JP3183073B2 - Active material for nickel electrode and method for producing the same - Google Patents

Active material for nickel electrode and method for producing the same

Info

Publication number
JP3183073B2
JP3183073B2 JP31943194A JP31943194A JP3183073B2 JP 3183073 B2 JP3183073 B2 JP 3183073B2 JP 31943194 A JP31943194 A JP 31943194A JP 31943194 A JP31943194 A JP 31943194A JP 3183073 B2 JP3183073 B2 JP 3183073B2
Authority
JP
Japan
Prior art keywords
nickel
active material
weight
electrode
nickel hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31943194A
Other languages
Japanese (ja)
Other versions
JPH08162111A (en
Inventor
功 阿部
大造 冨岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP31943194A priority Critical patent/JP3183073B2/en
Publication of JPH08162111A publication Critical patent/JPH08162111A/en
Application granted granted Critical
Publication of JP3183073B2 publication Critical patent/JP3183073B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル・カドミウム
電池のようなアルカリ電池に関し、さらに具体的には、
アルカリ電池用ニッケル電極およびニッケル活物質の改
良に関する。
FIELD OF THE INVENTION The present invention relates to alkaline batteries such as nickel-cadmium batteries, and more particularly to alkaline batteries such as nickel-cadmium batteries.
The present invention relates to a nickel electrode for an alkaline battery and a nickel active material.

【0002】[0002]

【従来の技術】近年、各種電子機器の集積回路化が進
み、電子機器の小型軽量化が急速に進行している。この
ため、電子機器の可搬性が向上し、その電子機器に電力
を供給する電源部においてもコ−ドレス化が進展してい
る。現在、ニッケル電極を正極に使用したニッケル・ア
ルカリ電池が、その優れた特性からコ−ドレス化の際の
電力供給用の電源として使用されている。しかし、電子
機器の小型軽量化に伴い、その電力供給部である電池が
電子機器の構成重量、体積に占める割合が増加してい
る。従って、電子機器の小型軽量化を一層図るには、電
池の高容量化が重要な問題となって来ている。そのた
め、ニッケル・アルカリ電池の電極には、ニッケル質多
孔体の凹部に各種の活物質を充填し、乾燥後、加圧成形
を行ったニッケル電極が利用されるようになった(例え
ば、特開昭49−127145号)。ただ、このように
して製造したニッケル・アルカリ電池でも、市場の高容
量化の要望には、十分に答えておらず、一層高い容量の
ニッケル・アルカリ電池が求められている。
2. Description of the Related Art In recent years, the integration of various electronic devices into integrated circuits has progressed, and the size and weight of electronic devices have been rapidly reduced. For this reason, the portability of the electronic device has been improved, and the power supply unit for supplying power to the electronic device has been increasingly wired. At present, a nickel-alkali battery using a nickel electrode as a positive electrode has been used as a power supply for supplying power at the time of dressing because of its excellent characteristics. However, as electronic devices become smaller and lighter, the proportion of the battery, which is a power supply unit, to the constituent weight and volume of the electronic device is increasing. Therefore, in order to further reduce the size and weight of electronic devices, increasing the capacity of batteries has become an important issue. For this reason, the nickel-alkali battery electrode has come to use a nickel electrode which is formed by filling a concave portion of a nickel porous body with various active materials, drying, and then press-molding the electrode. No. 49-127145). However, even the nickel-alkali batteries manufactured in this manner have not sufficiently responded to the demand for higher capacity in the market, and nickel-alkali batteries with higher capacities have been demanded.

【0003】ニッケル・アルカリ電池を構成するニッケ
ル電極の寿命劣化は、主にニッケル電極の膨潤と部分的
な突起(ブリスタ)の生成とに起因すると言われてい
る。さらに、このニッケル電極の膨潤は、通常、ニッケ
ル電極中の水酸化ニッケル活物質の体積変化が原因であ
ると考えられている。水酸化ニッケル活物質は、前述の
ように多孔体の凹部に充填されるように、例えば特開平
5−254847号公報に記載されているように粉末の
形で製造される。ニッケル・アルカリ電池が通常の充放
電を繰り返している場合、ニッケル電極中の水酸化ニッ
ケルは、充電によってβ−Ni(OH)2 からβ−Ni
OOHへと変化し、逆に、放電によってβ−NiOOH
からβ−Ni(OH)2 へと変化すると考えられてい
る。
It is said that the deterioration of the life of the nickel electrode constituting the nickel-alkali battery is mainly caused by the swelling of the nickel electrode and the formation of partial protrusions (blisters). Further, it is generally considered that the swelling of the nickel electrode is caused by a change in volume of the nickel hydroxide active material in the nickel electrode. The nickel hydroxide active material is manufactured in the form of a powder as described in, for example, Japanese Patent Application Laid-Open No. 5-254847, so as to fill the concave portions of the porous body as described above. When a nickel-alkali battery repeats normal charge and discharge, nickel hydroxide in a nickel electrode changes from β-Ni (OH) 2 to β-Ni
OOH, and conversely, β-NiOOH
To β-Ni (OH) 2 .

【0004】上記の反応のみが繰り返される場合には、
ニッケル電極の体積変化は発生しにくいものである。し
かし、ニッケル・アルカリ電池が充電と放電を繰り返し
ている間に、電流密度の局部的に不均一な場所がニッケ
ル電極内部に発生することがあり、これによって、高次
酸化物であるγ−NiOOHが発生してくる。γ−Ni
OOHは、ニッケル・アルカリ電池が放電するとき、そ
の一部がβ−Ni(OH)2 へと変化するものの、その
大部分は、非常に密度の低いα−Ni(OH)2 に変化
する。そこで、γ−NiOOHが生成してくると、ニッ
ケル電極は、充電と放電の繰り返しにより低密度とな
り、これを元に戻すことができなくなる。この現象は、
充電と放電の繰り返しが重なるほど次第にひどくなり、
結果的に電極の膨潤を招く。上記のようにして発生する
ニッケル電極の膨潤を少なくするために、あらかじめ、
ニッケル電極内に、膨潤発生を吸収できるような緩衝空
間を設けておいて、水酸化ニッケル活物質の膨潤がニッ
ケル電極の膨潤に直接つながらなくする方法が開示され
ている。しかしながら、この場合には、結果として、水
酸化ニッケル活物質の充填密度を下げることにつなが
り、これによって、逆に、ニッケル電極の容量を低下さ
せてしまうことになっていた。
When only the above reaction is repeated,
A change in volume of the nickel electrode is unlikely to occur. However, while the nickel-alkali battery repeats charging and discharging, a locally uneven current density may be generated inside the nickel electrode, thereby causing a higher oxide γ-NiOOH. Comes out. γ-Ni
When a nickel alkaline battery discharges, a part of OOH changes to β-Ni (OH) 2 , but most of it changes to very low density α-Ni (OH) 2 . Then, when γ-NiOOH is generated, the density of the nickel electrode becomes low due to repetition of charging and discharging, and the density cannot be restored. This phenomenon is
The more the charge and discharge repeat, the worse it gets,
As a result, the electrodes swell. In order to reduce the swelling of the nickel electrode generated as described above,
A method is disclosed in which a buffer space capable of absorbing swelling is provided in a nickel electrode so that swelling of the nickel hydroxide active material does not directly lead to swelling of the nickel electrode. However, in this case, as a result, the packing density of the nickel hydroxide active material was reduced, and consequently, the capacity of the nickel electrode was reduced.

【0005】一方、γ−NiOOH自体の生成を制御す
ることも試みられ、これには、Cdの添加が有効である
ことがすでに見出されている。さらに、最近では、Cd
だけでなく、ZnやMgを添加しても同様な効果がある
ことが報告されている。(電池便覧、丸善株式会社、平
成2年8月20日発行、第233頁)これらの添加元素
により水酸化ニッケルの結晶格子が歪むので、水酸化ニ
ッケル中の反応に関与しているH+ の水酸化ニッケル格
子中での移動度が向上し、γ−NiOOHの生成を抑制
すると言われている。Znがこのように膨潤抑制効果を
発揮するためには、特公平2−30061に記載されて
いるように、3重量%以上(3〜10重量%)の亜鉛が
水酸化ニッケルの結晶中で固溶状態になければならな
い。しかしながら、Znなどの膨潤抑制元素は、電極の
膨潤を抑制するだけであり、電池反応に直接関与するわ
けではない。従って、このような膨潤抑制元素を添加す
ると、その添加量が比較的多いから、水酸化ニッケル中
の電池反応に直接関与するニッケル品位を低下させ、ニ
ッケル電極の容量を低下させることになる。言い換えれ
ば、水酸化ニッケル活物質のニッケル品位を理論品位の
63.3重量%に近づけるほどニッケル電極の容量は、
上昇することとなるが、膨潤抑制元素の添加により、理
論品位に近づけない。すなわち、ニッケル電極の膨潤を
抑制できるのであれば、Znなどの膨潤抑制元素の添加
量は、少ないほどよい。亜鉛とイットリウムを水酸化ニ
ッケルに添加することは、特開平5−28992号公報
に開示されているが、水酸化ニッケルに亜鉛とイットリ
ウムが1〜7%含有されており、ニッケル電極の容量と
膨潤抑制は関連づけられていない。
On the other hand, attempts have been made to control the production of γ-NiOOH itself, and it has been found that the addition of Cd is effective for this purpose. More recently, Cd
In addition, it has been reported that the same effect can be obtained by adding Zn or Mg. (Battery Handbook, Maruzen Co., Ltd., published on August 20, 1990, p. 233) Since the crystal lattice of nickel hydroxide is distorted by these added elements, H + It is said that the mobility in the nickel hydroxide lattice is improved and the generation of γ-NiOOH is suppressed. In order for Zn to exhibit such a swelling suppressing effect, as described in JP-B 2-30061, 3% by weight or more (3 to 10% by weight) of zinc is solidified in nickel hydroxide crystals. Must be in molten state. However, a swelling suppressing element such as Zn only suppresses swelling of the electrode, and does not directly participate in the battery reaction. Therefore, when such a swelling-inhibiting element is added, the amount of addition is relatively large, so that the nickel quality directly involved in the battery reaction in nickel hydroxide is reduced, and the capacity of the nickel electrode is reduced. In other words, as the nickel grade of the nickel hydroxide active material approaches 63.3% by weight of the theoretical grade, the capacity of the nickel electrode becomes:
However, the addition of the swelling-inhibiting element does not bring it close to the theoretical grade. That is, as long as the swelling of the nickel electrode can be suppressed, the smaller the addition amount of the swelling suppressing element such as Zn, the better. The addition of zinc and yttrium to nickel hydroxide is disclosed in Japanese Patent Application Laid-Open No. 5-28992, but the nickel hydroxide contains 1 to 7% of zinc and yttrium, and the capacity and swelling of the nickel electrode are increased. Suppression is not associated.

【0006】[0006]

【発明が解決しようとする課題】本発明は、ニッケル・
アルカリ電池に使用されているニッケル電極の寿命を妨
げる原因となっていると言われるγ−NiOOHの生成
を抑制し、かつ、従来の水酸化ニッケル活物質よりもニ
ッケル品位を高くしてエネルギ−密度を高めたニッケル
電極用活物質およびその製法、およびこれを利用したニ
ッケル電極を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention relates to a nickel
Energy density is reduced by suppressing the production of γ-NiOOH, which is said to be a factor that hinders the life of a nickel electrode used in an alkaline battery, and by increasing the nickel grade compared to a conventional nickel hydroxide active material. It is an object of the present invention to provide an active material for a nickel electrode, which has a higher level, a method for producing the same, and a nickel electrode using the same.

【0007】[0007]

【課題を解決するための手段】本発明では、ニッケル・
アルカリ電池を構成するニッケル電極の活物質が、主成
分である水酸化ニッケルと、亜鉛と、0.1〜1重量%
のランタノイド元素および/またはイットリウムおよび
/またはスカンジウムとからなる。亜鉛は0.5重量%
以上3重量%未満が好ましい。この場合、亜鉛やランタ
ノイド元素やイットリウムやスカンジウムが水酸化ニッ
ケルに攪拌造粒などで同時に添加され、合計量が3重量
%未満であるものが好ましい。また、これらの元素が水
酸化ニッケルの結晶中に固溶状態にあることが望まし
い。また、ニッケル電極用活物質の平均粒径が5〜10
0μmであることが好ましい。
According to the present invention, a nickel alloy is used.
An active material of a nickel electrode constituting an alkaline battery is composed of nickel hydroxide as a main component, zinc, and 0.1 to 1% by weight.
Lanthanoid element and / or yttrium and / or scandium. 0.5% by weight of zinc
It is preferably at least 3% by weight. In this case, it is preferable that zinc, a lanthanoid element, yttrium, and scandium are simultaneously added to nickel hydroxide by stirring granulation or the like, and the total amount is less than 3% by weight. It is desirable that these elements are in a solid solution state in the nickel hydroxide crystal. In addition, the average particle size of the active material for a nickel electrode is 5-10.
It is preferably 0 μm.

【0008】本発明のニッケル電極は、多孔性の耐アル
カリ金属基板の凹部に、水酸化ニッケルと、亜鉛と、
0.1〜1重量%のランタノイド元素および/またはイ
ットリウムおよび/またはスカンジウムとからなるニッ
ケル電極用活物質が充填されたものである。亜鉛は0.
5重量%以上3重量%未満が好ましい。亜鉛とランタノ
イド元素やイットリウムやスカンジウムが同時に添加さ
れ、合計量が3重量%未満であり、水酸化ニッケルの結
晶中で固溶状態にあることが好ましい。この場合、多孔
性の耐アルカリ金属基板としては、樹脂製スポンジにニ
ッケルメッキを施し、これを焙焼し、焼純してなるスポ
ンジ状ニッケル多孔体が好ましい。
[0008] The nickel electrode of the present invention comprises nickel hydroxide, zinc,
It is filled with an active material for a nickel electrode composed of 0.1 to 1% by weight of a lanthanoid element and / or yttrium and / or scandium. Zinc is 0.
It is preferably at least 5% by weight and less than 3% by weight. It is preferable that zinc and a lanthanoid element, yttrium, and scandium are added at the same time, the total amount is less than 3% by weight, and the solid solution is in a solid solution state in the nickel hydroxide crystal. In this case, as the porous alkali-resistant metal substrate, a sponge-like nickel porous body obtained by subjecting a resin sponge to nickel plating, roasting and refining the same is preferred.

【0009】[0009]

【作用】本発明では、ニッケル・アルカリ電池を構成す
るニッケル電極に使用されるニッケル電極用活物質が、
水酸化ニッケルを主成分とし、亜鉛と、0.1〜1重量
%のランタノイド元素やイットリウムやスカンジウムが
攪拌造粒などに同時に添加された水酸化ニッケル活物質
である。亜鉛は0.5〜3重量%であることが好まし
く、また、亜鉛、ランタノイド元素、イットリウム、ス
カンジウムの合計量が3重量%未満であることが好まし
い。水酸化ニッケルの結晶中に含有される亜鉛やランタ
ノイド元素やイットリウムやスカンジウムは、水酸化ニ
ッケルの結晶に歪みを与えることになる。特に、亜鉛の
みを添加した場合に比べて、ランタノイド元素やイット
リウムを亜鉛と共に添加することにより、結晶の歪みを
一層与えることになり、より低い添加元素量で同様の膨
潤抑制効果が得られる。このために、これらの元素は攪
拌造粒され、さらには固溶状態にあることが望ましい。
According to the present invention, the nickel electrode active material used for the nickel electrode constituting the nickel-alkali battery is:
This is a nickel hydroxide active material containing nickel hydroxide as a main component and zinc and 0.1 to 1% by weight of a lanthanoid element, yttrium and scandium added simultaneously to stirring granulation or the like. Zinc is preferably 0.5 to 3% by weight, and the total amount of zinc, lanthanoid element, yttrium, and scandium is preferably less than 3% by weight. Zinc, a lanthanoid element, yttrium, and scandium contained in the nickel hydroxide crystal give distortion to the nickel hydroxide crystal. In particular, by adding a lanthanoid element or yttrium together with zinc as compared with the case where only zinc is added, crystal distortion is further imparted, and a similar effect of suppressing swelling can be obtained with a lower added element amount. For this purpose, these elements are desirably stirred and granulated, and more preferably in a solid solution state.

【0010】また、ランタノイド元素およびイットリウ
ムは、通常3価であり水酸化ニッケル結晶中のニッケル
元素と置換された場合、ドナ−となり電子を放出し、水
酸化ニッケル活物質の導電性を向上させることも考えら
れる。このような効果により結晶中のプロトンおよび電
子の働きに自由度が増し、結果的にγ−NiOOHの生
成を抑制させて、亜鉛のみを添加した従来のニッケル電
極よりも少ない添加元素量で同様の膨潤抑制効果が得ら
れる。亜鉛のみを添加した水酸化ニッケル活物質の場
合、膨潤を抑制するには、3重量%以上の添加を必要と
し、その水酸化ニッケル活物質中のニッケル品位は、5
7〜58重量%である。しかし、本発明では、0.5重
量%の亜鉛と0.5重量%のランタノイド元素またはイ
ットリウムでも膨潤抑制効果が発揮されるため、その水
酸化ニッケル活物質中のニッケル品位は、60〜62重
量%となり、亜鉛のみを添加した従来のものに比べ、ニ
ッケル品位が3〜5重量%増加する。この水酸化ニッケ
ル活物質中のニッケル品位の上昇は、単位重量当たりの
水酸化ニッケル活物質において、電気化学的反応の量が
増加することを意味する。
The lanthanoid element and yttrium are usually trivalent, and when replaced with the nickel element in the nickel hydroxide crystal, become a donor and emit electrons to improve the conductivity of the nickel hydroxide active material. Is also conceivable. Due to such an effect, the degree of freedom of the action of protons and electrons in the crystal is increased, and as a result, the production of γ-NiOOH is suppressed, and the same effect can be obtained with a smaller amount of element than the conventional nickel electrode to which only zinc is added. An effect of suppressing swelling is obtained. In the case of a nickel hydroxide active material to which only zinc is added, addition of 3% by weight or more is required to suppress swelling, and the nickel grade in the nickel hydroxide active material is 5%.
7 to 58% by weight. However, in the present invention, since 0.5% by weight of zinc and 0.5% by weight of a lanthanoid element or yttrium also exert a swelling suppressing effect, the nickel grade in the nickel hydroxide active material is 60 to 62% by weight. %, And the nickel grade is increased by 3 to 5% by weight, as compared with the conventional alloy containing only zinc. The increase in the nickel grade in the nickel hydroxide active material means that the amount of the electrochemical reaction in the nickel hydroxide active material per unit weight increases.

