JPH09199119A - Alkaline storage battery - Google Patents

Alkaline storage battery

Info

Publication number
JPH09199119A
JPH09199119A JP8008882A JP888296A JPH09199119A JP H09199119 A JPH09199119 A JP H09199119A JP 8008882 A JP8008882 A JP 8008882A JP 888296 A JP888296 A JP 888296A JP H09199119 A JPH09199119 A JP H09199119A
Authority
JP
Japan
Prior art keywords
electrode
rare earth
nickel
storage battery
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8008882A
Other languages
Japanese (ja)
Other versions
JP3788485B2 (en
Inventor
Hiroe Nakagawa
裕江 中川
Yuichi Matsumura
勇一 松村
Toshiki Tanaka
俊樹 田中
Kengo Furukawa
健吾 古川
Masahiko Oshitani
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP00888296A priority Critical patent/JP3788485B2/en
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to EP96931980A priority patent/EP0794584A4/en
Priority to CNB961915048A priority patent/CN1205679C/en
Priority to PCT/JP1996/002761 priority patent/WO1997012408A1/en
Priority to CNB2004100317501A priority patent/CN1244964C/en
Priority to CNA2004100317516A priority patent/CN1536691A/en
Priority to US08/849,103 priority patent/US6136473A/en
Priority to KR1019970703538A priority patent/KR100416428B1/en
Priority to CNB2004100317520A priority patent/CN1253954C/en
Publication of JPH09199119A publication Critical patent/JPH09199119A/en
Application granted granted Critical
Publication of JP3788485B2 publication Critical patent/JP3788485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To increase the utilization factor at a high temperature while maintaining the battery performance of a nickel positive electrode by applying a single substance or a compound of rare earth elements on the surface of the nickel electrode mainly made of nickel hydroxide. SOLUTION: A single substance or a compound of rare earth elements is slightly dissolved in an alkaline aqueous solution and deposited as a stable hydroxide. This hydroxide has an effect to raise the oxygen overvoltage at a high temperature, the generation of oxygen gas from the positive electrode side at the terminal stage of an electric charge is suppressed, and the utilization factor at a high temperature can be increased. When a single substance or a compound of rare earth elements is added, a film is formed when the rare earth element ions slightly eluted in an electrolyte are deposited on the surface of a hydrogen storage alloy electrode as a stable hydroxide, and the battery life is extended because the film prevents the corrosion of the alloy. This action is prominent in particular for ytterbium which is one of the rare earth elements.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はニッケル水酸化物を
正極活物質として用いたアルカリ蓄電池に関するもので
ある。
TECHNICAL FIELD The present invention relates to an alkaline storage battery using nickel hydroxide as a positive electrode active material.

【0002】[0002]

【従来の技術】ニッケル水酸化物を活物質として用いる
正極は、ニッケル−水素化物電池、ニッケル−カドミウ
ム電池、ニッケル−亜鉛電池、ニッケル−鉄電池などの
アルカリ蓄電池に共通して幅広く用いられている。近年
においては低公害性、高エネルギ−密度などの観点から
特にニッケル−水素化物電池が注目され、ポ−タブル機
器用から電気自動車用まで幅広く研究開発がなされてい
る。
2. Description of the Prior Art A positive electrode using nickel hydroxide as an active material is widely used in alkaline storage batteries such as nickel-hydride batteries, nickel-cadmium batteries, nickel-zinc batteries and nickel-iron batteries. . In recent years, nickel-hydride batteries have received particular attention from the viewpoints of low pollution, high energy density, and the like, and research and development have been extensively carried out from portable devices to electric vehicles.

【0003】これらアルカリ電池はいずれの場合でも、
ポータブル機器や電気自動車等の限られた狭い空間の中
に納められているため、温度上昇し易く、放熱しにくい
状況下におかれている。このため、正極活物質の高温時
の利用率維持が要求されるが、これを解決するための方
法の一つである正極活物質へのカドミウム添加は環境上
問題があり、ニッケル−カドミウム電池からニッケル−
水素化物電池へと低公害化してきたことに逆行すること
になってしまう。また、電解液である水酸化カリウム水
溶液に、水酸化リチウム水溶液を添加する方法や、水酸
化ニッケルの結晶中にコバルトを固溶状態で添加する方
法が提案されているが、これらの手段を採用した場合、
高温下での充電効率以外の性能向上に対して更なる対策
が必要となり、充分な解決策とは言えない。更に高温時
の利用率維持の問題を解決するために希土類化合物など
の添加が報告されている。しかし、希土類化合物の添加
においては、周囲の物質の溶解抑制効果が大きく、正極
中に導電補助剤として添加しているコバルト化合物の溶
解も抑制してしまうため、活物質間における導電性ネッ
トワークの形成が不十分となり、高率放電性能が低下す
るという問題があった。
In any case, these alkaline batteries are
Since it is housed in a limited narrow space such as a portable device or an electric vehicle, the temperature is likely to rise and it is difficult to radiate heat. For this reason, it is required to maintain the utilization factor of the positive electrode active material at high temperature, but addition of cadmium to the positive electrode active material, which is one of the methods for solving this, is environmentally problematic, and nickel-cadmium batteries are used. Nickel-
It goes against the low pollution of hydride batteries. Further, a method of adding an aqueous solution of lithium hydroxide to an aqueous solution of potassium hydroxide as an electrolytic solution and a method of adding cobalt in a solid solution state to nickel hydroxide crystals have been proposed. if you did this,
It is not a sufficient solution because further measures are needed to improve performance other than charging efficiency at high temperatures. Further, addition of rare earth compounds and the like has been reported in order to solve the problem of maintaining the utilization rate at high temperatures. However, the addition of the rare earth compound has a large effect of suppressing the dissolution of surrounding substances, and also suppresses the dissolution of the cobalt compound added as a conductive auxiliary agent in the positive electrode, thus forming a conductive network between the active materials. Is insufficient, and there is a problem that the high rate discharge performance is deteriorated.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記問題点に
鑑みてなされたものであり、ニッケル正極の高率放電性
能などの電池性能を維持しつつ、高温時の利用率を高め
たアルカリ蓄電池を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an alkaline storage battery having high utilization at high temperature while maintaining battery performance such as high rate discharge performance of a nickel positive electrode. Is to provide.

