JPH10149812A - Positive electrode plate for lithium battery and lithium battery - Google Patents

Positive electrode plate for lithium battery and lithium battery

Info

Publication number
JPH10149812A
JPH10149812A JP8323609A JP32360996A JPH10149812A JP H10149812 A JPH10149812 A JP H10149812A JP 8323609 A JP8323609 A JP 8323609A JP 32360996 A JP32360996 A JP 32360996A JP H10149812 A JPH10149812 A JP H10149812A
Authority
JP
Japan
Prior art keywords
nickel
positive electrode
electrode plate
lithium battery
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8323609A
Other languages
Japanese (ja)
Inventor
Hideo Yasuda
安田  秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP8323609A priority Critical patent/JPH10149812A/en
Priority to DE69719677T priority patent/DE69719677T2/en
Priority to EP97120212A priority patent/EP0843372B1/en
Priority to US08/972,485 priority patent/US6221529B1/en
Priority to CN97120177A priority patent/CN1185666A/en
Publication of JPH10149812A publication Critical patent/JPH10149812A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode plate for a lithium battery of high performance, in which electrodes can be reacted uniformly, and a lithium battery with an excellent contact between a current collector and an active substance or between active substances. SOLUTION: A positive electrode plate for a lithium battery holds nickel oxyhydroxide in a sintered type nickel substrate, and a lithium battery uses the positive electrode plate. Use of the three-dimensional porous body achieves excellent electric contact between an active substance and a current collector, improves the contact between particles of oxynickel hydroxide as the active substance, reduces contact resistance between the particles, and facilitates diffusion of lithium ions even among the particles during a reaction rate determining process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム電池用正極
板およびそれを用いたリチウム電池に関する。
The present invention relates to a positive electrode plate for a lithium battery and a lithium battery using the same.

【0002】[0002]

【従来の技術】従来より、電子機器の電源には、一次電
池として二酸化マンガン・亜鉛電池が、また二次電池と
してニッケル−カドミウム電池、ニッケル−亜鉛電池、
ニッケル−水素化物電池のニッケル系電池および鉛電池
が使用されている。これら電池の電解液には、水酸化カ
リウム等のアルカリ水溶液や硫酸等の水溶液が使用され
ている。
2. Description of the Related Art Conventionally, a manganese dioxide zinc battery as a primary battery and a nickel-cadmium battery, a nickel zinc battery,
Nickel-based and lead batteries of nickel-hydride batteries have been used. An alkaline aqueous solution such as potassium hydroxide or an aqueous solution such as sulfuric acid is used as an electrolyte for these batteries.

【0003】近年、電子機器の発展によって新しい高性
能電池の出現が期待されており、上記のような水溶液系
電池にかわって、非水系の電解液を使用したより高エネ
ルギー密度な電池の開発が進められている。その代表的
なものとして、負極にリチウムや炭素材料を使用するリ
チウム電池がある。
In recent years, with the development of electronic equipment, a new high-performance battery is expected to appear. Instead of the above-mentioned aqueous battery, a battery having a higher energy density using a non-aqueous electrolyte has been developed. Is underway. A typical example is a lithium battery using lithium or a carbon material for the negative electrode.

【0004】リチウム電池には、一次電池としては二酸
化マンガン−リチウム電池、フッ化カ−ボン−リチウム
電池があり、二次電池としては二酸化マンガン−リチウ
ム電池、酸化バナジウム−リチウム電池等がある。
As lithium batteries, primary batteries include manganese dioxide-lithium batteries and carbon fluoride-lithium batteries, and secondary batteries include manganese dioxide-lithium batteries and vanadium oxide-lithium batteries.

【0005】負極に金属リチウムを使用する二次電池
は、充電時に析出する金属リチウムのデンドライトによ
って短絡が発生しやすく、寿命が短いという欠点があ
り、また金属リチウムの反応性が高いために安全性を確
保することが困難という問題がある。そこで、負極にグ
ラファイトやカ−ボン等を使用し、リチウムとこれらと
の層間化合物を形成させることによりデンドライト析出
を防止し、正極にはコバルト酸リチウムを使用する、い
わゆるリチウムイオン電池が考案されており、高エネル
ギ−密度電池として用いられている。
[0005] Secondary batteries using lithium metal for the negative electrode are disadvantageous in that short-circuits are apt to occur due to dendrites of lithium metal deposited during charging, the life is short, and safety is high due to the high reactivity of lithium metal. Is difficult to secure. Therefore, a so-called lithium ion battery has been devised in which graphite or carbon is used for the negative electrode to prevent dendrite precipitation by forming an interlayer compound between lithium and these, and lithium cobaltate is used for the positive electrode. And is used as a high energy-density battery.

【0006】ところが、コバルト酸リチウムは高価なた
めに、その代替としてリチウム含有マンガン複合酸化物
あるいはニッケル酸リチウムが提案されている。このリ
チウム含有マンガン複合酸化物の場合は、理論容量密度
が低く、しかも充放電サイクルの進行にともなって容量
減少が大きくなるという課題がある。
However, since lithium cobaltate is expensive, a lithium-containing manganese composite oxide or lithium nickelate has been proposed as an alternative. In the case of this lithium-containing manganese composite oxide, there is a problem that the theoretical capacity density is low and the capacity decrease becomes large as the charge / discharge cycle proceeds.

【0007】一方、ニッケル酸リチウムは、コバルト酸
リチウムと同じ結晶構造であるが、充放電を繰り返すと
容量が低下するという欠点がある。最近になって、特願
平7―129663号で提案されているように、コバル
トを含有するオキシ水酸化ニッケルに硝酸リチウムを作
用させ、均一な充放電反応を示すニッケル酸リチウムを
合成する試みもあるが、いずれにせよニッケル酸リチウ
ムを用いて正極板とするためには、合成後の粗大粒子を
粉砕して微粒子にしたのち、導電剤の炭素等と混合し
て、ポリフッ化ビニリデン等の結着剤とともに、アルミ
ニウムやニッケル等の金属集電体に塗布する工程が必要
である。そのために、製造工程が複雑であるとともに、
炭素粉末や結着剤の量によって、性能が大きく左右され
るという問題がある。
[0007] On the other hand, lithium nickelate has the same crystal structure as lithium cobaltate, but has the disadvantage that the capacity is reduced when charge and discharge are repeated. Recently, as proposed in Japanese Patent Application No. 7-129663, an attempt has been made to synthesize lithium nickelate exhibiting a uniform charge / discharge reaction by reacting lithium nitrate with nickel oxyhydroxide containing cobalt. However, in any case, in order to form a positive electrode plate using lithium nickelate, the synthesized coarse particles are pulverized into fine particles and then mixed with a conductive agent such as carbon to form a binder such as polyvinylidene fluoride. A step of applying to a metal current collector such as aluminum or nickel together with the adhesive is required. Therefore, the manufacturing process is complicated,
There is a problem that the performance is greatly affected by the amounts of the carbon powder and the binder.

【0008】さらに、上述の活物質とは全く異なる活物
質であるオキシ水酸化ニッケルを用いてリチウム電池用
正極板とする試みがある。例えば、特開昭63−197
60号では20〜75%のコバルトを含むオキシ水酸化
ニッケルを用いることが提案され、特開昭63−197
61号では水酸化ニッケルを水酸化リチウム水溶液中で
充電したものを活物質として用いることが提案されてい
るが、いずれも性能的に充分でなく、現在まで実用化さ
れていない。
Further, there has been an attempt to make a positive electrode plate for a lithium battery using nickel oxyhydroxide, which is an active material completely different from the above-mentioned active material. For example, JP-A-63-197
No. 60 proposes to use nickel oxyhydroxide containing 20 to 75% of cobalt.
No. 61 proposes to use nickel hydroxide charged in an aqueous lithium hydroxide solution as an active material, but none of them has sufficient performance and has not been put to practical use until now.

【0009】[0009]

【発明が解決しようとする課題】前述したように、オキ
シ水酸化ニッケルは、実用化されているコバルト酸リチ
ウム同じ層状構造であるが、特開昭63−19760号
で提案されているのにも拘わらず、現在にいたるまで実
用化されていない。その原因を電極反応の観点からみる
と、充放電反応に伴うリチウムイオンの正極活物質中へ
の拡散、すなわちうオキシ水酸化ニッケル中へのリチウ
ムイオンのインタカレ−ション、が均質におこらないこ
とによるものと考えられる。また、その活物質と集電体
との最適な電極構造が確立していないことも原因の一つ
と考えられる。
As described above, nickel oxyhydroxide has the same layered structure as lithium cobalt oxide which has been put to practical use, but it has been proposed in Japanese Patent Application Laid-Open No. 63-19760. Nevertheless, it has not been put to practical use until now. From the viewpoint of the electrode reaction, the cause is that the diffusion of lithium ions into the positive electrode active material due to the charge / discharge reaction, that is, the intercalation of lithium ions into nickel oxyhydroxide does not occur uniformly. It is considered something. It is also considered that one of the causes is that an optimal electrode structure between the active material and the current collector has not been established.

【0010】現在、リチウム電池の正極板に使用されて
いる集電体の材質はアルミニウムが主である。ニッケル
・カドミウム電池やニッケル・水素化物電池の水酸化ニ
ッケル正極板には集電体を兼ねた焼結式ニッケル基体が
活物質保持体として使用されているが、ニッケルを非水
溶液電池であるリチウム電池用正極板の材質として使用
することはほとんど検討されていない。その理由は、ニ
ッケルが電解液に溶解するだけでなく、負極で析出して
電池の短絡を引き起こすことが危惧されるからである。
またさらには、リチウム電池に使用される正極活物質と
して一般的なLiCoO2、LiNiO2、V25、Li
Mn24 等は固相法と呼ばれる、通常500℃以上で
焼成して製造された20μm程度の粒子であるため、1
0μm程度平均孔径を有する焼結式ニッケル基板へ適用
することが事実上、不可能であったからである。
At present, the material of the current collector used for the positive electrode plate of the lithium battery is mainly aluminum. Nickel cadmium batteries and nickel hydride batteries use a nickel hydroxide positive electrode plate with a sintered nickel base that also serves as a current collector as the active material holder. It has hardly been considered to use it as a material for a positive electrode plate for use. This is because nickel is not only dissolved in the electrolytic solution, but also may be deposited on the negative electrode to cause a short circuit of the battery.
Further, LiCoO 2 , LiNiO 2 , V 2 O 5 , Li as general positive electrode active materials used for lithium batteries
Since Mn 2 O 4 and the like are particles of about 20 μm called a solid phase method and usually produced by firing at 500 ° C. or more,
This is because it was practically impossible to apply the method to a sintered nickel substrate having an average pore diameter of about 0 μm.

【0011】本発明は実用化されていないリチウム電池
の新活物質であるオキシ水酸化ニッケルを、焼結式ニッ
ケル基体に充填すると性能が飛躍的に向上することを見
出し、さらに従来考えられていたニッケルの溶解が防止
され、短絡が発生しないことを見いだしたことに基づく
ものである.本発明によれば、集電体であるニッケルと
活物質あるいは活物質同志の接触状態を良好にさせ、電
極反応が均一におこる高性能のリチウム電池用正極板お
よび電池を提供することができる。
According to the present invention, it has been found that when nickel oxyhydroxide, which is a new active material of a lithium battery which has not been put into practical use, is filled in a sintered nickel substrate, the performance is remarkably improved. This is based on the finding that nickel dissolution was prevented and no short circuit occurred. ADVANTAGE OF THE INVENTION According to this invention, the contact state of nickel which is a collector and an active material or active materials is made favorable, and the high-performance positive electrode plate for lithium batteries and a battery in which an electrode reaction occurs uniformly can be provided.

【0012】[0012]

【課題を解決するための手段】本発明になる第一の発明
は、オキシ水酸化ニッケルを焼結式ニッケル基体に保持
させることを特徴とする。第一の発明にかかる第二の発
明は、酸化ニッケルあるいはオキシ水酸化ニッケルを焼
結式ニッケル基体表面に形成させることを特徴とする。
さらに、第一又は第二の発明にかかる第三の発明は、第
一又は第二の発明で得られる正極板を備えた電池である
ことを特徴とする。
The first invention according to the present invention is characterized in that nickel oxyhydroxide is held on a sintered nickel substrate. A second invention according to the first invention is characterized in that nickel oxide or nickel oxyhydroxide is formed on the surface of a sintered nickel substrate.
Further, a third invention according to the first or second invention is characterized in that the battery is provided with the positive electrode plate obtained in the first or second invention.

【0013】[0013]

【発明の実施の形態】本発明は、特開昭63−1976
0号に開示されているようにオキシ水酸化ニッケルをニ
ッケルメッシュに保持させるのではなく、焼結式ニッケ
ル基体に保持させることを特徴としている。その場合、
ニッケル基体表面に酸化皮膜あるいはオキシ水酸化ニッ
ケルの皮膜を形成させると長寿命となり、信頼性が向上
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to Japanese Patent Application Laid-Open No. 63-1976.
The invention is characterized in that nickel oxyhydroxide is not held on a nickel mesh as disclosed in No. 0, but is held on a sintered nickel substrate. In that case,
When an oxide film or a nickel oxyhydroxide film is formed on the surface of the nickel substrate, the life is extended and the reliability is improved.

【0014】これにより、集電構造が強固に形成された
状態で活物質が充填されるので、集電体と活物質叉は活
物質同士の接触状態が良好となり、新活物質であるオキ
シ水酸化ニッケルの起電反応となるリチウムイオンのイ
ンタ−カレ−ションによる拡散が均質におこり、もって
充放電特性および充放電サイクル性能がよくなる。
Thus, the active material is filled in a state in which the current collecting structure is firmly formed, so that the current collector and the active material or the active material are in good contact with each other, and the new active material, oxywater Diffusion due to intercalation of lithium ions, which is an electromotive reaction of nickel oxide, occurs uniformly, thereby improving charge / discharge characteristics and charge / discharge cycle performance.

【0015】現在のところ充放電反応は必ずしも定かで
はないが、オキシ水酸化ニッケルにリチウムイオンがイ
ンタ−カレ−ション・ディインタ−カレ−ションする次
式と推定される。
At present, the charge / discharge reaction is not always clear, but it is presumed to be the following formula in which lithium ions are intercalated and deintercalated in nickel oxyhydroxide.

【0016】 (放電) NiOOH + Li+ + e- → L
iHNiO2 (充電) NiOOH + Li+ + e- ← L
iHNiO2
[0016] (discharge) NiOOH + Li + + e - → L
iHNiO 2 (charging) NiOOH + Li + + e - ← L
iHNiO 2

【実施例】【Example】

【実施例】以下、本発明の好適な実施例を用いて説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a preferred embodiment of the present invention will be described.

【0017】[実施例1]焼結式ニッケル・カドミウム電
池の活物質保持体として使用されているカーボニルニッ
ケル粉末を焼結して得られる多孔度約85%の焼結式ニ
ッケル基板(100メッシュのニッケル網を芯材とし
た)を空気雰囲気中、200℃で30分間熱処理して、
その表面に酸化ニッケルの薄膜を形成させた。
Example 1 A sintered nickel substrate (100 mesh) having a porosity of about 85% obtained by sintering carbonyl nickel powder used as an active material holder of a sintered nickel-cadmium battery. Heat treated at 200 ° C. for 30 minutes in an air atmosphere.
A nickel oxide thin film was formed on the surface.

【0018】次にニッケル・カドミウム電池の水酸化ニ
ッケル正極板の製造法として広く用いられている、いわ
ゆる減圧含浸法を適用して、水酸化ニッケルを含有する
基板を製作した。すなわち、3mol%〔{Co/(N
i+Co)}×100〕のコバルトを含有する4Mの硝
酸ニッケル水溶液を5mmHgに減圧含浸させたのち、
つづいて5Mの水酸化ナトリウム水溶液中で中和して湯
洗してから100℃で乾燥するという公知操作を6度繰り返
しておこない、水酸化ニッケルを充填した極板を製作し
た。
Next, a substrate containing nickel hydroxide was manufactured by applying a so-called reduced pressure impregnation method widely used as a method for manufacturing a nickel hydroxide positive electrode plate of a nickel-cadmium battery. That is, 3 mol% [{Co / (N
i + Co)} × 100] was impregnated with a 4M aqueous solution of nickel nitrate under reduced pressure to 5 mmHg under reduced pressure.
Subsequently, a known operation of neutralizing in a 5 M aqueous sodium hydroxide solution, washing with hot water and drying at 100 ° C. was repeated six times to produce an electrode plate filled with nickel hydroxide.

【0019】つづいて、4.5Mの水酸化カリウム水溶
液に浸漬し、対極として2枚のニッケル板を使用し、5
mA/cm2の電流密度で3時間アノード通電をおこな
う。その後、残存しているアルカリ分を湯洗して,除去
したのち,120℃にて乾燥して大きさ30mm×40
mm0.8mm×で公称容量が300mAhの本発明に
よるオキシ水酸化ニッケル正極板Aを製作した。
Subsequently, it was immersed in a 4.5 M aqueous potassium hydroxide solution, and two nickel plates were used as counter electrodes.
Anode energization is performed at a current density of mA / cm 2 for 3 hours. After that, the remaining alkali is washed with hot water and removed, and then dried at 120 ° C. to have a size of 30 mm × 40 mm.
A nickel oxyhydroxide positive electrode plate A according to the present invention having a size of 0.8 mm mm and a nominal capacity of 300 mAh was manufactured.

【0020】[実施2]焼結式ニッケル・カドミウム電
池の活物質保持体として使用されているカーボニルニッ
ケル粉末を焼結して得られる多孔度約85%の焼結式ニ
ッケル基板(100メッシュのニッケル網を芯材とした)
を準備した。
[Example 2] A sintered nickel substrate (100 mesh nickel) having a porosity of about 85% obtained by sintering carbonyl nickel powder used as an active material holder of a sintered nickel-cadmium battery. (The net was used as the core material.)
Was prepared.

【0021】次にニッケル・カドミウム電池の水酸化ニ
ッケル正極板の製造法として広く用いられている、いわ
ゆる減圧含浸法を適用して、水酸化ニッケルを含有する
基板を製作した。すなわち、3mol%〔{Co/(N
i+Co)}×100〕のコバルトを含有する4Mの硝
酸ニッケル水溶液を5mmHgに減圧含浸させたのち、
つづいて5Mの水酸化ナトリウム水溶液中で中和して湯
洗してから100℃で乾燥するという公知操作を6度繰り返
しておこない、水酸化ニッケルを充填した極板を製作し
た。
Next, a substrate containing nickel hydroxide was manufactured by applying a so-called reduced pressure impregnation method widely used as a method for manufacturing a nickel hydroxide positive electrode plate of a nickel-cadmium battery. That is, 3 mol% [{Co / (N
i + Co)} × 100] was impregnated with a 4M aqueous solution of nickel nitrate under reduced pressure to 5 mmHg under reduced pressure.
Subsequently, a known operation of neutralizing in a 5 M aqueous sodium hydroxide solution, washing with hot water and drying at 100 ° C. was repeated six times to produce an electrode plate filled with nickel hydroxide.

【0022】つづいて、4.5Mの水酸化カリウム水溶
液に浸漬し、対極として2枚のニッケル板を使用し、5
mA/cm2の電流密度で3時間アノード通電をおこな
う。
Subsequently, the sheet was immersed in a 4.5 M aqueous solution of potassium hydroxide, and two nickel plates were used as counter electrodes.
Anode energization is performed at a current density of mA / cm 2 for 3 hours.

【0023】その後、残存しているアルカリ分を湯洗し
て除去したのち、100℃にて熱風乾燥したのち、さら
に空気雰囲気中、135℃で2時間熱処理して、ニッケ
ル基板の表面に酸化ニッケルの薄膜を形成させ、大きさ
が30mm×40mm×0.8mmで公称容量が300
mAhの本発明によるオキシ水酸化ニッケル正極板Bを
製作した。
Thereafter, the remaining alkali content is removed by washing with hot water, dried with hot air at 100 ° C., and further heat-treated at 135 ° C. for 2 hours in an air atmosphere to form nickel oxide on the surface of the nickel substrate. With a size of 30 mm x 40 mm x 0.8 mm and a nominal capacity of 300
A nickel oxyhydroxide positive electrode plate B according to the present invention having a mAh was produced.

【0024】[実施例3]カーボニルニッケル粉末を焼
結して得られる多孔度約85%の焼結式ニッケル基板
(100メッシュのニッケル網を芯材とした)に、2m
ol%〔{Co/(Ni+Co)}×100〕のコバル
トを含有する4Mの硝酸ニッケル水溶液を5mmHgに
減圧含浸たのち、つづいて5Mの水酸化ナトリウム水溶
液中で中和して湯洗してから、100℃で乾燥するとい
う従来から公知の操作を6度繰り返しておこない、水酸
化ニッケルを充填した極板を製作した。
Example 3 A sintered nickel substrate having a porosity of about 85% obtained by sintering carbonyl nickel powder (a nickel mesh of 100 mesh was used as a core material) was 2 m long.
ol% [{Co / (Ni + Co)} × 100], a 4M aqueous solution of nickel nitrate containing 5% Hg was impregnated under reduced pressure, then neutralized in a 5M aqueous solution of sodium hydroxide and washed with hot water. A known operation of drying at 100 ° C. was repeated six times to produce an electrode plate filled with nickel hydroxide.

【0025】つづいて、5Mの水酸化ナトリウムに浸漬
し、対極として2枚のニッケル板を使用し、5mA/c
2の電流密度で3時間アノード通電をおこない水酸化
ニッケルをオキシ水酸化ニッケルとし,その後、110
℃で1時間乾燥することにより、大きさが30mm×4
0mm×0.8mmで公称容量が300mAhの本発明
による正極板Cを製作した。この正極板の基板表面に
は、オキシ水酸化ニッケルの薄膜が形成されていた。
Subsequently, the sample was immersed in 5 M sodium hydroxide, and two nickel plates were used as counter electrodes to obtain 5 mA / c.
Anode current was applied for 3 hours at a current density of m 2 to convert nickel hydroxide to nickel oxyhydroxide.
By drying at ℃ for 1 hour, the size is 30mm × 4
A positive electrode plate C according to the present invention having a size of 0 mm × 0.8 mm and a nominal capacity of 300 mAh was manufactured. A thin film of nickel oxyhydroxide was formed on the substrate surface of this positive electrode plate.

【0026】[実施例4]カーボニルニッケル粉末を焼
結して得られる多孔度約85%の焼結式ニッケル基板
(100メッシュのニッケル網を芯材とした)に、2m
ol%〔{Co/(Ni+Co)}×100〕のコバル
トを含有する4Mの硝酸ニッケル水溶液を5mmHgに
減圧含浸たのち、つづいて5Mの水酸化ナトリウム水溶
液中で中和して湯洗してから、100℃で乾燥するとい
う従来から公知の操作を6度繰り返しておこない、水酸
化ニッケルを充填した極板を製作した。
Example 4 A sintered nickel substrate having a porosity of about 85% obtained by sintering carbonyl nickel powder (a nickel mesh of 100 mesh was used as a core material) was 2 m long.
ol% [{Co / (Ni + Co)} × 100], a 4M aqueous solution of nickel nitrate containing 5% Hg was impregnated under reduced pressure, then neutralized in a 5M aqueous solution of sodium hydroxide and washed with hot water. A known operation of drying at 100 ° C. was repeated six times to produce an electrode plate filled with nickel hydroxide.

【0027】つづいて、ペルオクソ二硫酸カリウムを溶
解した1Mの水酸化ナトリウムに浸漬して、水酸化ニッ
ケルをオキシ水酸化ニッケルとしたのち、水洗してか
ら、100℃で1時間乾燥することにより、大きさが3
0mm×40mm×0.8mmで公称容量が300mA
hの本発明による正極板Dを製作した。この正極板の基
板表面には、オキシ水酸化ニッケルの薄膜が形成されて
いることをX線回折分析で確認した。
Then, the nickel hydroxide was immersed in 1M sodium hydroxide in which potassium peroxodisulfate was dissolved to form nickel oxyhydroxide, washed with water, and then dried at 100 ° C. for 1 hour. Size 3
0mm x 40mm x 0.8mm with a nominal capacity of 300mA
h of the positive electrode plate D according to the present invention. X-ray diffraction analysis confirmed that a thin film of nickel oxyhydroxide was formed on the substrate surface of the positive electrode plate.

【0028】[比較例]比較のため、導電材としてグラ
ファイト10部と、20μmの2mol%〔{Co/
(Ni+Co)}×100〕のコバルトを含有するオキ
シ水酸化ニッケル粉末50部とを混合し、さらにポリ二
フッ化ビニリデン1%を含むn−メチル−2−ピロリデ
ンの溶液で混合してから、アルミニウムの集電体に塗布
した。その後、100℃で水洗してから100℃で1時
間乾燥することにより、大きさが50mm×60mm×
0.8mmで公称容量が300mAhの比較例正極板E
を製作した。
Comparative Example For comparison, 10 parts of graphite was used as a conductive material and 2 mol% of 20 μm [{Co /
(Ni + Co)} × 100] and 50 parts of cobalt-containing nickel oxyhydroxide powder containing cobalt, further mixed with a solution of n-methyl-2-pyrrolidene containing 1% of polyvinylidene difluoride, and then mixed with aluminum. Of the current collector. After that, by washing at 100 ° C. and then drying at 100 ° C. for 1 hour, the size is 50 mm × 60 mm ×
Comparative Example Positive Electrode E with 0.8 mm and Nominal Capacity of 300 mAh
Was made.

【0029】これらの正極板1枚と同じ大きさの金属リ
チウム板2枚と、電解液に1Mの過塩素酸リチウムを含
むエチレンカーボネートとジエチルカーボネートとの混
合溶液300mlを使用して、それぞれの正極板を使用
した本発明による電池A、B、C、Dおよび比較例電池
Eを製作した.これらの電池を20℃、30mAで端子
電圧が4.1Vまで充電したのち、150mAで1.5
Vまで放電したときの放電特性を図1に示す。また、放
電容量の充放電サイクルにともなう変化を、初期容量を
100として、図2に示す。なお、一サイクル目は放電
から開始した。
Each of the positive electrode plates was prepared by using two lithium metal plates having the same size as one positive electrode plate and 300 ml of a mixed solution of ethylene carbonate and diethyl carbonate containing 1 M lithium perchlorate as an electrolyte. Batteries A, B, C, and D according to the present invention using a plate and a comparative example battery E were produced. These batteries were charged at 20 ° C. and 30 mA to a terminal voltage of 4.1 V, and then charged at 150 mA to 1.5 V.
FIG. 1 shows the discharge characteristics when discharging to V. FIG. 2 shows the change of the discharge capacity with the charge / discharge cycle, where the initial capacity is 100. The first cycle was started from the discharge.

【0030】図より、本発明による電池A、B,Cおよ
びDの放電性能は、比較例電池に比べて、明らかに優れ
ていることがわかる。また、寿命性能も本発明による電
池A、B、CおよびDの方が、E電池と比較して優れて
いることもわかる。
From the figure, it can be seen that the discharge performance of the batteries A, B, C and D according to the present invention is clearly superior to the comparative battery. It can also be seen that the batteries A, B, C, and D according to the present invention also have a better life performance than the E battery.

【0031】この場合、ニッケル基板に酸化皮膜やオキ
シ水酸化ニッケル皮膜を形成させた本発明による正極板
を用いた電池には短絡が発生せず、500サイクルにい
たるまで良好な特性を示した。これは、焼結式ニッケル
基板の表面に形成した酸化ニッケルやオキシ水酸化ニッ
ケルの皮膜によって素地のニッケルが電解液に溶解する
のを防止しているものと推定される.実施例では、コバ
ルトの含有量したオキシ水酸化ニッケル(Ni1-xCox
00H)を使用したが、コバルトの含有量は2mol%
〔{Co/(Ni+Co)}×100〕以上がよかっ
た。コバルトの添加は、本発明のように集電性が良好な
基体を使用した場合においても効果があることがわかっ
た。このコバルトの含有量は2〜90mol%である
が、50mol%を越えるとコストが高くなるのでこの
ましくない。このコバルトの効果は、活物質の拡散がよ
り容易になり、活物質が均質に働くものと推定され、結
果として性能が向上するもの考えられる。その場合、オ
キシ水酸化ニッケルとオキシ水酸化コバルトと固溶体を
形成させるのが有利である。
In this case, no short circuit occurred in the battery using the positive electrode plate according to the present invention in which an oxide film or a nickel oxyhydroxide film was formed on a nickel substrate, and good characteristics were exhibited up to 500 cycles. This is presumably because the nickel oxide or nickel oxyhydroxide film formed on the surface of the sintered nickel substrate prevented the base nickel from dissolving in the electrolyte. In the embodiment, nickel oxyhydroxide containing cobalt (Ni 1-x Co x
00H), but the cobalt content was 2 mol%
[{Co / (Ni + Co)} × 100] or more was good. It has been found that the addition of cobalt is effective even when a substrate having good current collecting properties is used as in the present invention. The content of this cobalt is 2 to 90 mol%, but if it exceeds 50 mol%, the cost becomes high, so it is not preferable. The effect of this cobalt is presumed to be that diffusion of the active material becomes easier and that the active material works homogeneously, resulting in improved performance. In that case, it is advantageous to form a solid solution with nickel oxyhydroxide and cobalt oxyhydroxide.

【0032】以上のように、本発明による正極板および
それを使用した電池の性能がすぐれている理由は、活物
質保持体と集電体とを兼ね備えている焼結式ニッケル基
体を使用するとオキシ水酸化ニッケル活物質と集電体と
の電気的な接触がよく、また、活物質であるオキシ水酸
化ニッケル粒子間同士の接合状態がよいことに起因する
ものと推測される。さらに、粒子間の接触抵抗が小さ
く、また、反応の律束過程であるリチウムイオンの拡散
が粒子間でも容易になっているものと推定される。
As described above, the performance of the positive electrode plate according to the present invention and the battery using the same are excellent because the use of a sintered nickel substrate having both an active material holding member and a current collector makes it possible to reduce the oxygen content. It is presumed that this is due to good electrical contact between the nickel hydroxide active material and the current collector, and good bonding between the nickel oxyhydroxide particles as the active material. Further, it is presumed that the contact resistance between the particles is small, and the diffusion of lithium ions, which is the process of controlling the reaction, is facilitated even between the particles.

【0033】オキシ水酸化ニッケルとしては、β形でも
γ形でもよく、叉その混合物でもよいが、とくにアルミ
ニウム三次元多孔体の場合には、水分がある水酸化物も
生成するため、γ-NiOOHの含有量の少ない、望ま
しくは、結晶水のないβ-NiOOHがよい。
The nickel oxyhydroxide may be either β-form or γ-form, or a mixture thereof. Particularly, in the case of a three-dimensional aluminum porous body, a hydroxide containing water is formed, so that γ-NiOOH Is low, desirably β-NiOOH without crystallization water.

【0034】なお、実施例では、負極として金属リチウ
ムを使用したが、オキシ水酸化ニッケルを放電状態にし
てから、負極活物質として炭素材料例えば黒鉛を使用す
るとリチウムイオン電池となる。さらに、負極活物質と
してLiC6、正極としてオキシ水酸化ニッケルを使用
しても、リチウムイオン電池となる。本発明において
は、これらを含めリチウム電池と総称しており、本発明
によれば、このように優れたリチウム電池を提供するこ
とができる。
In this embodiment, lithium metal is used as the negative electrode. However, if a carbon material such as graphite is used as the negative electrode active material after the nickel oxyhydroxide is discharged, a lithium ion battery is obtained. Furthermore, even if LiC6 is used as the negative electrode active material and nickel oxyhydroxide is used as the positive electrode, a lithium ion battery is obtained. In the present invention, these are collectively referred to as lithium batteries, and according to the present invention, such excellent lithium batteries can be provided.

【0035】[0035]

【発明の効果】本発明になる第一の発明は、オキシ水酸
化ニッケルを、焼結式ニッケル基体に保持させることを
特徴とする。第一の発明にかかる第二の発明は、酸化ニ
ッケルあるいはオキシ水酸化ニッケルを焼結式ニッケル
基体表面に形成させることを特徴とする。第一又は第二
の発明にかかる第三の発明は、第一又は第二の発明で得
られる正極板を備えた電池であることを特徴とする。
The first invention according to the present invention is characterized in that nickel oxyhydroxide is held on a sintered nickel substrate. A second invention according to the first invention is characterized in that nickel oxide or nickel oxyhydroxide is formed on the surface of a sintered nickel substrate. A third invention according to the first or second invention is characterized in that the battery is provided with the positive electrode plate obtained in the first or second invention.

【0036】本発明によれば,ニッケル基板に酸化皮膜
やオキシ水酸化ニッケル皮膜を形成させると、その皮膜
が保護皮膜として作用し、素地のニッケルが電解液に溶
解するのを防止しているものと推定される。また、活物
質と集電体との電気的な接触がよく、さらに活物質であ
るオキシ水酸化ニッケル粒子間同士の接合状態がよいと
ともに、粒子間の接触抵抗が小さく、反応の律束過程で
あるリチウムイオンの拡散が粒子間でも容易になってい
るものと推定される。これにより、高性能のリチウム電
池の提供が可能となる。
According to the present invention, when an oxide film or a nickel oxyhydroxide film is formed on a nickel substrate, the film acts as a protective film to prevent the base nickel from being dissolved in the electrolytic solution. It is estimated to be. In addition, the electrical contact between the active material and the current collector is good, the bonding state between the nickel oxyhydroxide particles as the active material is good, and the contact resistance between the particles is small. It is presumed that diffusion of certain lithium ions is facilitated even between particles. Thereby, a high-performance lithium battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による正極板を使用した電池と従来の正
極板を使用した電池との放電特性を比較した図である。
FIG. 1 is a diagram comparing the discharge characteristics of a battery using a positive electrode plate according to the present invention and a battery using a conventional positive electrode plate.

【図2】本発明による正極板を使用した電池と従来の正
極板を使用した電池との充放電サイクルにともなう容量
推移を比較した図である。
FIG. 2 is a diagram comparing a change in capacity of a battery using a positive electrode plate according to the present invention and a battery using a conventional positive electrode plate with a charge / discharge cycle.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】オキシ水酸化ニッケルを焼結式ニッケル基
体に保持したことを特徴とするリチウム電池用正極板。
1. A positive electrode plate for a lithium battery, wherein nickel oxyhydroxide is held on a sintered nickel substrate.
【請求項2】焼結式ニッケル基体に酸化ニッケルあるい
はオキシ水酸化ニッケルの表面皮膜を形成させたことを
特徴とする請求項1記載の正極板。
2. The positive electrode plate according to claim 1, wherein a surface film of nickel oxide or nickel oxyhydroxide is formed on the sintered nickel substrate.
【請求項3】 請求項1叉は2記載の正極板を備えたリ
チウム電池。
3. A lithium battery provided with the positive electrode plate according to claim 1.
JP8323609A 1996-11-18 1996-11-18 Positive electrode plate for lithium battery and lithium battery Pending JPH10149812A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP8323609A JPH10149812A (en) 1996-11-18 1996-11-18 Positive electrode plate for lithium battery and lithium battery
DE69719677T DE69719677T2 (en) 1996-11-18 1997-11-18 Positive electrode for lithium battery and lithium battery
EP97120212A EP0843372B1 (en) 1996-11-18 1997-11-18 Positive electrode for lithium battery and lithium battery
US08/972,485 US6221529B1 (en) 1996-11-18 1997-11-18 Positive electrode for lithium battery and lithium battery
CN97120177A CN1185666A (en) 1996-11-18 1997-11-18 Positive pole-plate for lithium cell and lithium cell thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8323609A JPH10149812A (en) 1996-11-18 1996-11-18 Positive electrode plate for lithium battery and lithium battery

Publications (1)

Publication Number Publication Date
JPH10149812A true JPH10149812A (en) 1998-06-02

Family

ID=18156638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8323609A Pending JPH10149812A (en) 1996-11-18 1996-11-18 Positive electrode plate for lithium battery and lithium battery

Country Status (1)

Country Link
JP (1) JPH10149812A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011081971A (en) * 2009-10-05 2011-04-21 National Institute Of Advanced Industrial Science & Technology Nickel-lithium secondary battery
JP2017182930A (en) * 2016-03-28 2017-10-05 株式会社豊田中央研究所 Electrode for lithium secondary battery, method for manufacturing the same, and lithium secondary battery including the same
CN110364365A (en) * 2018-04-11 2019-10-22 中国科学院青岛生物能源与过程研究所 A kind of method that electrochemical oxidation process prepares single layered porous hydroxy cobalt oxide nanometer sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011081971A (en) * 2009-10-05 2011-04-21 National Institute Of Advanced Industrial Science & Technology Nickel-lithium secondary battery
JP2017182930A (en) * 2016-03-28 2017-10-05 株式会社豊田中央研究所 Electrode for lithium secondary battery, method for manufacturing the same, and lithium secondary battery including the same
CN110364365A (en) * 2018-04-11 2019-10-22 中国科学院青岛生物能源与过程研究所 A kind of method that electrochemical oxidation process prepares single layered porous hydroxy cobalt oxide nanometer sheet
CN110364365B (en) * 2018-04-11 2021-07-27 中国科学院青岛生物能源与过程研究所 Method for preparing single-layer porous cobalt oxyhydroxide nanosheet by electrochemical oxidation method

Similar Documents

Publication Publication Date Title
US6878487B2 (en) Active material for battery and method of preparing same
JP4196234B2 (en) Nonaqueous electrolyte lithium secondary battery
JP5214202B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP3624539B2 (en) Method for producing lithium nickelate positive electrode plate and lithium battery
JP3994238B2 (en) Nonaqueous electrolyte lithium secondary battery
JP2949705B2 (en) Method for recovering discharge capacity of non-aqueous electrolyte secondary battery and circuit therefor
WO2001020695A9 (en) Electrode composition comprising doped tungsten oxides and method of preparation
JPH0845498A (en) Nonaqueous electrolytic liquid secondary battery
JP3972577B2 (en) Lithium secondary battery
JP4013327B2 (en) Non-aqueous secondary battery
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP2000348722A (en) Nonaqueous electrolyte battery
US6221529B1 (en) Positive electrode for lithium battery and lithium battery
JP2001297750A (en) Power-generating element for lithium secondary battery and lithium secondary battery using same
JPH10149812A (en) Positive electrode plate for lithium battery and lithium battery
JP2000149943A (en) Process for lithium manganese compound oxide for lithium secondary battery positive active material
JP3680306B2 (en) Positive electrode plate for lithium battery and lithium battery
JP2002358957A (en) Nickel pole for alkaline storage battery and alkaline storage battery
JP3447187B2 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JPH10172560A (en) Lithium battery and positive electrode for it
JP4759786B2 (en) Non-aqueous electrolyte battery
JP4759787B2 (en) Nonaqueous electrolyte battery and method for producing positive electrode material for nonaqueous electrolyte battery
JP2001110406A (en) Nonaqueous electrolyte secondary battery
JPH10149811A (en) Positive electrode plate for lithium battery and lithium battery
JP4156199B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050425