JPH11204112A - Nickel hydrogen battery - Google Patents

Nickel hydrogen battery

Info

Publication number
JPH11204112A
JPH11204112A JP10014774A JP1477498A JPH11204112A JP H11204112 A JPH11204112 A JP H11204112A JP 10014774 A JP10014774 A JP 10014774A JP 1477498 A JP1477498 A JP 1477498A JP H11204112 A JPH11204112 A JP H11204112A
Authority
JP
Japan
Prior art keywords
nickel
battery
electrode
hydrogen
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10014774A
Other languages
Japanese (ja)
Inventor
Manabu Hamano
学 浜野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP10014774A priority Critical patent/JPH11204112A/en
Publication of JPH11204112A publication Critical patent/JPH11204112A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To gradually gel an aluminum oxide in an electrolyte, for restraining reduction of a positive electrode, and prevent the lowering of a discharge capacity by using a hydrogen storage alloy for a negative electrode, a nickel oxide for a positive electrode, and an alkali aqueous solution for an electrolyte, and adding an aluminum oxide to the negative electrode. SOLUTION: As an active substance of a negative electrode, a hydrogen storage alloy capable of absorbing and discharging hydrogen is employed, a nickel oxide is employed as a positive electrode, and a nickel hydrogen battery is provided with an alkali aqueous solution which is an electrolyte. An aluminum oxide is added to this negative electrode as a gel generation component makes contact with the electrolyte and is gradually gelled. This alumina gel adsorbs part of hydrogen and a segregation component discharged from a positive electrode during battery discharge, without inhibiting a conductive cobalt compound formation a nickel hydroxide that is a regular battery reaction. Thereby, Ni(OH)2 of a positive electrode component is reduced, self-discharge is prevented, a battery life is extended without lowering a discharge capacity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水素を可逆的に吸蔵・
放出する水素吸蔵合金または水素化物からなる水素吸蔵
合金を負極とし、水酸化ニッケルからなるニッケル極を
正極とするニッケル水素アルカリ蓄電池に関するもので
ある。
BACKGROUND OF THE INVENTION The present invention relates to a method for reversibly storing and storing hydrogen.
The present invention relates to a nickel-hydrogen alkaline storage battery in which a hydrogen storage alloy or a hydrogen storage alloy made of a hydride to be released is used as a negative electrode and a nickel electrode made of nickel hydroxide is used as a positive electrode.

【0002】[0002]

【従来の技術】従来、負極には電気化学的に多量の水素
を吸蔵・放出が可能な水素吸蔵合金、正極にはニッケル
酸化物、そして電解液としてアルカリ水溶液を用いた密
閉型のニッケル水素電池に代表される金属−水素アルカ
リ蓄電池が、軽量で且つ高容量の蓄電池として知られて
いる。このニッケル水素電池の負極は、活物質である水
素を吸蔵・放出できる水素吸蔵合金を主体として構成す
るものである。この水素吸蔵合金電極の製造は、まず、
水素吸蔵合金粉末とこの水素吸蔵合金粉末が電極から脱
落するのを防止するために用いられる結着材としてのポ
リフッ化ビニリデン(PVdF)、カルボキシメチルセ
ルロース(CMC)などの増粘材及びニッケル粉末を混
合したものを得る。この混合物をスラリー化し、これを
多孔導電板に塗布したものを、乾燥、圧延形成し、次い
でその電極形成体を真空または不活性ガス中で熱処理す
ることにより作られる。
2. Description of the Related Art Conventionally, a sealed nickel-metal hydride battery using a hydrogen storage alloy capable of storing and releasing a large amount of electrochemically hydrogen for a negative electrode, a nickel oxide for a positive electrode, and an alkaline aqueous solution as an electrolyte. Is known as a light-weight and high-capacity storage battery. The negative electrode of this nickel-metal hydride battery is mainly composed of a hydrogen storage alloy capable of storing and releasing hydrogen as an active material. In the manufacture of this hydrogen storage alloy electrode, first,
A mixture of a hydrogen storage alloy powder, a thickener such as polyvinylidene fluoride (PVdF), carboxymethyl cellulose (CMC), and a nickel powder as a binder used to prevent the hydrogen storage alloy powder from falling off the electrode. Get what you do. The mixture is slurried, applied to a porous conductive plate, dried, roll-formed, and then heat-treated in a vacuum or inert gas.

【0003】ところで、このニッケル水素電池には、寿
命の点で問題点があった。それは放電時に水素吸蔵合金
電極に吸蔵されていた水素が、アルカリ電解液に電気化
学的に放出され、その一部の水素が遊離の溶存水素とな
ってアルカリ電解液内を拡散してニッケル極に達し、そ
こで活物質であるNi(OH)2を還元するという動作を
する。すなわち正極であるニッケル極が自己放電を起こ
し電位を低下させてしまうという現象を生じ、放電状態
で放置しておくと、電池容量がゼロになってからも更に
電池電圧が低下していき、ついには正極活物質であるN
i(OH)2の還元電位にまで達することになる。その様
な状態に至ると、新たな充電を行っても電池容量は定格
容量まで復元できなくなり、電池の寿命も短くなってし
まうのである。
[0003] The nickel-metal hydride battery has a problem in terms of life. This is because the hydrogen occluded in the hydrogen storage alloy electrode at the time of discharge is electrochemically released into the alkaline electrolyte, and part of the hydrogen becomes free dissolved hydrogen and diffuses in the alkaline electrolyte to the nickel electrode. Then, an operation of reducing the active material Ni (OH) 2 is performed. In other words, a phenomenon occurs in which the nickel electrode, which is the positive electrode, causes self-discharge and lowers the potential, and if the battery is left in a discharged state, the battery voltage further decreases even after the battery capacity becomes zero, and finally, Is the positive electrode active material N
It will reach the reduction potential of i (OH) 2 . In such a state, the battery capacity cannot be restored to the rated capacity even if a new charge is performed, and the life of the battery is shortened.

【0004】この放電時におけるオープン電圧低下を抑
制することができる技術としてアルミニウム化合物を電
池内に添加する技術が、特開平9−171837号公報
に示されている。この技術は、電池内のニッケル電極、
水素吸蔵合金電極、セパレータ、及びアルカリ電解液の
内の何れかに、アルカリ電解液に接触してゲル化するア
ルミニウム化合物を添加するように構成するものであ
る。このアルミニウム化合物は電解液と接触してアルミ
ナゲル化し、水素の一部や合金の溶出成分を吸着する反
応作用をするものである。
Japanese Patent Application Laid-Open No. Hei 9-171837 discloses a technique of adding an aluminum compound to a battery as a technique capable of suppressing a decrease in open voltage at the time of discharging. This technology uses nickel electrodes in batteries,
An aluminum compound which gels upon contact with the alkaline electrolyte is added to any of the hydrogen storage alloy electrode, the separator, and the alkaline electrolyte. The aluminum compound contacts the electrolytic solution to form an alumina gel, and acts to adsorb a part of hydrogen and a component eluted from the alloy.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
技術では電解液を注液すると直ぐにアルミニウムのゲル
化が始まり、正規の電池反応である水酸化ニッケル上の
導電性コバルト化合物形成が阻害されて電池の分極が大
きくなり、放電容量が低下してしまうという新たな問題
が生じていた。
However, in the above technique, the gelation of aluminum starts immediately after the electrolyte is injected, and the formation of a conductive cobalt compound on nickel hydroxide, which is a normal battery reaction, is hindered. Has a new problem that the polarization of the metal becomes large and the discharge capacity decreases.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するためにアルカリ電解液に接触してゲル化するアル
ミニウム化合物として酸化アルミニウムを採用し、それ
をニッケル水素電池の負極を構成する水素吸蔵合金電極
中に添加させるものである。
In order to solve the above-mentioned problems, the present invention employs aluminum oxide as an aluminum compound which gels upon contact with an alkaline electrolyte, and uses the same as hydrogen constituting a negative electrode of a nickel-metal hydride battery. It is added to the storage alloy electrode.

【0007】[0007]

【作用】本発明は、このような構成を採ることにより、
上記課題を解決するものであるが、このニッケル水素電
池の電気化学的動作は、次のように説明することができ
る。まず、本発明の電池も基本的にはニッケル水素電池
であるから、水素吸蔵合金電極である負極に於いては、
化1に示されるような反応作用を行う。ここで、Mは水
素吸蔵合金を、MHは水素が吸蔵された状態の水素吸蔵
合金を示す。
According to the present invention, by adopting such a configuration,
In order to solve the above-mentioned problem, the electrochemical operation of this nickel-metal hydride battery can be explained as follows. First, since the battery of the present invention is also basically a nickel-metal hydride battery, in the negative electrode which is a hydrogen storage alloy electrode,
A reaction as shown in Chemical formula 1 is performed. Here, M indicates a hydrogen storage alloy, and MH indicates a hydrogen storage alloy in a state where hydrogen is stored.

【0008】[0008]

【化1】 Embedded image

【0009】また、他方の正極となるニッケル極では化
2のような周知の反応動作をする。
On the other hand, the nickel electrode serving as the other positive electrode performs a well-known reaction operation as shown in Chemical formula 2.

【0010】[0010]

【化2】 Embedded image

【0011】ところが、本発明の負極には酸化アルミニ
ウムが添加されているため、この酸化アルミニウムはア
ルカリ電解液の共存下でゲルとして存在することにな
る。このゲルが優れた吸着能を持っていることにより、
電池の放電時に水素吸蔵合金電極から放出される水素の
一部や同電極から溶出する合金化されないまま偏析して
いる成分などが、ゲル化した酸化アルミニウムに吸着さ
れる。その様に作用することによって、ニッケル極が溶
存水素で還元されることや偏析成分がニッケル極に析出
することが防げ、放電時におけるオープン電圧低下すな
わちニッケル極の電位の低下を来す諸要因を除去するこ
とができる。その点では先の特開平9−171837号
公報のものと基本的に同様の機能を有するものである
が、本発明はアルミニウム化合物として特に酸化アルミ
ニウムを採用し、それをニッケル水素電池の負極を構成
する水素吸蔵合金電極中に電解液に徐々に溶解する形態
で添加させた点に特徴をもつものである。本発明の酸化
アルミニウムはアルカリ電解液と接触してもすぐにはゲ
ル化せず、しかもそれを負極である水素吸蔵合金電極に
添加したことにより、ニッケル極の高導電性を維持する
為に初期特性、利用率を損なわずに長寿命のニッケル水
素電池を実現することができるものである。
However, since aluminum oxide is added to the negative electrode of the present invention, this aluminum oxide exists as a gel in the presence of an alkaline electrolyte. Because this gel has excellent adsorption capacity,
Part of the hydrogen released from the hydrogen storage alloy electrode during discharging of the battery and components that are eluted from the electrode and are segregated without being alloyed are adsorbed by the gelled aluminum oxide. By acting in this way, it is possible to prevent the nickel electrode from being reduced by dissolved hydrogen and prevent segregated components from being deposited on the nickel electrode, and to reduce the open voltage during discharge, that is, various factors that cause the decrease in the potential of the nickel electrode. Can be removed. In this respect, the present invention has basically the same function as that of the above-mentioned Japanese Patent Application Laid-Open No. 9-171837. However, the present invention employs aluminum oxide in particular as an aluminum compound, which constitutes a negative electrode of a nickel-metal hydride battery. Is characterized in that it is added in such a form as to be gradually dissolved in the electrolyte solution in the hydrogen storage alloy electrode. The aluminum oxide of the present invention does not gel immediately upon contact with an alkaline electrolyte, and is added to the negative electrode, a hydrogen storage alloy electrode, to maintain the high conductivity of the nickel electrode, A long-life nickel-metal hydride battery can be realized without deteriorating characteristics and utilization.

【0012】本発明は、アルカリ電解液に接触してゲル
化するアルミニウム化合物として酸化アルミニウムを採
用し、それをニッケル水素電池の負極を構成する水素吸
蔵合金電極中に添加させた点に技術的意義があるが、こ
の酸化アルミニウムが電解液にゲルとなって溶解する反
応速度は遅く、結果的に適当な速度でゲル化する水素吸
蔵電極を得ることができる。
The present invention has a technical significance in that aluminum oxide is employed as an aluminum compound which gels upon contact with an alkaline electrolyte and is added to a hydrogen storage alloy electrode constituting a negative electrode of a nickel-metal hydride battery. However, the reaction rate at which this aluminum oxide gels and dissolves in the electrolytic solution is slow, and as a result, a hydrogen storage electrode that gels at an appropriate rate can be obtained.

【0013】[0013]

【実施の態様】本発明の一実施例を詳述する。市販のミ
ッシュメタル、ニッケル、コバルト、マンガン、アルミ
ニウムの各粉末を目的に応じた所定の合金組成比となる
ように秤量混合し、これらをアーク溶解法により加熱溶
解した後冷却して水素吸蔵合金塊を得る。この合金塊を
機械的に粉砕して 150メッシュ以下の粉末とし、この合
金粉末100重量部に対し、ポリビニリデン粉末2重量部と
ニッケル粉(導電材)10重量部と酸化アルミニウム3重
量部の分量で混合し、その混合粉末を1%カルボキシメ
チルセルロース(増粘材)水溶液20重量部に添加した後
攪拌して合金粉末スラリーを調整し、この合金粉末スラ
リーを、開口率38%のパンチングニッケルシート(厚み
0.07mm、開口径1.5mm)に塗布した後大気中で乾燥し、2
0ton/cm2 の圧力で圧延して全体の厚みが 0.37mmであ
る水素吸蔵合金電極を製造する。
An embodiment of the present invention will be described in detail. Commercially available powders of misch metal, nickel, cobalt, manganese, and aluminum are weighed and mixed so as to have a predetermined alloy composition ratio according to the purpose, heated and melted by an arc melting method, and then cooled to form a hydrogen storage alloy lump. Get. This alloy lump is mechanically pulverized to a powder of 150 mesh or less, and a quantity of 2 parts by weight of polyvinylidene powder, 10 parts by weight of nickel powder (conductive material), and 3 parts by weight of aluminum oxide with respect to 100 parts by weight of this alloy powder. The mixed powder is added to 20 parts by weight of a 1% carboxymethylcellulose (thickening agent) aqueous solution, and then stirred to prepare an alloy powder slurry. This alloy powder slurry is punched with a punching nickel sheet having an aperture ratio of 38% ( Thickness
0.07mm, opening diameter 1.5mm)
Rolling at a pressure of 0 ton / cm 2 produces a hydrogen storage alloy electrode having a total thickness of 0.37 mm.

【0014】上記の水素吸蔵合金電極を負極に、ニッケ
ル極を正極に用いこれらの間にナイロンセパレータを介
在させて積層巻回、巻回極板群とし、得られた極板群を
Niメッキが施されている鉄からなる有底円筒缶に収容
し、ここに、比重1.33のKOH、NaOHとLiOHの水
溶液を注入、封口する事でAAサイズ、定格容量1200m
Ahの電池を組み立てた。なお、ニッケル極は発泡ニッ
ケル基板に水酸化ニッケルを主成分とする活物質ペース
トを充填し、乾燥、圧延成形を行い製造した。
The above-mentioned hydrogen storage alloy electrode is used as a negative electrode, a nickel electrode is used as a positive electrode, and a nylon separator is interposed between the electrodes to form a laminated wound and wound electrode group. It is stored in a bottomed cylindrical can made of iron, and it is filled with an aqueous solution of KOH, NaOH and LiOH having a specific gravity of 1.33, and sealed with AA size, rated capacity of 1200 m.
Ah battery was assembled. The nickel electrode was manufactured by filling a foamed nickel substrate with an active material paste containing nickel hydroxide as a main component, followed by drying and rolling.

【0015】本発明の、実施効果を確認するために比較
用のサンプルを3種類作り、比較実験を行った。 〔比較例電池1〕単純比較のために酸化アルミニウムを
負極に添加しなかった事を除いては、実施例と同様にし
て組み立てた電池。 〔比較例電池2〕活性アルミナの粉末100gを1リットル
の水に投入して攪拌し、活性アルミナ懸濁液を調製し、
この懸濁液にセパレータを浸漬した後取り出し、乾燥し
て0.06gの活性アルミナを付着させた。このセパレータ
を使用して組み立てた電池。 〔比較例電池3〕水素吸蔵合金の粉末と5重量%の酸化
アルミニウム粉末とをボールミル内に充填し、アルゴン
ガスを封入後、室温下、回転数80rpmで20時間攪拌しメ
カニカルアロイング処理を施し、このメカニカルアロイ
ング処理を施した水素吸蔵合金を用いて組み立てた電
池。
In order to confirm the effects of the present invention, three types of comparative samples were prepared and comparative experiments were performed. [Comparative Example Battery 1] A battery assembled in the same manner as in the Example except that aluminum oxide was not added to the negative electrode for simple comparison. [Comparative Example Battery 2] 100 g of activated alumina powder was put into 1 liter of water and stirred to prepare an activated alumina suspension.
After the separator was immersed in this suspension, it was taken out and dried to deposit 0.06 g of activated alumina. Battery assembled using this separator. [Comparative Example Battery 3] A hydrogen storage alloy powder and a 5% by weight aluminum oxide powder were filled in a ball mill, argon gas was sealed therein, and the mixture was stirred at room temperature at a rotation speed of 80 rpm for 20 hours to perform mechanical alloying. And a battery assembled using the hydrogen storage alloy subjected to this mechanical alloying treatment.

【0016】これらの電池につき、0.2C充放電(定格
電流に対して1/5)を3回繰り返し活性化処理を行っ
た。3回目の放電容量を表1に示す。また、放電電流を
1C(定格電流)、3C(定格電流の3倍)としたとき
の放電容量を表1に併せて示す。まず、放電電流が何れ
の場合にも、他の比較例の放電容量よりも大きく電池と
して好ましい特性を示している。
Each of these batteries was subjected to an activation treatment by repeating charging and discharging at 0.2 C (1/5 of the rated current) three times. Table 1 shows the third discharge capacity. Table 1 also shows the discharge capacity when the discharge current was 1 C (rated current) and 3 C (three times the rated current). First, in each case, the discharge current is larger than the discharge capacities of the other comparative examples, indicating favorable characteristics as a battery.

【0017】[0017]

【表1】 [Table 1]

【0018】さらに、これらの電池を用いて寿命試験を
行った。その結果、放電容量の維持率は500サイクル
で、1サイクル目に対して本発明電池が96% となっ
た。一方、比較例電池1は88%、比較例電池2が92%、
比較例電池3が91%となった。またこの時の内部抵抗は
それぞれ、20mΩ(本発明電池)、35mΩ(比較例電池
1)、27mΩ(比較例電池2)、28mΩ(比較例電池3)
となり、本発明電池が極めて長寿命であることが分か
る。
Further, a life test was performed using these batteries. As a result, the discharge capacity retention rate was 500 cycles, and the battery of the present invention was 96% of the first cycle. On the other hand, Comparative Example Battery 1 was 88%, Comparative Example Battery 2 was 92%,
The battery of Comparative Example 3 was 91%. The internal resistance at this time was 20 mΩ (battery of the present invention), 35 mΩ (comparative battery 1), 27 mΩ (comparative battery 2), and 28 mΩ (comparative battery 3).
It can be seen that the battery of the present invention has an extremely long life.

【0019】本発明のものと比較例1との差は負極の水
素吸蔵合金電極に酸化アルミニウムを添加していないだ
けであるが、500サイクルの充放電を繰り返すと、放電
容量は88%にまで落ちてしまい、本発明の96%維持とは
各段の差異ができる。これは、ニッケル極が溶存水素で
還元されることや偏析成分がニッケル極に析出するこ
と、及びニッケル極がサイクルの進行と共に、膨潤して
くる為にセパレータ中の電解液量が減少し、内部抵抗が
徐々に上昇することにより徐々に容量低下を来すものと
考えられ、これに対し本発明のものは、50〜200サイク
ル程度経過すると酸化アルミニウムがゲル化し、ニッケ
ル極側に移動することによって、ニッケル極の膨潤を抑
制する効果を発揮するために、500サイクルを経てもな
お高容量を維持しているものと考えられる。
The difference between the present invention and Comparative Example 1 is that only aluminum oxide was not added to the hydrogen storage alloy electrode of the negative electrode. However, when charge and discharge were repeated 500 cycles, the discharge capacity reached 88%. It falls down, and each stage is different from the 96% maintenance of the present invention. This is because the nickel electrode is reduced by dissolved hydrogen, segregated components are deposited on the nickel electrode, and the nickel electrode swells with the progress of the cycle. It is considered that the capacity gradually decreases due to the gradual increase in the resistance.On the other hand, in the case of the present invention, after about 50 to 200 cycles, the aluminum oxide gels and moves to the nickel electrode side. It is considered that the high capacity is maintained even after 500 cycles in order to exhibit the effect of suppressing the swelling of the nickel electrode.

【0020】比較例2のものは酸化アルミニウムを電解
液と共に電池内に共存するものである点で本発明に近い
が、これはセパレータに活性アルミナ付着させたもので
あって、電解液の注液後直ぐにアルミニウムのゲル化が
始まり、正規の電池反応である水酸化ニッケル上の導電
性コバルト化合物形成が阻害されて電池の分極が大きく
なり、放電容量が低下してしまうものと解される。
Comparative Example 2 is similar to the present invention in that aluminum oxide coexists in the battery together with the electrolytic solution. However, this is one in which activated alumina is adhered to the separator, and the electrolytic solution is injected. It is understood that the gelation of aluminum starts immediately afterwards, and the formation of a conductive cobalt compound on nickel hydroxide, which is a normal battery reaction, is inhibited, the polarization of the battery increases, and the discharge capacity decreases.

【0021】比較例3は本発明にさらに類似し、水素吸
蔵合金の負極内に酸化アルミニウムが含有されるもので
あるが、その初期特性は表1にみるように好ましくな
い。これは水素吸蔵合金とメカニカルアロイング処理を
施して皮膜化しているため、合金との間に局部電池作用
が発生し、より金属酸化物が溶解し易くなっていると考
えられる。このときに溶解生成するアルミニウム錯体が
ニッケル極側に移動すると、錯イオン(HCO2)の生
成を阻害し、更には導電性CO化合物の生成をも阻害し
てニッケル極の導電性低下を招き、放電容量が減少して
しまうものと解される。これに対し、本発明は注液後直
ちに酸化アルミニウムが溶解せず、導電性CO化合物の
生成抑制がないため、初期特性を損なうことがない。こ
のように、上記実施例によれば、酸化アルミニウムを水
素吸蔵合金電極中に電解液に徐々に溶解する形態で添加
すると、初期において電池容量の低下がなく、高率放電
特性も良好であり、かつ長寿命であるという利点を生ず
る。
Comparative Example 3 is further similar to the present invention, in which aluminum oxide is contained in the negative electrode of the hydrogen storage alloy, but its initial characteristics are not preferable as shown in Table 1. It is considered that since the film is formed by performing a mechanical alloying treatment with the hydrogen storage alloy, a local battery action occurs between the alloy and the metal, and the metal oxide is more easily dissolved. When aluminum complex which dissolves generated at this time is moved to the nickel electrode side, to inhibit the production of complex ion (HC O O 2), further inhibition decreases the conductivity of the nickel electrode also a generation of a conductive C O compound And the discharge capacity is reduced. On the other hand, in the present invention, the aluminum oxide does not dissolve immediately after the injection, and the generation of the conductive C 2 O compound is not suppressed, so that the initial characteristics are not impaired. Thus, according to the above embodiment, when aluminum oxide is added to the hydrogen storage alloy electrode in a form that is gradually dissolved in the electrolyte, the battery capacity does not decrease at the initial stage, and the high-rate discharge characteristics are good, In addition, there is an advantage that the life is long.

【0022】[0022]

【発明の効果】上記実施例の性能試験より明らかなよう
に、本発明による水素吸蔵合金電極のニッケル水素電池
は、酸化アルミニウムが注液後直ちに溶解してゲル化す
ることがなく徐々にゲル化が進行するため、初期特性を
損なわずに、しかも徐々に進行する酸化アルミニウムの
ゲル化によって、ニッケル極が溶存水素で還元されるこ
とや偏析成分がニッケル極に析出することを防止でき、
放電時におけるオープン電圧低下すなわちニッケル極の
電位の低下を来す諸要因を除去することができ、更には
ニッケル極の膨潤を抑制する効果を発揮するため、長寿
命であり極めて高性能を有する。
As is clear from the performance test of the above embodiment, the nickel-metal hydride battery of the hydrogen storage alloy electrode according to the present invention gradually gelated without aluminum oxide being dissolved and gelled immediately after injection. Progresses, without impairing the initial characteristics, and by gradually gelling the aluminum oxide, it is possible to prevent the nickel electrode from being reduced by dissolved hydrogen and the segregated components from being deposited on the nickel electrode,
Various factors that cause a decrease in open voltage during discharge, that is, a decrease in the potential of the nickel electrode can be eliminated, and furthermore, an effect of suppressing swelling of the nickel electrode is exerted, so that it has a long life and extremely high performance.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 負極に水素吸蔵合金、正極にニッケル酸
化物をそれぞれ用い、電解液としてアルカリ水溶液を用
いたニッケル水素電池において、負極に酸化アルミニウ
ムを添加したことを特徴とするニッケル水素電池。
1. A nickel-metal hydride battery using a hydrogen storage alloy for a negative electrode, a nickel oxide for a positive electrode, and an alkaline aqueous solution as an electrolyte, wherein aluminum oxide is added to the negative electrode.
JP10014774A 1998-01-12 1998-01-12 Nickel hydrogen battery Withdrawn JPH11204112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10014774A JPH11204112A (en) 1998-01-12 1998-01-12 Nickel hydrogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10014774A JPH11204112A (en) 1998-01-12 1998-01-12 Nickel hydrogen battery

Publications (1)

Publication Number Publication Date
JPH11204112A true JPH11204112A (en) 1999-07-30

Family

ID=11870410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10014774A Withdrawn JPH11204112A (en) 1998-01-12 1998-01-12 Nickel hydrogen battery

Country Status (1)

Country Link
JP (1) JPH11204112A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176514A (en) * 1999-12-14 2001-06-29 Santoku Corp Negative electrode active material for alkaline secondary battery and method of manufacturing the same
CN111092193A (en) * 2019-12-31 2020-05-01 深圳市豪鹏科技有限公司 Liquid injection method of nickel battery and nickel battery
CN111740079A (en) * 2020-06-10 2020-10-02 包头昊明稀土新电源科技有限公司 Preparation method of ultralow self-discharge electrode plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176514A (en) * 1999-12-14 2001-06-29 Santoku Corp Negative electrode active material for alkaline secondary battery and method of manufacturing the same
CN111092193A (en) * 2019-12-31 2020-05-01 深圳市豪鹏科技有限公司 Liquid injection method of nickel battery and nickel battery
CN111740079A (en) * 2020-06-10 2020-10-02 包头昊明稀土新电源科技有限公司 Preparation method of ultralow self-discharge electrode plate
CN111740079B (en) * 2020-06-10 2023-02-07 包头昊明稀土新电源科技有限公司 Preparation method of ultralow self-discharge electrode slice

Similar Documents

Publication Publication Date Title
CA2095036C (en) Metal hydride electrode, nickel electrode and nickel-hydrogen battery
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
KR100281729B1 (en) Nickel positive electrode and alkaline storage battery using the same
US6136473A (en) Hydrogen absorbing electrode, nickel electrode and alkaline storage battery
JP3042043B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
WO2001059866A1 (en) Nickel hydroxide paste with pectin binder
US5690799A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
EP1222702B1 (en) Layered metal hydride electrode providing reduced cell pressure
JPH08329937A (en) Nickel positive electrode for alkaline storage battery and nickel hydrogen storage battery
JP2604282B2 (en) Alkaline storage battery
JPH11204112A (en) Nickel hydrogen battery
JP4747233B2 (en) Alkaline storage battery
JP4183292B2 (en) Secondary battery
JP2579072B2 (en) Hydrogen storage alloy electrode
JP2001102085A (en) Formation method of airtight type nickel-hydrogen storage battery
JP2995893B2 (en) Nickel / metal hydride storage battery
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH09171837A (en) Nickel-hydrogen secondary battery
JP2733230B2 (en) Sealed nickel-hydrogen storage battery using hydrogen storage alloy
JP3135239B2 (en) Nickel positive electrode for batteries
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH0815079B2 (en) Hydrogen storage electrode
JPH03285270A (en) Alkaline storage battery
JP2553775B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050405