【0005】[0005]

【課題を解決するための手段】本発明の第1は、水酸化
ニッケルを主成分とするニッケル電極からなる正極と、
負極と、正極と負極との間に介在するセパレータおよび
アルカリ電解液とを備えたアルカリ蓄電池において、前
記水酸化ニッケルを主成分とするニッケル電極の表面に
希土類元素の単体または化合物を塗布したことを特徴と
するアルカリ蓄電池である。本発明の第2は、前記希土
類元素が、イッテルビウムであるアルカリ蓄電池であ
る。本発明の第3は、前記希土類元素の化合物が、イッ
テルビウムの水酸化物または酸化物であるアルカリ蓄電
池である。本発明の第4は、水酸化ニッケルを主成分と
するニッケル電極からなる正極と、負極と、正極と負極
との間に介在するセパレータおよびアルカリ電解液とを
備えたアルカリ蓄電池において、前記セパレータの表面
に希土類元素の単体または化合物を塗布したことを特徴
とするアルカリ蓄電池である。本発明の第5は、前記第
4の発明の希土類元素が、イッテルビウムであるアルカ
リ蓄電池である。本発明の第6は前記第4の発明の希土
類元素の化合物が、イッテルビウムの水酸化物または酸
化物であるアルカリ蓄電池である。本発明の第7は、前
記第4の発明の希土類元素の単体または化合物が、前記
セパレータの少なくとも正極に接する側の面に塗布され
ているアルカリ蓄電池である。本発明の第8は、前記第
1又は第4の発明の希土類元素の単体または化合物の塗
布量が、正極活物質量に対して0.1重量%〜10重量
%であるアルカリ蓄電池である。
The first aspect of the present invention is to provide a positive electrode comprising a nickel electrode containing nickel hydroxide as a main component,
In an alkaline storage battery provided with a negative electrode and a separator and an alkaline electrolyte interposed between the positive electrode and the negative electrode, a rare earth element simple substance or compound is applied to the surface of the nickel electrode containing nickel hydroxide as a main component. It is a featured alkaline storage battery. A second aspect of the present invention is an alkaline storage battery in which the rare earth element is ytterbium. A third aspect of the present invention is an alkaline storage battery in which the compound of the rare earth element is a ytterbium hydroxide or oxide. A fourth aspect of the present invention is an alkaline storage battery including a positive electrode including a nickel electrode containing nickel hydroxide as a main component, a negative electrode, and a separator and an alkaline electrolyte that are interposed between the positive electrode and the negative electrode. The alkaline storage battery is characterized in that a simple substance or a compound of a rare earth element is applied on the surface. A fifth aspect of the present invention is the alkaline storage battery in which the rare earth element of the fourth aspect is ytterbium. A sixth aspect of the present invention is the alkaline storage battery, wherein the compound of the rare earth element of the fourth aspect of the invention is a ytterbium hydroxide or oxide. A seventh aspect of the present invention is an alkaline storage battery in which the simple substance or compound of the rare earth element of the fourth aspect is applied to at least the surface of the separator that is in contact with the positive electrode. An eighth aspect of the present invention is an alkaline storage battery, wherein the amount of the rare earth element simple substance or compound of the first or fourth aspect of the invention applied is 0.1% by weight to 10% by weight based on the amount of the positive electrode active material.

【0006】イッテルビウムまたはイッテルビウム化合
物はアルカリ水溶液中でわずかに溶解し、安定な水酸化
物として析出する。イッテルビウム水酸化物は高温時の
酸素過電圧を引き上げる効果を持ち、充電末期における
正極側からの酸素ガス発生を抑制するため、高温での利
用率を高めることができる。また、イッテルビウム等の
希土類元素の単体または化合物を添加すると、電解液中
にわずかに溶出した希土類元素イオンが水素吸蔵合金電
極表面に安定な水酸化物として析出する際に被膜を形成
し、これが合金の腐食を防ぐため電池寿命が伸びる。こ
れらの作用は希土類元素一般に見られるが、特にイッテ
ルビウムはその効果が大きい。
Ytterbium or a ytterbium compound is slightly dissolved in an alkaline aqueous solution and precipitates as a stable hydroxide. Ytterbium hydroxide has the effect of raising the oxygen overvoltage at high temperatures and suppresses the generation of oxygen gas from the positive electrode side at the end of charging, so that the utilization rate at high temperatures can be increased. In addition, when a simple substance or a compound of a rare earth element such as ytterbium is added, a rare earth element ion slightly eluted in the electrolytic solution forms a film when it is deposited as a stable hydroxide on the surface of the hydrogen storage alloy electrode, which forms an alloy. Battery life is extended to prevent corrosion. These actions are generally found in rare earth elements, but ytterbium is particularly effective.

【0007】一方、イッテルビウムまたはイッテルビウ
ム化合物の溶解抑制効果はコバルト化合物にも及び、コ
バルト化合物が溶解してなるHCoO2 - イオンの生成
の抑制まで行ってしまう。そうなると1サイクル目の充
電により形成されるCoOOHによる活物質間の導電性
ネットワークの形成が不十分となってしまい、利用率低
下や高率放電性能低下を引き起こす。しかし、イッテル
ビウムまたはイッテルビウム化合物の正極表面への塗布
は、イッテルビウムまたはイッテルビウム化合物とコバ
ルト化合物との距離を離すことで、極板内部のコバルト
化合物の溶解を抑制することなく、導電性ネットワーク
形成を確実に行うことができるため、上記のような弊害
はなくなる。
On the other hand, the effect of suppressing the dissolution of ytterbium or the ytterbium compound extends to the cobalt compound and even suppresses the generation of HCoO 2 ions formed by the dissolution of the cobalt compound. In that case, the formation of the conductive network between the active materials by CoOOH formed by the charging in the first cycle becomes insufficient, resulting in a decrease in the utilization rate and a decrease in the high rate discharge performance. However, the application of ytterbium or a ytterbium compound to the surface of the positive electrode does not suppress the dissolution of the cobalt compound inside the electrode plate by separating the distance between the ytterbium or ytterbium compound and the cobalt compound, and ensures the formation of a conductive network. Since it can be performed, the above-mentioned harmful effects are eliminated.

【0008】また、イッテルビウムまたはイッテルビウ
ム化合物の塗布量は正極活物質量に対して0.1重量%
〜10重量%が望ましい。0.1重量%以下であると酸
素過電圧上昇効果が得られず、10重量%以上であると
溶解抑制効果が大きすぎて導電性ネットワークの形成不
良や、負極の水素吸蔵合金の活性化が遅延するなどの弊
害が現れる。
The amount of the ytterbium or ytterbium compound applied is 0.1% by weight based on the amount of the positive electrode active material.
10% by weight is desirable. If it is 0.1% by weight or less, the effect of increasing oxygen overvoltage cannot be obtained, and if it is 10% by weight or more, the dissolution suppressing effect is too large and the formation of the conductive network is poor, or the activation of the hydrogen storage alloy of the negative electrode is delayed. The harmful effects such as doing appear.

【0009】また、セパレータ表面に希土類元素の単体
または化合物を塗布することによっても同様に水酸化ニ
ッケルの酸素過電圧を適切に高くすることができる。そ
の上、コバルト化合物の溶解析出により形成される導電
性ネットワークに悪影響を及ぼすことがないため、ニッ
ケル電極の利用率低下や高率放電性能低下を引き起こす
こともない。また、ニッケル電極中の真の水酸化ニッケ
ル充填量を削減することもないため、電極容量ないしは
電池容量が低下してエネルギー密度が低下してしまうこ
ともない。
Further, by coating the surface of the separator with a simple substance or a compound of a rare earth element, the oxygen overvoltage of nickel hydroxide can be appropriately increased. Moreover, since it does not adversely affect the conductive network formed by the dissolution and precipitation of the cobalt compound, it does not cause a decrease in the utilization rate of the nickel electrode or a decrease in the high rate discharge performance. Further, since the true nickel hydroxide filling amount in the nickel electrode is not reduced, the electrode capacity or the battery capacity is not reduced and the energy density is not reduced.

【0010】従って、これらの方法を用いてアルカリ蓄
電池を作製することにより、ニッケル電極の放電電位や
電極容量、エネルギー密度を低下させることなく高温下
での充電効率の低下を抑制し、広範囲の温度下における
充放電効率に優れたアルカリ蓄電池を提供することがで
きる。
Therefore, by producing an alkaline storage battery by using these methods, it is possible to suppress the deterioration of the charging efficiency at high temperature without lowering the discharge potential, the electrode capacity and the energy density of the nickel electrode, and the temperature of a wide range. It is possible to provide an alkaline storage battery having excellent charge / discharge efficiency below.

【0011】[0011]

【発明の実施の形態】以下、実施例に基づき本発明を説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments.

【0012】(実施例1)正極活物質としてZn,Co
を固溶体添加した高密度水酸化ニッケルを準備し、導電
補助剤として一酸化コバルト(CoO)10重量%を充
分混合し、これに増粘剤を加えペースト状にし、3次元
多孔体ニッケル基板に充填、乾燥後所定の厚みにプレス
して正極板を得た。これに酸化イッテルビウム(Yb2
3 )と増粘剤を混合したペーストを水酸化ニッケル量
に対して2.5重量%となるように塗布し、再度乾燥し
て本発明電極とした。また、上記と同様の手順で酸化イ
ッテルビウムを塗布しない通常の電極を作製し、比較電
極1とした。さらに、Zn,Coを固溶体添加した高密
度水酸化ニッケルに一酸化コバルト10重量%、酸化イ
ッテルビウム2.5重量%を充分混合し、これに増粘剤
を加えてペースト状にし、3次元多孔体ニッケル基板に
充填、乾燥後所定の厚みにプレスして正極板を得た。こ
れを比較電極2とした。
Example 1 Zn and Co as positive electrode active materials
High density nickel hydroxide with solid solution added is prepared, 10% by weight of cobalt monoxide (CoO) is thoroughly mixed as a conductive auxiliary agent, and a thickener is added to this to form a paste to fill a three-dimensional porous nickel substrate. After drying, it was pressed to a predetermined thickness to obtain a positive electrode plate. Ytterbium oxide (Yb 2
A paste in which O 3 ) and a thickener were mixed was applied so as to be 2.5% by weight with respect to the amount of nickel hydroxide, and dried again to obtain an electrode of the present invention. In addition, a normal electrode not coated with ytterbium oxide was produced by the same procedure as above, and was used as a reference electrode 1. Furthermore, 10 wt% cobalt monoxide and 2.5 wt% ytterbium oxide were sufficiently mixed with high-density nickel hydroxide containing Zn and Co as a solid solution, and a thickener was added to the mixture to form a paste. The positive electrode plate was obtained by filling a nickel substrate, drying and pressing to a predetermined thickness. This was used as a reference electrode 2.

【0013】このようにして作製した本発明電極、比較
電極1および比較電極2を水素吸蔵合金電極を対極とし
て、電解液として比重1.28の水酸化カリウム水溶
液、参照極として酸化水銀電極を用いて電解液過剰下で
充放電試験(充電0.1C、放電0.2C)を行った。
図1に充放電結果を示す。本発明電極は酸化イッテルビ
ウムを塗布しない比較電極1に比べて利用率が高く、特
に50℃および40℃の高温においてはその差が顕著に
現れた。また、酸化イッテルビウムを混合した比較電極
2でも本発明電極と同等の利用率を示した。
The electrodes of the present invention thus produced, the reference electrode 1 and the reference electrode 2 are hydrogen storage alloy electrodes as counter electrodes, an aqueous solution of potassium hydroxide having a specific gravity of 1.28 as an electrolyte, and a mercury oxide electrode as a reference electrode. And a charge / discharge test (charge 0.1 C, discharge 0.2 C) was performed under an excessive amount of electrolytic solution.
FIG. 1 shows the charge / discharge results. The electrode of the present invention has a higher utilization factor than the comparative electrode 1 to which ytterbium oxide is not applied, and the difference is remarkable especially at high temperatures of 50 ° C and 40 ° C. Further, the comparative electrode 2 in which ytterbium oxide was mixed also showed the same utilization factor as the electrode of the present invention.

【0014】図2に本発明電極と比較電極1の20℃お
よび50℃の充電曲線を示す。20℃においては酸素過
電圧は同程度であるが、50℃においては比較電極1は
充電末期においても酸素過電圧の立ち上がりはなく、充
電受け入れが低下していることが窺われる。一方、本発
明電極においては充電末期において酸素過電圧の立ち上
がりがみられ、50℃においても充電受け入れが低下し
ていないことが窺われる。高温時の利用率維持について
は酸化イッテルビウムを混合した比較電極2についても
同様であった。これは、塗布または混合している酸化イ
ッテルビウムの酸素過電圧上昇効果によるものである。
FIG. 2 shows charge curves of the electrode of the present invention and the comparative electrode 1 at 20 ° C. and 50 ° C. At 20 ° C., the oxygen overvoltage is about the same, but at 50 ° C., the reference electrode 1 has no rise in the oxygen overvoltage even at the end of charging, which suggests that the charge acceptance is lowered. On the other hand, in the electrode of the present invention, the rise of oxygen overvoltage was observed at the end of charging, which suggests that the charge acceptance was not decreased even at 50 ° C. The maintenance of the utilization factor at high temperature was the same for the comparative electrode 2 containing ytterbium oxide. This is due to the oxygen overvoltage increasing effect of the applied or mixed ytterbium oxide.

【0015】図3に本発明電極、比較電極1および比較
電極2の1サイクル目の充電曲線を示す。50〜100
mVに見られる平衡電位の部分は(1)式によって表さ
れる導電性ネットワーク形成反応を示している。 HCoO2 - → CoOOH+e- (1)
FIG. 3 shows charge curves in the first cycle of the electrode of the present invention, the reference electrode 1 and the reference electrode 2. 50-100
The part of the equilibrium potential seen in mV indicates the conductive network formation reaction represented by the equation (1). HCoO 2 - → CoOOH + e - (1)

【0016】酸化イッテルビウムを混合した比較電極2
は、平衡電位の部分が短いことから、(1)式で表され
る反応が短く、導電性ネットワーク形成が不十分である
ことが予想される。これは酸化イッテルビウムの溶解抑
制効果によるものである。本発明電極ではイッテルビウ
ムを電極表面に塗布したので、電極内部では一酸化コバ
ルトCoOの溶解がスムーズに起こるため、導電性ネッ
トワーク形成は十分であり、酸化イッテルビウムを含ま
ない比較電極1と導電性ネットワークの形成はほぼ同等
であった。
Reference electrode 2 mixed with ytterbium oxide
Since the equilibrium potential portion is short, it is expected that the reaction represented by the formula (1) is short and the formation of the conductive network is insufficient. This is due to the effect of suppressing the dissolution of ytterbium oxide. In the electrode of the present invention, ytterbium was applied to the surface of the electrode, so that the dissolution of cobalt monoxide CoO occurred smoothly inside the electrode, so that the formation of the conductive network was sufficient, and the comparison electrode 1 containing no ytterbium oxide and the conductive network were formed. The formation was almost equal.

【0017】図4に本発明電極、比較電極1および比較
電極2の高率放電特性を示す。酸化イッテルビウムを混
合した比較電極2は本発明電極および比較電極1に比べ
高率放電特性の低下が大きい。上述のように導電性ネッ
トワークの形成が不十分なため高率放電特性が大きく低
下したためと考えられる。本発明電極は導電性ネットワ
ークの形成が十分であるので、高率放電性能の大きな低
下は見られなかった。
FIG. 4 shows high rate discharge characteristics of the electrode of the present invention, the reference electrode 1 and the reference electrode 2. The comparative electrode 2 mixed with ytterbium oxide shows a large decrease in high rate discharge characteristics as compared with the electrode of the present invention and the comparative electrode 1. It is considered that the formation of the conductive network was insufficient as described above, and thus the high rate discharge characteristics were significantly deteriorated. Since the electrode of the present invention has a sufficient formation of a conductive network, no significant reduction in high rate discharge performance was observed.

【0018】(実施例2)まず、市販のポリオレフィン
系不織布の両面に、酸化イッテルビウム(Yb23
と増粘剤を溶解した水溶液を混合してペースト状にした
ものを均一に塗布し、乾燥させたものを作製した。これ
をセパレータとし、Zn、Coを固溶体添加した高密度
水酸化ニッケル粉末に導電補助剤として一酸化コバルト
(CoO)10重量%を混合したものを3次元多孔体ニ
ッケル基板に充填し、乾燥後所定の厚みにプレスして作
製したニッケル電極を正極とし、水素吸蔵合金を3次元
多孔体ニッケル基板に充填し、乾燥後所定の厚みにプレ
スして作製した水素吸蔵合金電極を負極として正極容量
規制の電極群を構成し、電解液として比重1. 28の水
酸化カリウム水溶液を用いて、密閉形ニッケル−水素化
物蓄電池を作製し、本発明電池Aとした。
Example 2 First, ytterbium oxide (Yb 2 O 3 ) was applied to both surfaces of a commercially available polyolefin nonwoven fabric.
And an aqueous solution in which the thickener was dissolved were mixed to form a paste, which was uniformly applied and dried. Using this as a separator, a mixture of high-density nickel hydroxide powder containing Zn and Co as a solid solution and 10% by weight of cobalt monoxide (CoO) as a conductive additive was filled in a three-dimensional porous nickel substrate, and after drying, a predetermined amount was obtained. The nickel electrode manufactured by pressing to a thickness of 1 is used as a positive electrode, the hydrogen storage alloy is filled in a three-dimensional porous nickel substrate, dried and pressed to a predetermined thickness, and the hydrogen storage alloy electrode is used as a negative electrode to control the capacity of the positive electrode. A sealed nickel-hydride storage battery was prepared using the electrode group and an aqueous potassium hydroxide solution having a specific gravity of 1.28 as an electrolytic solution, which was designated as Battery A of the present invention.

【0019】(実施例3)さらに、上記実施例2と同じ
市販のポリオレフィン系不織布の片面に、酸化イッテル
ビウムと増粘剤を溶解した水溶液を混合してペースト状
にしたものを均一に塗布し、乾燥させたものを作製し
た。これを酸化イッテルビウムを塗布した面をニッケル
電極と接するように用いてセパレータとし、その他の条
件は実施例2と同一とした本発明電池Bを作製した。
(Example 3) Furthermore, the same commercially available polyolefin non-woven fabric as in Example 2 was mixed on one side with an aqueous solution in which ytterbium oxide and a thickener were dissolved to form a paste, which was uniformly applied. A dried product was prepared. A battery B of the present invention was produced in which the surface coated with ytterbium oxide was used as a separator to make contact with the nickel electrode, and other conditions were the same as in Example 2.

【0020】(比較例)また、上記実施例3と同じく片
面に酸化イッテルビウムを塗布したものを用いて、酸化
イッテルビウムを塗布した面を水素吸蔵合金電極と接す
るように用いてセパレータとし、その他の条件は実施例
2と同一とした比較電池Cを作製した。
(Comparative Example) Further, as in the case of Example 3, the one coated with ytterbium oxide was used, and the surface coated with ytterbium oxide was used as a separator so as to be in contact with the hydrogen storage alloy electrode. Comparative Battery C was manufactured in the same manner as in Example 2.

【0021】(従来例)一方、上記実施例及び比較例と
同じ市販のポリオレフィン系不織布をそのままセパレー
タとし、その他の条件は実施例2と同一とした従来電池
Dを作製した。
(Conventional Example) On the other hand, a conventional battery D was produced in which the same commercially available polyolefin-based non-woven fabric as in the above-mentioned Examples and Comparative Examples was used as it was and the other conditions were the same as in Example 2.

【0022】このようにして作製した各種電池は、常温
で注液後48時間放置した後、ニッケル電極の理論容量
の0. 1C相当の電流で15時間充電、0. 2C相当の
電流で両極間電位が1Vに至るまで放電を1サイクルと
するものを5サイクル繰り返し、充分に活性化を行っ
た。その後これらの電池を用いて充放電試験を行った。
The various batteries produced in this manner were left at room temperature for 48 hours after pouring, then charged for 15 hours at a current equivalent to 0.1 C of the theoretical capacity of the nickel electrode, and then charged between both electrodes at a current equivalent to 0.2 C. Satisfactory activation was carried out by repeating 5 cycles of one cycle of discharging until the potential reached 1V. After that, a charge / discharge test was performed using these batteries.

【0023】まず、上記した本発明電池A、B、比較電
池C、従来電池Dについて、温度特性試験を行った結果
を図5に示す。なお、試験条件は、各種温度下で、ニッ
ケル電極の理論容量の0. 1C相当の電流で15時間充
電した後、0. 2C相当の電流で両極間電位が1Vに至
るまで放電したものである。図5より、本発明電池A、
B、比較電池Cでは高温充放電時にも充分な容量を保持
しており、かつ、常温に戻したときの容量回復も良好で
あることが分かる。また、この効果は酸化イッテルビウ
ムを塗布した面をニッケル正極に接するように用いた本
発明電池A、Bにおいて特に顕著であることも分かる。
これは、酸化イッテルビウムをセパレータに塗布したこ
とにより、水酸化ニッケルの酸素過電圧が高くなるた
め、充電反応と酸素ガス発生反応の電位差を大きくする
ことができ、充電効率を向上させることが可能となった
ためであると考えられる。
First, FIG. 5 shows the results of a temperature characteristic test conducted on the batteries A and B of the present invention, the comparative battery C, and the conventional battery D described above. The test conditions were such that, under various temperatures, the nickel electrode was charged with a current equivalent to 0.1 C of the theoretical capacity for 15 hours and then discharged with a current equivalent to 0.2 C until the potential between the electrodes reached 1 V. . From FIG. 5, the battery A of the present invention,
It can be seen that B and Comparative Battery C retain a sufficient capacity even during high temperature charging / discharging and that the capacity recovery when returning to room temperature is good. It is also found that this effect is particularly remarkable in the batteries A and B of the present invention in which the surface coated with ytterbium oxide was used in contact with the nickel positive electrode.
This is because by applying ytterbium oxide to the separator, the oxygen overvoltage of nickel hydroxide increases, so that the potential difference between the charge reaction and the oxygen gas generation reaction can be increased, and the charge efficiency can be improved. It is considered to be due to

【0024】更に、上記した本発明電池A、B、比較電
池C、従来電池Dを試験終了後に解体し、ニッケル正極
および水素吸蔵合金負極から放電末の活物質をそれぞれ
取り出し、水洗乾燥した後、X線回折により分析を行っ
た。
Further, the above-mentioned batteries A and B of the present invention, comparative battery C and conventional battery D were disassembled after the test was completed, the active materials at the end of discharge were taken out from the nickel positive electrode and the hydrogen storage alloy negative electrode, respectively, washed with water and dried, Analysis was performed by X-ray diffraction.

【0025】まず、ニッケル正極活物質のX線回折パタ
ーンおよびその一部を拡大したものを図6に示す。な
お、参考として、図6にはニッケル正極活物質原料を混
合した状態でのX線回折パターンの一部を拡大したもの
も示す。図6から明らかなように、本発明電池A、B、
比較電池C、従来電池Dいずれもβ−Ni(OH)2
ピークが主であり、導電補助剤として混合した一酸化コ
バルト(CoO)のピークはほとんど見られない。これ
は、本発明電池A、B、比較電池Cのいずれにおいて
も、酸化イッテルビウムの溶解抑制効果による一酸化コ
バルトの溶解析出の妨害がそれほど大きく影響すること
なく、コバルト導電性ネットワークの形成が十分行われ
ていることを示す結果である。
First, FIG. 6 shows an X-ray diffraction pattern of the nickel positive electrode active material and an enlarged part thereof. For reference, FIG. 6 also shows an enlarged part of the X-ray diffraction pattern in the state where the nickel positive electrode active material raw material is mixed. As is apparent from FIG. 6, the batteries A, B of the present invention,
In both Comparative Battery C and Conventional Battery D, the peak of β-Ni (OH) 2 was the main, and the peak of cobalt monoxide (CoO) mixed as a conductive additive was hardly seen. This means that in each of the present batteries A and B and the comparative battery C, the formation of the cobalt conductive network was sufficiently performed without the dissolution inhibition effect of ytterbium oxide hindering the dissolution and precipitation of cobalt monoxide. This is the result showing that

【0026】次に、水素吸蔵合金負極活物質のX線回折
パターンの内、一部を拡大したものを図7に示す。な
お、参考として、図7には充放電前の水素吸蔵合金のX
線回折パターンの一部も示す。図7から明らかなよう
に、従来電池Dでは2θ=27゜〜29゜付近に合金の
腐食による希土類水酸化物のピークが現れているが、本
発明電池A、B、比較電池Cのいずれにおいてもこのピ
ークが小さく、合金の腐食が抑制されていることが分か
る。
Next, FIG. 7 shows an enlarged part of the X-ray diffraction pattern of the hydrogen storage alloy negative electrode active material. For reference, FIG. 7 shows X of the hydrogen storage alloy before charge and discharge.
A part of the line diffraction pattern is also shown. As is clear from FIG. 7, in conventional battery D, a peak of rare earth hydroxide due to alloy corrosion appears in the vicinity of 2θ = 27 ° to 29 °, but in any of batteries A and B of the present invention and comparative battery C, This peak is also small, indicating that the corrosion of the alloy is suppressed.

【0027】以上より、本発明電池A、Bは、比較電池
Cおよび従来電池Dに比較して、ニッケル電極の放電電
位や電極容量、エネルギー密度を低下させることなく高
温下での充電効率の低下を抑制し、広範囲の温度下にお
ける充放電効率に優れただけでなく、水素吸蔵合金負極
の合金腐食を抑制し、サイクル寿命に優れたニッケル−
水素化物蓄電池であることがわかる。
As described above, the batteries A and B of the present invention have lower charging efficiency at high temperature than the comparative battery C and the conventional battery D without lowering the discharge potential, electrode capacity and energy density of the nickel electrode. Nickel that suppresses alloy corrosion of the hydrogen storage alloy negative electrode and has excellent cycle life as well as excellent charge and discharge efficiency under a wide range of temperatures.
It turns out that it is a hydride storage battery.

【0028】なお、本実施例では、酸化イッテルビウム
(Yb2 3 )を用いたが、水酸化イッテルビウム(Y
b(OH)3 )を用いた場合や、酸化エルビウム(Er
2 3 )、水酸化エルビウム(Er(OH)3 )を用い
た場合にも同等の効果が得られる。また、他の希土類元
素についても効果が得られる。本実施例ではニッケル−
水素化物蓄電池を作製したが、ニッケル−カドミウム蓄
電池や、ニッケル−亜鉛蓄電池などの水酸化ニッケルを
主成分とするペースト式ニッケル電極を正極として用い
たアルカリ蓄電池であれば同等の効果が得られる。
In this embodiment, ytterbium oxide (Yb 2 O 3 ) is used, but ytterbium hydroxide (Yb 2 O 3 ) is used.
b (OH) 3 ) or erbium oxide (Er
The same effect can be obtained when 2 O 3 ) and erbium hydroxide (Er (OH) 3 ) are used. Also, the effect can be obtained with other rare earth elements. In this embodiment, nickel-
A hydride storage battery was produced, but an equivalent effect can be obtained with a nickel-cadmium storage battery, a nickel-zinc storage battery, or another alkaline storage battery using a paste-type nickel electrode containing nickel hydroxide as a main component as a positive electrode.

【0029】[0029]

【発明の効果】上記のように、本発明のアルカリ蓄電池
により、広範囲の温度下におけるニッケル正極の利用率
を高め、高温下での利用率の低下を抑制し、初充電にお
ける導電性ネットワークの形成も十分であるので高率放
電特性を高め、安定した容量特性および優れたサイクル
性能が得られるという極めて優れた効果が得られる。
As described above, the alkaline storage battery of the present invention enhances the utilization rate of the nickel positive electrode in a wide range of temperatures, suppresses the reduction of the utilization rate at high temperature, and forms the conductive network in the initial charge. Is sufficient, the high rate discharge characteristics can be enhanced, and stable capacity characteristics and excellent cycle performance can be obtained, which is an extremely excellent effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】サイクル数と利用率の関係を示した図である。FIG. 1 is a diagram showing a relationship between the number of cycles and a utilization rate.

【図2】20℃および50℃における充電曲線を示した
図である。
FIG. 2 is a diagram showing charge curves at 20 ° C. and 50 ° C.

【図3】1サイクル目の充電曲線を示した図である。FIG. 3 is a diagram showing a charge curve in the first cycle.

【図4】放電率と利用率の関係を示した図である。FIG. 4 is a diagram showing a relationship between a discharge rate and a utilization rate.

【図5】温度特性試験を行ったときのサイクル数と放電
容量の関係を示す図である。
FIG. 5 is a diagram showing a relationship between the number of cycles and a discharge capacity when a temperature characteristic test is performed.

【図6】ニッケル正極から取り出した活物質のX線回折
パターンおよびその一部を拡大して示す図である。
FIG. 6 is an enlarged view showing an X-ray diffraction pattern of an active material taken out from a nickel positive electrode and a part thereof.

【図7】水素吸蔵合金負極から取り出した活物質のX線
回折パターンの一部を拡大して示す図である。
FIG. 7 is an enlarged view showing a part of an X-ray diffraction pattern of an active material taken out from a hydrogen storage alloy negative electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古川 健吾 大阪府高槻市城西町6番6号 株式会社ユ アサコーポレーション内 (72)発明者 押谷 政彦 大阪府高槻市城西町6番6号 株式会社ユ アサコーポレーション内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kengo Furukawa 6-6 Josaimachi, Takatsuki-shi, Osaka Prefecture Yuasa Corporation Co., Ltd. (72) Masahiko Oshiya 6-6 Josaicho, Takatsuki-shi, Osaka Yu Corporation Within Asa Corporation

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ニッケルを主成分とするニッケル
電極からなる正極と、負極と、正極と負極との間に介在
するセパレータおよびアルカリ電解液とを備えたアルカ
リ蓄電池において、前記水酸化ニッケルを主成分とする
ニッケル電極の表面に希土類元素の単体または化合物を
塗布したことを特徴とするアルカリ蓄電池。
1. An alkaline storage battery comprising a positive electrode composed of a nickel electrode containing nickel hydroxide as a main component, a negative electrode, and a separator and an alkaline electrolyte interposed between the positive electrode and the negative electrode. An alkaline storage battery characterized in that a simple substance or a compound of a rare earth element is applied to the surface of a nickel electrode as a main component.
【請求項2】 前記希土類元素が、イッテルビウムであ
る請求項1記載のアルカリ蓄電池。
2. The alkaline storage battery according to claim 1, wherein the rare earth element is ytterbium.
【請求項3】 前記希土類元素の化合物が、イッテルビ
ウムの水酸化物または酸化物である請求項1記載のアル
カリ蓄電池。
3. The alkaline storage battery according to claim 1, wherein the compound of the rare earth element is a ytterbium hydroxide or oxide.
【請求項4】 水酸化ニッケルを主成分とするニッケル
電極からなる正極と、負極と、正極と負極との間に介在
するセパレータおよびアルカリ電解液とを備えたアルカ
リ蓄電池において、前記セパレータの表面に希土類元素
の単体または化合物を塗布したことを特徴とするアルカ
リ蓄電池。
4. An alkaline storage battery comprising a positive electrode comprising a nickel electrode containing nickel hydroxide as a main component, a negative electrode, and a separator and an alkaline electrolyte interposed between the positive electrode and the negative electrode. An alkaline storage battery characterized by being coated with a simple substance or a compound of a rare earth element.
【請求項5】 前記希土類元素が、イッテルビウムであ
る請求項4記載のアルカリ蓄電池。
5. The alkaline storage battery according to claim 4, wherein the rare earth element is ytterbium.
【請求項6】 前記希土類元素の化合物が、イッテルビ
ウムの水酸化物または酸化物である請求項4記載のアル
カリ蓄電池。
6. The alkaline storage battery according to claim 4, wherein the compound of the rare earth element is a ytterbium hydroxide or oxide.
【請求項7】 前記希土類元素の単体または化合物が、
前記セパレータの少なくとも正極に接する側の面に塗布
されている請求項4記載のアルカリ蓄電池。
7. The simple substance or compound of the rare earth element,
The alkaline storage battery according to claim 4, which is applied to at least a surface of the separator that is in contact with the positive electrode.
【請求項8】 前記希土類元素の単体または化合物の塗
布量が、正極活物質量に対して0.1重量%〜10重量
%である請求項1又は4記載のアルカリ蓄電池。
8. The alkaline storage battery according to claim 1, wherein the coating amount of the simple substance or compound of the rare earth element is 0.1% by weight to 10% by weight with respect to the amount of the positive electrode active material.
JP00888296A 1995-09-28 1996-01-23 Alkaline storage battery Expired - Fee Related JP3788485B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP00888296A JP3788485B2 (en) 1996-01-23 1996-01-23 Alkaline storage battery
CNB961915048A CN1205679C (en) 1995-09-28 1996-09-25 Hydrogen storage electrode, nickel electrode, and alkaline storage battery
PCT/JP1996/002761 WO1997012408A1 (en) 1995-09-28 1996-09-25 Hydrogen storage electrode, nickel electrode, and alkaline storage battery
CNB2004100317501A CN1244964C (en) 1995-09-28 1996-09-25 Hydrogen storage electrode, nickel electrode and alkaline storage battery
EP96931980A EP0794584A4 (en) 1995-09-28 1996-09-25 Hydrogen storage electrode, nickel electrode, and alkaline storage battery
CNA2004100317516A CN1536691A (en) 1995-09-28 1996-09-25 Hydrogen storage electrode, nickel electrode and alkaline storage battery
US08/849,103 US6136473A (en) 1995-09-28 1996-09-25 Hydrogen absorbing electrode, nickel electrode and alkaline storage battery
KR1019970703538A KR100416428B1 (en) 1995-09-28 1996-09-25 A hydrogen occlusion electrode, a nickel electrode, and an alkaline storage battery
CNB2004100317520A CN1253954C (en) 1995-09-28 1996-09-25 Hydrogen storage electrode, nickel electrode and alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00888296A JP3788485B2 (en) 1996-01-23 1996-01-23 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH09199119A true JPH09199119A (en) 1997-07-31
JP3788485B2 JP3788485B2 (en) 2006-06-21

Family

ID=11705056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00888296A Expired - Fee Related JP3788485B2 (en) 1995-09-28 1996-01-23 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3788485B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998034290A1 (en) * 1997-01-30 1998-08-06 Sanyo Electric Co., Ltd. Enclosed alkali storage battery
WO2001075993A1 (en) * 2000-04-04 2001-10-11 Matsushita Electric Industrial Co., Ltd. Nickel positive electrode plate and alkaline storage battery
US6566008B2 (en) 1997-01-30 2003-05-20 Sanyo Electric Co., Ltd. Sealed alkaline storage battery
US7063915B1 (en) 1998-02-20 2006-06-20 Sanyo Electric Co., Ltd. Nickel electrode for alkali storage battery, method of producing nickel electrode for alkali storage battery, and alkali storage battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998034290A1 (en) * 1997-01-30 1998-08-06 Sanyo Electric Co., Ltd. Enclosed alkali storage battery
US6235428B1 (en) 1997-01-30 2001-05-22 Sanyo Electric Co., Ltd. Enclosed alkali storage battery
US6566008B2 (en) 1997-01-30 2003-05-20 Sanyo Electric Co., Ltd. Sealed alkaline storage battery
US7063915B1 (en) 1998-02-20 2006-06-20 Sanyo Electric Co., Ltd. Nickel electrode for alkali storage battery, method of producing nickel electrode for alkali storage battery, and alkali storage battery
US7112228B2 (en) 1998-02-20 2006-09-26 Sanyo Electric Co., Ltd. Nickel electrode for alkaline storage battery, method of producing nickel electrode for alkaline storage battery, and alkaline storage battery
WO2001075993A1 (en) * 2000-04-04 2001-10-11 Matsushita Electric Industrial Co., Ltd. Nickel positive electrode plate and alkaline storage battery
US6803148B2 (en) 2000-04-04 2004-10-12 Matsushita Electric Industrial, Co., Ltd. Nickel positive electrode plate and akaline storage battery
US7364818B2 (en) 2000-04-04 2008-04-29 Matsushita Electric Industrial Co., Ltd. Nickel positive electrode plate and alkaline storage battery

Also Published As

Publication number Publication date
JP3788485B2 (en) 2006-06-21

Similar Documents

Publication Publication Date Title
US6632568B1 (en) Non-sintered nickel electrode with excellent over-discharge characteristics, an alkaline storage cell having the non-sintered nickel electrode, and a manufacturing method of the non-sintered nickel electrode
JP3505953B2 (en) Active material for nickel electrode and nickel positive electrode for alkaline storage battery using the same
JP3358702B2 (en) Nickel electrode for alkaline storage battery
JP2004538609A (en) Alkaline secondary electrochemical power generator with zinc positive electrode
JP3788485B2 (en) Alkaline storage battery
JP4474722B2 (en) Alkaline storage battery and positive electrode for alkaline storage battery used therefor
CN1337750A (en) Method for preparing active material of positive electrode of alkali accumulator and nickle and electrode and alkali accumulator
US6472101B1 (en) Nickel-hydrogen storage battery
JP3788484B2 (en) Nickel electrode for alkaline storage battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JP2987873B2 (en) Alkaline storage battery
JP4147748B2 (en) Nickel positive electrode and nickel-hydrogen storage battery
JP2002279992A (en) Nickel electrode for alkaline storage battery, and alkaline storage battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP4626130B2 (en) Nickel-hydrogen storage battery
JPH09219214A (en) Alkaline storage battery
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3498727B2 (en) Method for producing nickel hydroxide positive plate for alkaline battery, nickel hydroxide positive plate for alkaline battery, and alkaline battery
JP4573609B2 (en) Alkaline storage battery
JP3458899B2 (en) Nickel hydroxide positive plate for alkaline battery and alkaline battery thereof
JP2762730B2 (en) Nickel-cadmium storage battery
JPH09115521A (en) Positive electrode for alkaline storage battery
JP2589750B2 (en) Nickel cadmium storage battery
JPH10149812A (en) Positive electrode plate for lithium battery and lithium battery
JP2529308B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060321

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees