paste prepared by adding a PTFE1 wt% of water was applied, dried and then rolled. The thickness of the electrode after rolling was 420 μm. The theoretical capacity of this electrode is 1
It was 900 mAh.

【0034】セパレータにはポリプロピレン製の不織布
を用いた。このセパレータの厚さは130μmのものを
用いた。
A nonwoven fabric made of polypropylene was used as the separator. The thickness of this separator was 130 μm.

【0035】上記の正極、負極、セパレータを正極、セ
パレータ、負極、セパレータの順に配置して全体を渦巻
状に巻き、AAサイズの電池ケースに挿入し、アルカリ
電解液を所定量注液した後、封口板で封口して密閉型ニ
ッケル−水素二次電池を作製した。
The above positive electrode, negative electrode, and separator are arranged in the order of positive electrode, separator, negative electrode, and separator, and the whole is spirally wound, inserted into an AA-size battery case, and injected with a predetermined amount of an alkaline electrolyte. Sealing was carried out with a sealing plate to produce a sealed nickel-hydrogen secondary battery.

【0036】この電池を25℃の雰囲気で130mAで
15時間充電した後、260mAで放電電圧1Vになる
まで放電した。この時の放電容量から求めた利用率(実
際の放電容量/正極理論容量の百分率)は98%であっ
た。この電池を本発明の実施例1における電池Aとす
る。
The battery was charged at 130 mA in an atmosphere of 25 ° C. for 15 hours, and then discharged at 260 mA until the discharge voltage reached 1V. At this time, the utilization rate (actual discharge capacity / percentage of positive electrode theoretical capacity) determined from the discharge capacity was 98%. This battery is referred to as Battery A in Example 1 of the present invention.

【0037】比較電池としては2種類準備した。Two types of comparative batteries were prepared.

【0038】一種類は、実施例1で得られた酸化イット
リウムをアルカリ水溶液と酸化剤で処理して得られた水
酸化イットリウム前駆体の代わりに処理を施さない酸化
イットリウムを用いたものとした。この電池を電池Xと
する。
One type uses yttrium oxide which is not treated in place of the yttrium hydroxide precursor obtained by treating the yttrium oxide obtained in Example 1 with an aqueous alkali solution and an oxidizing agent. This battery is referred to as battery X.

【0039】もう一種類は、酸化イットリウムを添加し
ない正極を用いた電池を作製した。この電池を電池Yと
する。
As another type, a battery using a positive electrode to which yttrium oxide was not added was prepared. This battery is referred to as battery Y.

【0040】25℃雰囲気では電池X、Yとも利用率は
98%であった。
In an atmosphere of 25 ° C., the utilization rate of both batteries X and Y was 98%.

【0041】次にこれらの電池を、25℃、45℃、5
0℃、55℃、60℃の雰囲気で130mAで充電を行
い、温度を25℃に下げて260mAで放電させた。
Next, these batteries were heated at 25 ° C., 45 ° C., 5
The battery was charged at 130 mA in an atmosphere of 0 ° C., 55 ° C., and 60 ° C., and the temperature was lowered to 25 ° C. and discharged at 260 mA.

【0042】図1に各温度での利用率を示す。実線は本
発明の電池Aの利用率で、一点鎖線は比較電池Xで、点
線は比較電池Yの利用率である。
FIG. 1 shows the utilization at each temperature. The solid line is the utilization of the battery A of the present invention, the dashed line is the comparative battery X, and the dotted line is the utilization of the comparative battery Y.

【0043】図1からも明らかなように、本発明の電池
では、従来の酸化イットリウムを添加したものより温度
が高いほど、充電の効率が高くなっていることがわか
る。
As is clear from FIG. 1, in the battery of the present invention, the charging efficiency is higher as the temperature is higher than that of the conventional battery to which yttrium oxide is added.

【0044】(実施例2)実施例1と同様に作製した水
酸化イットリウム前駆体の粉末を水酸化ニッケル粉末に
対して0.1、0.2、0.5、1.0、1.5、2.
0、3.0、4.0、5.0重量%添加した正極を作製
しAAサイズのニッケル−水素二次電池を作った。
(Example 2) The powder of the yttrium hydroxide precursor prepared in the same manner as in Example 1 was added to the nickel hydroxide powder by 0.1, 0.2, 0.5, 1.0, 1.5. 2.
A positive electrode to which 0, 3.0, 4.0 and 5.0% by weight was added was prepared, and an AA size nickel-hydrogen secondary battery was prepared.

【0045】これらの電池を55℃で130mAで充電
し、温度を25℃に下げて260mAで放電させた。こ
の時の利用率を図2に示す。図2より明らかなように充
電効率が向上する最適値が存在し0.1〜4.0重量%
が好ましい量であることが分かる。
The batteries were charged at 130 mA at 55 ° C., discharged at 260 mA with the temperature lowered to 25 ° C. The utilization at this time is shown in FIG. As is clear from FIG. 2, there is an optimum value at which the charging efficiency is improved, and 0.1 to 4.0% by weight.
Is a preferable amount.

【0046】(実施例3)酸化イットリウム5gと酸化
ルテチウム5gを水酸化ナトリウム30wt%水溶液3
00cm3の中に入れ攪拌する。この懸濁液の中に20
%次亜塩素酸ナトリウム水溶液を200cm3徐々に加
えた。酸素の発泡が終了した後、溶液をろ過して沈殿物
を水洗した。この沈殿物を真空乾燥機で乾燥し粉末を得
た。この粉末を実施例1の手順と同様にして正極に2w
t%添加した電池を作製した。この電池の55℃での利
用率は92%であり、50:50に混合して用いても同
様の効果が得られた。
Example 3 5 g of yttrium oxide and 5 g of lutetium oxide were dissolved in a 30 wt% aqueous solution of sodium hydroxide 3
Place in 00 cm 3 and stir. 20 in this suspension
% Aqueous solution of sodium hypochlorite 200 cm 3 was added slowly. After the completion of oxygen bubbling, the solution was filtered and the precipitate was washed with water. The precipitate was dried with a vacuum drier to obtain a powder. This powder was applied to the positive electrode in the same manner as in Example 1 for 2 watts.
A battery with t% added was prepared. The utilization rate of this battery at 55 ° C. was 92%, and the same effect was obtained even when mixed and used at 50:50.

【0047】なお、上記の実施例では、酸化イットリウ
ムと酸化ルテチウムをアルカリ水溶液と酸化剤で処理し
た粉末を用いたが、酸化イッテルビウムでも同様の効果
が得られる。
In the above embodiment, a powder obtained by treating yttrium oxide and lutetium oxide with an alkaline aqueous solution and an oxidizing agent is used. However, the same effect can be obtained with ytterbium oxide.

【0048】また、上記の実施例では、アルカリ水溶液
は水酸化ナトリウムを用いたが、水酸化リチウム、水酸
化カリウム単独もしくは混合して用いてもよい。
In the above embodiment, sodium hydroxide was used as the alkaline aqueous solution. However, lithium hydroxide and potassium hydroxide may be used alone or in combination.

【0049】さらに、上記実施例の酸化剤としては、次
亜塩素酸ナトリウムを用いたが、次亜塩素酸カリウムを
用いても同様な効果が得られる。
Further, although sodium hypochlorite was used as the oxidizing agent in the above embodiment, the same effect can be obtained by using potassium hypochlorite.

【0050】上記の効果は、酸化イットリウム、酸化イ
ッテルビウム、酸化ルテチウムをアルカリ水溶液と酸化
剤で処理することにより得られたと考えられ、その他の
不純物たとえば、希土類酸化物や遷移金属酸化物、アル
カリ土類等が含まれていても効果に対してなんら悪影響
をもたらすものではない。
The above effects are considered to have been obtained by treating yttrium oxide, ytterbium oxide, and lutetium oxide with an aqueous alkali solution and an oxidizing agent, and other impurities such as rare earth oxides, transition metal oxides, and alkaline earth oxides. Even if they are included, they have no adverse effect on the effect.

【0051】さらにまた、上記実施例に用いた水酸化コ
バルトや酸化亜鉛添加はこれらを限定するものではなく
一実施例として用いたものである。
Further, the addition of cobalt hydroxide or zinc oxide used in the above embodiment is not limited thereto, but is used as one embodiment.

【0052】[0052]

【発明の効果】以上のように本発明の正極活物質にアル
カリ水溶液と酸化剤で処理した希土類化合物を添加した
正極を用いたニッケル−水素二次電池では、特に高温域
での改善は飛躍的であり工業的価値は計り知れない。
As described above, in the nickel-hydrogen secondary battery using the cathode in which the cathode active material of the present invention is added with the alkaline earth solution and the rare earth compound treated with the oxidizing agent, the improvement particularly in the high temperature region is remarkable. And the industrial value is immense.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における電池の温度と利用率
の関係を示す図
FIG. 1 is a diagram showing a relationship between a battery temperature and a utilization rate in Example 1 of the present invention.

【図2】本発明の実施例2における電池の粉末添加量と
利用率の関係を示す図
FIG. 2 is a diagram showing the relationship between the amount of powder added to a battery and the utilization rate in Example 2 of the present invention.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ニッケル粒子と、希土類酸化物を
アルカリ水溶液と酸化剤で処理して得ることのできる希
土類化合物の少なくとも1種とを含む、ニッケル正極活
物質。
1. A nickel positive electrode active material comprising nickel hydroxide particles and at least one rare earth compound obtainable by treating a rare earth oxide with an aqueous alkali solution and an oxidizing agent.
【請求項2】 希土類化合物が、酸化イットリウムをア
ルカリ水溶液と酸化剤で処理して得ることのできるイッ
トリウム化合物、酸化ルテチウムをアルカリ水溶液と酸
化剤で処理して得ることのできるルテチウム化合物、酸
化イッテルビウムをアルカリ水溶液と酸化剤で処理して
得ることのできるイッテルビウム化合物からなる群から
選択される少なくとも1種である請求項1記載のニッケ
ル正極活物質。
2. The rare earth compound is a yttrium compound obtainable by treating yttrium oxide with an alkaline aqueous solution and an oxidizing agent, a lutetium compound obtainable by treating lutetium oxide with an alkaline aqueous solution and an oxidizing agent, and ytterbium oxide. The nickel positive electrode active material according to claim 1, wherein the nickel positive electrode active material is at least one selected from the group consisting of an ytterbium compound obtainable by treating with an aqueous alkali solution and an oxidizing agent.
【請求項3】 希土類化合物の総量が水酸化ニッケル粒
子に対して0.1〜4.0重量%である請求項1記載の
ニッケル正極活物質。
3. The nickel positive electrode active material according to claim 1, wherein the total amount of the rare earth compound is 0.1 to 4.0% by weight based on the nickel hydroxide particles.
【請求項4】 希土類化合物がイットリウム化合物とル
テチウム化合物であり、イットリウム化合物の重量を
(100−X)重量%、ルテチウム化合物の重量をX重
量%としたとき、50≧X≧5である請求項2記載のニ
ッケル正極活物質。
4. The rare earth compound is an yttrium compound and a lutetium compound, and when the weight of the yttrium compound is (100-X) weight% and the weight of the lutetium compound is X weight%, 50 ≧ X ≧ 5. 2. The nickel positive electrode active material according to 2.
【請求項5】 希土類化合物がイッテルビウム化合物と
ルテチウム化合物であり、イッテルビウム化合物の重量
を(100−X)重量%、ルテチウム化合物の重量をX
重量%としたとき、50≧X≧5である請求項2記載の
ニッケル正極活物質。
5. The rare earth compounds are a ytterbium compound and a lutetium compound, wherein the weight of the ytterbium compound is (100-X)% by weight, and the weight of the lutetium compound is X
The nickel positive electrode active material according to claim 2, wherein 50? X?
【請求項6】 アルカリ水溶液が水酸化リチウム、水酸
化ナトリウム、水酸化カリウムから選ばれる少なくとも
1種を含む水溶液である請求項1記載のニッケル正極活
物質。
6. The nickel positive electrode active material according to claim 1, wherein the alkaline aqueous solution is an aqueous solution containing at least one selected from lithium hydroxide, sodium hydroxide, and potassium hydroxide.
【請求項7】 酸化剤が次亜塩素酸ナトリウム水溶液ま
たは次亜塩素酸カリウム水溶液の少なくとも1種を含む
請求項1記載のニッケル正極活物質。
7. The nickel positive electrode active material according to claim 1, wherein the oxidizing agent comprises at least one of an aqueous solution of sodium hypochlorite or an aqueous solution of potassium hypochlorite.
【請求項8】 請求項1に記載の正極活物質を主体とす
る正極と、水素吸蔵合金を主体とする負極と、セパレー
タとを含むニッケル−水素二次電池。
8. A nickel-hydrogen secondary battery comprising the positive electrode mainly comprising the positive electrode active material according to claim 1, a negative electrode mainly comprising a hydrogen storage alloy, and a separator.
JP2001089498A 2000-03-28 2001-03-27 Nickel positive electrode and nickel-hydrogen storage battery Expired - Fee Related JP4147748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001089498A JP4147748B2 (en) 2000-03-28 2001-03-27 Nickel positive electrode and nickel-hydrogen storage battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-87999 2000-03-28
JP2000087999 2000-03-28
JP2001089498A JP4147748B2 (en) 2000-03-28 2001-03-27 Nickel positive electrode and nickel-hydrogen storage battery

Publications (2)

Publication Number Publication Date
JP2001345099A true JP2001345099A (en) 2001-12-14
JP4147748B2 JP4147748B2 (en) 2008-09-10

Family

ID=26588524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001089498A Expired - Fee Related JP4147748B2 (en) 2000-03-28 2001-03-27 Nickel positive electrode and nickel-hydrogen storage battery

Country Status (1)

Country Link
JP (1) JP4147748B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238764A (en) * 2009-07-21 2009-10-15 Gs Yuasa Corporation Nickel electrode for alkaline storage battery and alkaline storage battery
JP2013084630A (en) * 2013-02-13 2013-05-09 Gs Yuasa Corp Method for manufacturing nickel electrode for alkaline storage battery and method for manufacturing alkaline storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238764A (en) * 2009-07-21 2009-10-15 Gs Yuasa Corporation Nickel electrode for alkaline storage battery and alkaline storage battery
JP2013084630A (en) * 2013-02-13 2013-05-09 Gs Yuasa Corp Method for manufacturing nickel electrode for alkaline storage battery and method for manufacturing alkaline storage battery

Also Published As

Publication number Publication date
JP4147748B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
US6632568B1 (en) Non-sintered nickel electrode with excellent over-discharge characteristics, an alkaline storage cell having the non-sintered nickel electrode, and a manufacturing method of the non-sintered nickel electrode
JP4710225B2 (en) Method for producing nickel electrode material
JP2004071304A (en) Positive active material for alkaline storage battery, positive electrode using it, and alkaline storage battery
KR100369217B1 (en) Nickel electrode for alkali storage battery, method of producing nickel electrode for alkali storage battery, and alkali storage battery
US7147676B2 (en) Method of preparing a nickel positive electrode active material
JP4608128B2 (en) Cobalt compound, method for producing the same, positive electrode plate for alkaline storage battery and alkaline storage battery using the same
JP4474722B2 (en) Alkaline storage battery and positive electrode for alkaline storage battery used therefor
JP4017302B2 (en) Alkaline storage battery and method for manufacturing the same
WO2014049966A1 (en) Cathode active material for alkaline storage battery, alkaline storage battery and alkaline storage battery cathode containing same, and nickel-hydrogen storage battery
JP3623320B2 (en) Nickel electrode active material and nickel electrode using the nickel electrode active material
JP4147748B2 (en) Nickel positive electrode and nickel-hydrogen storage battery
JP2001297758A (en) Positive electrode active material for alkaline storage cell and manufacturing method and alkaline storage cell using above
JP3543601B2 (en) Alkaline storage battery
JPH09199119A (en) Alkaline storage battery
JP3075114B2 (en) Nickel positive electrode for alkaline storage batteries
JP4305029B2 (en) Alkaline storage battery with non-sintered nickel positive electrode
JP3118812B2 (en) Alkaline storage battery
JP4479136B2 (en) Method for producing nickel electrode material
JPH0410181B2 (en)
JP3719284B2 (en) Positive plate for alkaline storage battery
CN116282220A (en) Barium strontium titanate coated bimetal doped ternary positive electrode material and preparation method thereof
JP2007234440A (en) Nickel-hydrogen battery and its manufacturing method
JP2003229131A (en) Alkaline storage battery having nickel electrode and its manufacturing method
JP2003142089A (en) Manufacturing method of nickel electrode active material, nickel electrode active material, manufacturing method of active material paste for nickel electrode, nickel electrode and alkaline storage battery
JPH09320581A (en) Positive plate for alkaline storage battery

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees