JP3135239B2 - Nickel positive electrode for batteries - Google Patents

Nickel positive electrode for batteries

Info

Publication number
JP3135239B2
JP3135239B2 JP01213362A JP21336289A JP3135239B2 JP 3135239 B2 JP3135239 B2 JP 3135239B2 JP 01213362 A JP01213362 A JP 01213362A JP 21336289 A JP21336289 A JP 21336289A JP 3135239 B2 JP3135239 B2 JP 3135239B2
Authority
JP
Japan
Prior art keywords
nickel
positive electrode
powder
hydroxide
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01213362A
Other languages
Japanese (ja)
Other versions
JPH0377273A (en
Inventor
英男 海谷
勝己 山下
徳之 藤岡
哲秀 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP01213362A priority Critical patent/JP3135239B2/en
Publication of JPH0377273A publication Critical patent/JPH0377273A/en
Application granted granted Critical
Publication of JP3135239B2 publication Critical patent/JP3135239B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電池用ニッケル正極に関するものであり、
詳しくはアルカリ電池用の非焼結式ニッケル正極に適用
されるものである。
The present invention relates to a nickel positive electrode for a battery,
Specifically, the present invention is applied to a non-sintered nickel positive electrode for an alkaline battery.

従来の技術 電池用ニッケル正極は、金属製の筒状,袋状、または
格子状の支持体に活物質を充填したり、金属焼結体に活
物質を充填したものが一般的である。前者の筒状,袋
状、あるいは格子状の支持体を使用するものは、充填容
量が大きくできるという利点があるが、反面高率の放電
特性が悪いという欠点がある。また後者の金属焼結体の
支持体を使用するものは高率放電特性が優れているとい
う利点があるが、充填容量が小さいという欠点がある。
この両者の欠点を改善するため最近では高多孔度を有す
る連続した三次元的な網目構造を持った発泡メタルを支
持体に使用する電池用電極が提案されている。この発泡
メタルに活物質を充填する方法は、高容量,高率放電に
適した電極と言える。
2. Description of the Related Art A nickel positive electrode for a battery generally has a metal cylindrical, bag-shaped, or lattice-shaped support filled with an active material, or a metal sintered body filled with an active material. The former using a cylindrical, bag-shaped or lattice-shaped support has the advantage that the filling capacity can be increased, but has the disadvantage that the high-rate discharge characteristics are poor. Further, the latter using a metal sintered body support has an advantage that the high rate discharge characteristics are excellent, but has a disadvantage that the filling capacity is small.
In order to improve both disadvantages, a battery electrode using a foamed metal having a continuous three-dimensional network structure having a high porosity as a support has recently been proposed. This method of filling the foamed metal with the active material can be said to be an electrode suitable for high capacity and high rate discharge.

発明が解決しようとする課題 ニッケル正極をニッケルカドミウム蓄電池等の二次電
池に使用する場合、ニッケル正極は、充放電時にニッケ
ル活物質が膨張,収縮するために、充放電のくり返しに
より、極板の膨張を生じる。極板の膨張は、正極,負極
間に設置されたセパレータの圧縮を生じ、正極,負極間
の短絡、あるいは、電池内に存在する電解液の偏在によ
る寿命劣化の原因となる。このようなニッケル正極の膨
張は、特に焼結式に比べて活物質保持体の強度が弱い非
焼結式で顕著となる。このような問題を改善するため
に、例えば特開昭59−83347号公報に示されるようにニ
ッケル活物質の膨張,収縮を防止するために、水酸化ニ
ッケル粉末と、亜鉛化合物との混合使用が提案されてい
るが、さらに改良の余地が残されていた。
Problems to be Solved by the Invention When a nickel positive electrode is used for a secondary battery such as a nickel cadmium storage battery, the nickel active material expands and contracts during charging and discharging, and the nickel plate is repeatedly charged and discharged. Causes swelling. The expansion of the electrode plate causes compression of the separator provided between the positive electrode and the negative electrode, causing a short circuit between the positive electrode and the negative electrode, or a deterioration in life due to uneven distribution of the electrolyte present in the battery. Such expansion of the nickel positive electrode becomes remarkable particularly in the non-sintered type in which the strength of the active material holding member is weaker than that in the sintered type. In order to solve such a problem, for example, as disclosed in JP-A-59-83347, in order to prevent expansion and contraction of a nickel active material, a mixed use of nickel hydroxide powder and a zinc compound is used. Proposed, but leaves room for further improvement.

本発明は、このような課題を解決し、非焼結式ニッケ
ル正極の高容量という利点を維持しつつ、焼結式ニッケ
ル正極に対して劣っている充放電サイクル寿命特性を改
善することにより、高容量,高性能のニッケル正極を提
供するものである。
The present invention solves such problems, while maintaining the advantage of the high capacity of the non-sintered nickel positive electrode, by improving the charge-discharge cycle life characteristics that are inferior to the sintered nickel positive electrode, It is intended to provide a high capacity, high performance nickel positive electrode.

課題を解決するための手段 本発明は、非焼結式ニッケル正極に用いる水酸化ニッ
ケル活物質粉末として、その表面に亜鉛化合物粉末層を
固定化したものを使用するものである。
Means for Solving the Problems The present invention uses, as a nickel hydroxide active material powder used for a non-sintered nickel positive electrode, a powder having a zinc compound powder layer fixed on the surface thereof.

作用 ニッケル活物質は、充放電によるプロトンの移動、あ
るいは結晶形の変化等により、体積変化を生じる。
Action The nickel active material undergoes a volume change due to the movement of protons due to charge and discharge or a change in crystal form.

ニッケル正極は、通常、初期に水酸化ニッケル活物質
が高密度に充填されているため、ニッケル活物質の充放
電による膨張,収縮の体積変化は、極板としての膨張を
生じる。これは、活物質粉末が、充放電時の体積変化に
より、微細化することにより、活物質粉末の嵩比重が低
下することによるためと考えられる。活物質の充放電に
よる体積変化で、特に顕著なものは、過充電による比重
の低いオキシ水酸化ニッケル(γタイプ)の生成であ
る。γタイプのオキシ水酸化ニッケルの生成を抑制する
手段として、亜鉛化合物の添加が提案されており、非焼
結式ニッケル正極の活物質として、水酸化ニッケルと水
酸化亜鉛の共晶粉末を使用したり、水酸化ニッケルと水
酸化亜鉛の混合粉末を使用すれば、寿命特性はある程度
改善される。
Since the nickel positive electrode is usually initially filled with a nickel hydroxide active material at a high density, the volume change of expansion and contraction due to charging and discharging of the nickel active material causes expansion as an electrode plate. This is probably because the active material powder is miniaturized due to a change in volume at the time of charge and discharge, and the bulk specific gravity of the active material powder is reduced. A particularly remarkable change in volume due to charge and discharge of the active material is the formation of nickel oxyhydroxide (γ type) having a low specific gravity due to overcharging. As a means for suppressing the formation of γ-type nickel oxyhydroxide, addition of a zinc compound has been proposed, and a eutectic powder of nickel hydroxide and zinc hydroxide is used as an active material of a non-sintered nickel positive electrode. If a mixed powder of nickel hydroxide and zinc hydroxide is used, the life characteristics are improved to some extent.

本発明者らが、活物質粉末の充放電時の微細化による
極板の膨張を詳細に検討した結果、活物質の微細化は、
特に活物質粉末の表面で顕著であることを見出した。
The present inventors have studied in detail the expansion of the electrode plate due to miniaturization at the time of charge and discharge of the active material powder, the finer active material,
In particular, they have been found to be remarkable on the surface of the active material powder.

亜鉛化合物の添加によるγタイプのオキシ水酸化ニッ
ケルの生成抑制は、亜鉛イオンが水酸化ニッケルの結晶
内のニッケル層間に存在することにより、ニッケル層間
の膨張を抑制するためと考えられる。
The suppression of the formation of γ-type nickel oxyhydroxide by the addition of the zinc compound is considered to be due to the suppression of expansion between the nickel layers by the presence of zinc ions between the nickel layers in the nickel hydroxide crystal.

活物質粉末の充放電による微細化は、特に粉末表面で
顕著であるため、その抑制のために添加した亜鉛化合物
は、水酸化ニッケル粉末表面に存在するもののみが有効
となり、例えば非焼結式ニッケル正極に使用する、水酸
化ニッケルと水酸化亜鉛の共晶活物質粉末では、水酸化
ニッケルの内部に存在する亜鉛化合物は有効に作用せ
ず、また、水酸化ニッケルと水酸化亜鉛とを混合して使
用する場合の水酸化亜鉛も、水酸化ニッケルの表面に存
在するもののみが、寿命の向上に寄与するため、水酸化
亜鉛の効果が、効率的に発揮されない。
Since the miniaturization of the active material powder due to charge and discharge is particularly remarkable on the surface of the powder, only the zinc compound added for suppressing the zinc compound existing on the surface of the nickel hydroxide powder is effective. In the eutectic active material powder of nickel hydroxide and zinc hydroxide used for the nickel positive electrode, the zinc compound present inside nickel hydroxide does not work effectively, and nickel hydroxide and zinc hydroxide are mixed. In the case where zinc hydroxide is used as it is, only the zinc hydroxide present on the surface of nickel hydroxide contributes to the improvement of the life, and the effect of zinc hydroxide is not efficiently exhibited.

これに対し、本発明では、表面に亜鉛化合物層が固定
化された水酸化ニッケル活物質粉末を非焼結式ニッケル
正極用の活物質として使用するため、亜鉛化合物の効果
が有効に発揮され、少量の亜鉛化合物の添加が、非焼結
式のニッケル正極の充放電寿命が大幅に改良される。
On the other hand, in the present invention, since the nickel hydroxide active material powder having the zinc compound layer fixed on the surface is used as the active material for the non-sintered nickel positive electrode, the effect of the zinc compound is effectively exhibited, The addition of a small amount of a zinc compound significantly improves the charge / discharge life of a non-sintered nickel positive electrode.

実施例 以下、実施例によって本発明を詳細に説明する。Examples Hereinafter, the present invention will be described in detail with reference to examples.

平均粒径約20μmの水酸化ニッケル粉末の表面に、平
均粒径約1μmの水酸化亜鉛粉末の層を固定化した活物
質粉末を用意する。水酸化ニッケル表面への水酸化亜鉛
粉末層の固定化は、機械的衝撃力により母粒子(水酸化
ニッケル)の表面に子粒子(水酸化亜鉛)を固定化する
方法(ハイブリダイゼーション)により行った。このと
き、活物質粉末の水酸化ニッケルと水酸化亜鉛の比率
は、モル比率で90:10〜99:1とした。
An active material powder in which a layer of zinc hydroxide powder having an average particle size of about 1 μm is immobilized on the surface of nickel hydroxide powder having an average particle size of about 20 μm is prepared. The immobilization of the zinc hydroxide powder layer on the nickel hydroxide surface was performed by a method (hybridization) of immobilizing the child particles (zinc hydroxide) on the surface of the base particles (nickel hydroxide) by mechanical impact. . At this time, the molar ratio of nickel hydroxide to zinc hydroxide in the active material powder was 90:10 to 99: 1.

上記活物質粉末を水で練合し、ペースト状として、多
孔度約95%を有するスポンジ状の金属ニッケルに充填
し、その後加圧加工を行って正極単板に形成し、本発明
によるニッケル正極(a)を得た。また比較例として、
水酸化ニッケル中に共晶の形で水酸化亜鉛を含む活物質
を用いて同様な方法で得た正極を試作し、これを(b)
とした。また別の比較例として、水酸化ニッケル粉末
と、水酸化亜鉛とを通常の混合方式により、混合ペース
トとしたものを充填して得た正極を試作し、これを
(c)とした。
The active material powder is kneaded with water to form a paste, filled into sponge-like metallic nickel having a porosity of about 95%, and then subjected to pressure processing to form a single positive electrode plate. (A) was obtained. As a comparative example,
A positive electrode obtained by a similar method using an active material containing zinc hydroxide in the form of a eutectic in nickel hydroxide was trial-produced, and this was (b)
And As another comparative example, a positive electrode obtained by filling a mixed paste of nickel hydroxide powder and zinc hydroxide by a normal mixing method was prototyped, and this was designated as (c).

第1図に、それぞれの正極の活物質粉末の概略の構成
を示す。第1図のaは、本発明による正極の活物質粉末
であり、図中1は水酸化ニッケル粉末、2は水酸化亜鉛
粉末を示し、b,cは比較例の活物質粉末の構成を示す。
FIG. 1 shows a schematic configuration of the active material powder of each positive electrode. FIG. 1a shows the active material powder of the positive electrode according to the present invention, in which 1 indicates nickel hydroxide powder, 2 indicates zinc hydroxide powder, and b and c indicate configurations of the active material powder of the comparative example. .

これらの正極と、通常のペースト式カドミウム負極を
用い、1.5Ah相当の密閉型ニッケルカドミウム蓄電池を
試作し、電池の特性評価を行った。
Using these positive electrodes and a conventional paste-type cadmium negative electrode, a sealed nickel cadmium storage battery equivalent to 1.5 Ah was prototyped, and the battery characteristics were evaluated.

電池の評価は、充放電サイクル寿命特性を評価するた
めに、20℃の雰囲気温度で、1CmAで1.5時間充電し、1Cm
A相当の抵抗で1.5時間放電する充放電をくり返し、初期
の放電容量に対する放電容量の維持率の評価と、放電特
性の評価を行った。放電特性は、20℃での0.2CmAの放電
容量に対する3CmAでの放電容量の比率で評価した。
The battery was charged at 1 CmA for 1.5 hours at an ambient temperature of 20 ° C to evaluate the charge-discharge cycle life characteristics.
The charge / discharge of discharging for 1.5 hours with a resistance equivalent to A was repeated, and the maintenance ratio of the discharge capacity to the initial discharge capacity and the discharge characteristics were evaluated. The discharge characteristics were evaluated by the ratio of the discharge capacity at 3 CmA to the discharge capacity of 0.2 CmA at 20 ° C.

第2図は、本発明による正極(a)を用いた電池A、
比較例の正極(b),(c)を用いた電池B,Cについて
の水酸化ニッケル活物質に対する水酸化亜鉛の添加量
と、容量維持率が、初期の容量に対して80%以下となる
充放電サイクル数の関係を表わした図である。本発明の
正極を用いた電池Aは比較例B,Cよりも少ない量の水酸
化亜鉛の添加量で、良好な寿命特性が得られる。その添
加量としては、水酸化ニッケルに対するモル比率で、約
1%以上あればよいと考えられる。これは先に述べ、第
1図に示す通り水酸化ニッケル表面に添加した水酸化亜
鉛が最も有効に水酸化ニッケル粉末に作用しているため
と考えられる。
FIG. 2 shows a battery A using the positive electrode (a) according to the present invention,
In the batteries B and C using the positive electrodes (b) and (c) of the comparative examples, the amount of zinc hydroxide added to the nickel hydroxide active material and the capacity retention ratio become 80% or less of the initial capacity. It is a figure showing the relationship of the number of charge / discharge cycles. In the battery A using the positive electrode of the present invention, good life characteristics can be obtained with a smaller amount of zinc hydroxide than in Comparative Examples B and C. It is considered that the amount of addition should be about 1% or more in terms of molar ratio to nickel hydroxide. This is presumably because zinc hydroxide added to the surface of the nickel hydroxide most effectively acts on the nickel hydroxide powder, as described above and shown in FIG.

第3図は、同様に水酸化亜鉛の添加モル比率と20℃,3
CmA放電での放電容量比率の関係を表わした図である。
比較例B,Cでは、添加する水酸化亜鉛の比率が増大して
も、放電特性は劣化しないが、本発明による正極を使用
したものは、約5%以上の水酸化亜鉛の添加で、放電特
性が劣化している。これは、本発明では水酸化ニッケル
の表面に水酸化亜鉛の層を固定化させているため、その
添加量が多い場合、水酸化ニッケル表面での電解液の移
動を妨害する形となり、放電特性が劣化するものと考え
られる。従って、水酸化ニッケルと、水酸化亜鉛の適性
比率は、モル比率で、99:1〜95:5程度であると考えられ
る。同様なことは、水酸化ニッケルと水酸化亜鉛の粒径
についても言える。水酸化亜鉛の粒径が小さすぎる場合
には、水酸化ニッケル上での水酸化亜鉛の層がち密とな
り、放電特性が劣化する。また、逆に粒径が大きすぎる
場合には、十分に水酸化ニッケル粒子の表面を被覆でき
ないため、寿命特性に対する効果が十分に得られなくな
る。
FIG. 3 also shows the addition molar ratio of zinc hydroxide and 20 ° C., 3
FIG. 4 is a diagram showing a relationship between discharge capacity ratios in CmA discharge.
In Comparative Examples B and C, the discharge characteristics were not deteriorated even when the ratio of zinc hydroxide added was increased. However, in the case of using the positive electrode according to the present invention, the discharge was increased by adding about 5% or more of zinc hydroxide. The characteristics have deteriorated. This is because, in the present invention, a layer of zinc hydroxide is immobilized on the surface of nickel hydroxide, so that when the amount of addition is large, the movement of the electrolytic solution on the surface of nickel hydroxide is obstructed, and the discharge characteristics Is considered to deteriorate. Therefore, it is considered that the appropriate ratio of nickel hydroxide to zinc hydroxide is about 99: 1 to 95: 5 in molar ratio. The same can be said for the particle sizes of nickel hydroxide and zinc hydroxide. If the particle size of the zinc hydroxide is too small, the layer of the zinc hydroxide on the nickel hydroxide becomes dense and the discharge characteristics deteriorate. On the other hand, if the particle size is too large, the surface of the nickel hydroxide particles cannot be sufficiently covered, so that the effect on the life characteristics cannot be sufficiently obtained.

第1表は、本発明によって平均粒径約20μmの水酸化
ニッケル粉末の表面に水酸化亜鉛粉末をモル比率で95:5
の割合で配置したときの水酸化亜鉛の平均粒径と、電池
特性との関係を示す。
Table 1 shows that, according to the present invention, 95: 5 molar ratio of zinc hydroxide powder was
2 shows the relationship between the average particle size of zinc hydroxide and the battery characteristics when arranged at a ratio of.

先に述べた通り、水酸化ニッケル粉末の表面に配置す
る水酸化亜鉛の平均粒径が大きすぎる場合、寿命特性が
低下するため、その平均粒径の上限は、水酸化ニッケル
の平均粒径の約1/10程度であり、また、平均粒径が小さ
すぎる場合は、放電特性が劣化するため、その下限は、
水酸化ニッケルの平均粒径の約1/100程度であると考え
られる。従って、水酸化亜鉛の平均粒径は、水酸化ニッ
ケルの平均粒径に対して、1/10〜1/100程度が適当であ
ると考えられる。
As described above, if the average particle size of zinc hydroxide disposed on the surface of the nickel hydroxide powder is too large, the life characteristics are reduced, so the upper limit of the average particle size is the average particle size of nickel hydroxide. About 1/10, and if the average particle size is too small, the discharge characteristics will deteriorate, the lower limit is
It is considered to be about 1/100 of the average particle size of nickel hydroxide. Therefore, it is considered that the average particle size of zinc hydroxide is appropriately about 1/10 to 1/100 of the average particle size of nickel hydroxide.

本実施例では、亜鉛化合物として水酸化亜鉛を取り上
げたが、酸化亜鉛あるいは、これらの混合物でも同様な
効果が得られる。
In this embodiment, zinc hydroxide is used as the zinc compound. However, similar effects can be obtained with zinc oxide or a mixture thereof.

発明の効果 以上のように本発明によれば、従来の非焼結式ニッケ
ル正極の欠点を改良し、高容量,高性能のニッケル正極
が得られる。
As described above, according to the present invention, the disadvantages of the conventional non-sintered nickel positive electrode are improved, and a high capacity and high performance nickel positive electrode can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a),(b),(c)はニッケル正極における
活物質粉末の概略図、第2図は水酸化亜鉛のモル比率と
充放電サイクル数との関係を示す図、第3図は水酸化亜
鉛のモル比率と放電容量比率との関係を示す図である。
1 (a), (b) and (c) are schematic diagrams of an active material powder in a nickel positive electrode, FIG. 2 is a diagram showing the relationship between the molar ratio of zinc hydroxide and the number of charge / discharge cycles, and FIG. FIG. 3 is a view showing a relationship between a molar ratio of zinc hydroxide and a discharge capacity ratio.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤岡 徳之 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 後藤 哲秀 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭63−218154(JP,A) 特開 昭59−112574(JP,A) 特開 昭63−301461(JP,A) 特開 昭59−83347(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tokuyuki Fujioka 1006 Kazuma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (56) References JP-A-63-218154 (JP, A) JP-A-59-112574 (JP, A) JP-A-63-301461 (JP, A) JP-A-59-83347 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水酸化ニッケル粉末を主体とする活物質粉
末混合物を金属基板または支持体内部に充填したニッケ
ル正極であり、前記水酸化ニッケル粉末の表面に水酸化
亜鉛粉末又は酸化亜鉛粉末のうちのいずれか1種、ある
いはこれらの混合物の粉末層がハイブリダイゼーション
によって固定化されていて、前記水酸化ニッケル粉末
と、この水酸化ニッケル粉末の表面に層状に固定化され
た前記水酸化亜鉛粉末,酸化亜鉛粉末との配合比率が、
モル比率で、99:1から95:5の範囲であることを特徴とす
る電池用ニッケル正極。
1. A nickel positive electrode in which an active material powder mixture mainly composed of nickel hydroxide powder is filled in a metal substrate or a support, and the surface of said nickel hydroxide powder is made of zinc hydroxide powder or zinc oxide powder. A powder layer of any one of the above, or a mixture thereof, is fixed by hybridization, and the nickel hydroxide powder and the zinc hydroxide powder layer-fixed on the surface of the nickel hydroxide powder; The compounding ratio with zinc oxide powder is
A nickel positive electrode for batteries, wherein the molar ratio is in the range of 99: 1 to 95: 5.
【請求項2】水酸化亜鉛粉末,酸化亜鉛粉末の平均粒径
が、水酸化ニッケル粉末の平均粒径の1/10〜1/100の範
囲である特許請求の範囲第1項に記載の電池用ニッケル
正極。
2. The battery according to claim 1, wherein the average particle size of the zinc hydroxide powder and the zinc oxide powder is in the range of 1/10 to 1/100 of the average particle size of the nickel hydroxide powder. For nickel positive electrode.
JP01213362A 1989-08-18 1989-08-18 Nickel positive electrode for batteries Expired - Lifetime JP3135239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01213362A JP3135239B2 (en) 1989-08-18 1989-08-18 Nickel positive electrode for batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01213362A JP3135239B2 (en) 1989-08-18 1989-08-18 Nickel positive electrode for batteries

Publications (2)

Publication Number Publication Date
JPH0377273A JPH0377273A (en) 1991-04-02
JP3135239B2 true JP3135239B2 (en) 2001-02-13

Family

ID=16637924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01213362A Expired - Lifetime JP3135239B2 (en) 1989-08-18 1989-08-18 Nickel positive electrode for batteries

Country Status (1)

Country Link
JP (1) JP3135239B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7393612B2 (en) 1996-12-17 2008-07-01 Toshiba Battery Co., Ltd. Electrodes, alkaline secondary battery, and method for manufacturing alkaline secondary battery

Also Published As

Publication number Publication date
JPH0377273A (en) 1991-04-02

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP3923157B2 (en) Alkaline storage battery
JPH04137368A (en) Nickel-hydrogen storage battery and its manufacture
JPH0528992A (en) Nickel positive pole for alkali storage battery and nickel-hydrogen storage battery using nickel positive pole
JPH11238508A (en) Nickel positive electrode for alkaline storage battery and its manufacture
JP2609911B2 (en) Alkaline storage battery
JP3135239B2 (en) Nickel positive electrode for batteries
JP4010630B2 (en) Hydrogen storage alloy electrode
JPH08329937A (en) Nickel positive electrode for alkaline storage battery and nickel hydrogen storage battery
JP4747233B2 (en) Alkaline storage battery
JP4061048B2 (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
JP3575196B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
JP3788485B2 (en) Alkaline storage battery
JP3653710B2 (en) Hydrogen storage electrode
JP3183073B2 (en) Active material for nickel electrode and method for producing the same
JPH06150925A (en) Manufacture of nickel positive electrode for alkaline storage battery and alkaline storage battery equipped with electrode
JPH09180717A (en) Nickel electrode for alkaline storage battery
JP2000182611A (en) Alkaline storage battery and its manufacture
JPH0377272A (en) Nickel positive electrode for battery
JPH11204112A (en) Nickel hydrogen battery
JP3118812B2 (en) Alkaline storage battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3614567B2 (en) Sealed nickel metal hydride battery
JPH11238507A (en) Alkaline storage battery
JPS5933758A (en) Sealed nickel cadmium battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071201

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 9