【0011】本発明のニッケル電極用活物質を使用する
ことにより、従来の水酸化ニッケル活物質から取り出せ
る単位重量当たりの電気量より4〜6%多く電気量を取
り出せることとなり、ニッケル電極の電気容量を増加さ
せ、電池の高容量化となる。本発明の場合、水酸化ニッ
ケル活物質に添加されるランタノイド元素やイットリウ
ムやスカンジウムの量は0.05〜1重量%であり、さ
らには亜鉛の添加濃度を0.5〜3重量%とするのが好
ましい。これは、水酸化ニッケル活物質に添加されるラ
ンタノイド元素やイットリウムが0.1重量%以下で
は、ニッケル電極の膨潤を抑制するという効果が十分に
発揮されないためであり、また、膨潤抑制のためには
0.5重量%以上の亜鉛の存在が望ましく、逆に、亜鉛
の添加量が3重量%を越えると、膨潤抑制効果が一向に
増進しないまま、水酸化ニッケル活物質中のニッケル品
位が亜鉛のみを添加した従来のものと同様になり、優位
性が発揮できなくなるため、さらにランタノイド元素や
イットリウムやスカンジウムの添加量が1重量%を越え
るとランタイノド元素やイットリウムやスカンジウムの
偏折が発生し、水酸化ニッケル活物質粒子の密度の低下
を招き、ニッケル電極の電気容量が低下するためであ
る。
By using the nickel electrode active material of the present invention, 4 to 6% more electricity can be taken out per unit weight than can be taken out from the conventional nickel hydroxide active material, and the electric capacity of the nickel electrode can be obtained. To increase the capacity of the battery. In the case of the present invention, the amount of the lanthanoid element, yttrium or scandium added to the nickel hydroxide active material is 0.05 to 1% by weight, and the concentration of zinc added is 0.5 to 3% by weight. Is preferred. This is because when the lanthanoid element or yttrium added to the nickel hydroxide active material is 0.1% by weight or less, the effect of suppressing the swelling of the nickel electrode is not sufficiently exerted. Is desirably 0.5% by weight or more of zinc. Conversely, if the amount of zinc exceeds 3% by weight, the nickel grade in the nickel hydroxide active material is only zinc while the swelling suppressing effect is not improved at all. The addition of lanthanoid elements, yttrium, and scandium causes the lanthanoid element, yttrium, and scandium to be distorted because the addition of lanthanoid elements, yttrium, and scandium exceeds 1% by weight. This is because the density of the nickel oxide active material particles is reduced, and the electric capacity of the nickel electrode is reduced.

【0012】ランタノイド元素、イットリウム、スカン
ジウム、亜鉛は、水酸化ニッケルの結晶中で固溶状態に
あると、これらの偏折による水酸化ニッケル粒子の密度
低下を避けられると共に結晶の歪みを効果的に発生させ
ることができる。そして、ニッケル電極用活物質は、そ
の平均粒子径が5〜100μmの粒子状であることによ
り、より好ましい結果が提示される。平均粒子径が5μ
mより小さいか、100μmより大きいと、当該活物質
を担持する多孔質基板の凹部への充填性が悪くなる。す
なわち、多孔質基板の凹部より小さくて落下したり、当
該凹部より大きくて充填できなくなる。また、本発明で
は、多孔性の耐アルカリ金属基板の凹部に、水酸化ニッ
ケルを主成分として、0.1〜1重量%のランタノイド
元素やイットリウムやスカンジウムと亜鉛とが合計量3
重量%未満で添加されたニッケル電極用活物質が充填さ
れているニッケル電極を提供するので、電池の電気容量
を増加させることを可能とする。
When the lanthanoid element, yttrium, scandium, and zinc are in a solid solution state in the nickel hydroxide crystal, it is possible to avoid a decrease in the density of the nickel hydroxide particles due to their deflection, and to effectively reduce the crystal distortion. Can be generated. The nickel electrode active material has a more preferable result when the average particle diameter is 5 to 100 μm. Average particle size is 5μ
If it is smaller than m or larger than 100 μm, the filling properties of the porous substrate carrying the active material into the recesses will be poor. That is, it is smaller than the concave portion of the porous substrate and drops, or larger than the concave portion and cannot be filled. Further, in the present invention, in the concave portion of the porous alkali-resistant metal substrate, 0.1 to 1% by weight of a lanthanoid element, yttrium, scandium and zinc in a total amount of 3 to 1% by weight, mainly containing nickel hydroxide.
The present invention provides a nickel electrode filled with an active material for a nickel electrode added in less than% by weight, thereby enabling the electric capacity of a battery to be increased.

【0013】本発明の場合、多孔性の耐アルカリ金属板
が、樹脂製スポンジにニッケルメッキを施し、これを焙
焼し、焼純してなるスポンジ状ニッケル多孔体であるこ
とによって、ニッケル電極の電気容量を増加させる。本
発明では、さらに、ニッケル電極を構成する多孔質の耐
アルカリ金属基板の平均空間部径を100μm〜100
0μmとし、この空間部(凹部)に水酸化ニッケル活物
質の粒子をコバルトやニッケルの粉末と共に充填するこ
とにより、ニッケル電池の容量をより増大させうる。し
かし、その理由は解明されていない。本発明において、
水酸化ニッケル活物質に添加されるランタノイド元素と
は、元素の周期律表でランタンに始まり、ルテニウムに
終わるランタノイド系列に含まれる元素を意味する。ラ
ンタノイド元素、イットリウム、スカンジウムは、水酸
化ニッケル活物質に亜鉛と同時に添加される場合、これ
らの中の1種類もしくは、2種類以上の複数の元素が併
存する状態であっても良好な結果が示される。
In the case of the present invention, the porous alkali-resistant metal plate is a sponge-like nickel porous body obtained by subjecting a resin sponge to nickel plating, roasting and refining the sponge. Increase electric capacity. In the present invention, the average space diameter of the porous alkali-resistant metal substrate constituting the nickel electrode may be 100 μm to 100 μm.
By filling the space (concave portion) with particles of the nickel hydroxide active material together with cobalt or nickel powder, the capacity of the nickel battery can be further increased. However, the reason has not been elucidated. In the present invention,
The lanthanoid element added to the nickel hydroxide active material means an element included in the lanthanoid series that starts with lanthanum and ends with ruthenium in the periodic table of the elements. When the lanthanoid element, yttrium, and scandium are added simultaneously with zinc to the nickel hydroxide active material, good results are shown even when one or more of these elements coexist. It is.

【0014】[0014]

【実施例】本発明の実施例について、以下に詳述する。 (実施例1)硫酸ニッケル溶液にランタンの硝酸塩と亜
鉛の硫酸塩を添加した水溶液を用意し、この溶液にアン
モニア水を滴下してニッケルのアンミン錯イオンを形成
し、さらに、苛性ソ−ダの溶液を滴下しながら激しく攪
拌することによって、錯イオンを分解させて、亜鉛とラ
ンタンが固溶体化した水酸化ニッケル粒子を徐々に折出
させた。上記の亜鉛とランタンが固溶液体化した水酸化
ニッケル粒子を水洗し、その表面に付着している陰イオ
ンおよびナトリウムイオンを取り除いた後、攪拌造粒機
を用いて、亜鉛の添加量が2.0重量%で、ランタンの
添加量が0.5重量%で、Ni品位が60.2%である
平均粒径5μmの水酸化ニッケル粒子を造粒した。この
水酸ニッケル粒子のタップ密度は、2.0g/mlであ
った。
Embodiments of the present invention will be described in detail below. (Example 1) An aqueous solution prepared by adding lanthanum nitrate and zinc sulfate to a nickel sulfate solution was prepared, and ammonia water was added dropwise to this solution to form an ammine complex ion of nickel. By vigorously stirring while dropping the solution, the complex ions were decomposed, and the nickel hydroxide particles in which zinc and lanthanum were made into a solid solution were gradually deposited. The above-mentioned nickel hydroxide particles in which zinc and lanthanum are made into a solid solution are washed with water to remove anions and sodium ions adhering to the surface thereof, and then the amount of zinc added is reduced to 2 using a stirring granulator. Nickel hydroxide particles having an average particle size of 5 μm, which was 0.0% by weight, the amount of lanthanum added was 0.5% by weight, and the Ni grade was 60.2%, were granulated. The tap density of the nickel hydroxide particles was 2.0 g / ml.

【0015】一方、多孔性の耐アルカリ金属基板を、樹
脂製スポンジにニッケルメッキを施し、これを焙焼し、
焼純してなるスポンジ状ニッケル多孔体で形成した。こ
のスポンジ状ニッケル多孔体の凹部に、上記の水酸化ニ
ッケル粒子を50重量部、ニッケル粉末を45重量部、
コバルト粉末を5重量部、さらに、造粘剤としてカルポ
キシメチルセルロ−スを含んで構成されたペ−ストを充
填し、乾燥、圧縮してニッケル電極を作成した。そし
て、上記のニッケル電極を正極とし、負極には、正極に
比べ過剰容量を保有するカドミウム電極を配し、ガラス
フィルタ−で仕切られたガラス製の二極電解セルを用
い、濃度30重量%の水酸化カリウム水溶液を電解液と
して、開放系のモデルセルを組み立てた。
On the other hand, a porous alkali-resistant metal substrate is nickel-plated on a resin sponge, and is roasted.
The sponge-like nickel porous body obtained by refining was used. 50 parts by weight of the above nickel hydroxide particles, 45 parts by weight of nickel powder,
A nickel electrode was prepared by filling 5 parts by weight of the cobalt powder and a paste containing carboxymethyl cellulose as a thickener, drying and compressing. The nickel electrode is used as a positive electrode, and a cadmium electrode having an excess capacity as compared with the positive electrode is provided as a negative electrode. A glass bipolar electrode partitioned by a glass filter is used, and a concentration of 30% by weight is used. An open model cell was assembled using an aqueous solution of potassium hydroxide as an electrolyte.

【0016】上記のモデルセルに、0.1C相当の電流
を12時間にわたって流す充電処理を行った後、0.5
C相当の電流で1.0Vまで放電した。その後、1C相
当の電流で5時間充電を行い、1C相当の電流で1.0
Vまで放電した。放電後、電極の厚みを測定し、充電前
の電極厚みと比較し電極の膨潤量を求めると共に放電容
量を測定して、その放電と、この場合に使用した水酸化
ニッケルの理論電気容量とから、ニッケル電極活物質と
しての利用率を算出した。以下、一連の計測値として提
示される膨張率とは、それぞれ、充電後の電極の厚さを
充電前の電極の厚さで割った値(×100)で示され
る。実施例1で測定されたニッケル電極の膨潤率は10
3%であった、また、ニッケル電極活物質の利用率は8
6%と算出された。
After performing a charging process in which a current equivalent to 0.1 C is applied to the model cell for 12 hours,
The battery was discharged to 1.0 V at a current corresponding to C. Thereafter, the battery is charged for 5 hours at a current equivalent to 1C, and charged at a current equivalent to 1C for 1.0 hour.
Discharged to V. After discharging, the thickness of the electrode is measured, the swelling amount of the electrode is determined by comparing the thickness with the electrode thickness before charging, and the discharge capacity is measured. And the utilization factor as a nickel electrode active material was calculated. Hereinafter, the expansion rate presented as a series of measured values is indicated by a value (× 100) obtained by dividing the thickness of the electrode after charging by the thickness of the electrode before charging. The swelling ratio of the nickel electrode measured in Example 1 was 10
3%, and the utilization rate of the nickel electrode active material was 8%.
It was calculated to be 6%.

【0017】(実施例2)亜鉛の添加量が1.0重量%
で、Ni品位が61.0%の水酸化ニッケル粒子(平均
粒径12μm)を使用した以外は、実施例1と同様にし
て開放系のモデルセルを組み立て、実施例1と同様に充
電と放電を繰り返しながら計測した結果、水酸化ニッケ
ル粒子のタップ密度は2.01g/mlであり、活物質
の利用率は86%、ニッケル電極の膨潤率は105%で
あった。
(Example 2) The amount of zinc added was 1.0% by weight.
An open model cell was assembled in the same manner as in Example 1 except that nickel hydroxide particles (average particle size: 12 μm) having a Ni grade of 61.0% were used, and charging and discharging were performed in the same manner as in Example 1. As a result, the tap density of the nickel hydroxide particles was 2.01 g / ml, the utilization rate of the active material was 86%, and the swelling rate of the nickel electrode was 105%.

【0018】(実施例3)亜鉛の添加量が0.5重量%
で、Ni品位が61.0%の水酸化ニッケル(平均粒径
20μm)を使用した以外は、実施例1と同様にして開
放系のモデルセルを組み立て、実施例1と同様に充電と
放電を繰り返しながら計測した結果、水酸化ニッケルの
タップ密度は2.01g/mlであり、活物質の利用率
は84%、電極の膨潤率は110%であった。
Example 3 The amount of zinc added was 0.5% by weight.
Then, an open model cell was assembled in the same manner as in Example 1 except that nickel hydroxide having a nickel grade of 61.0% (average particle size: 20 μm) was used, and charge and discharge were performed in the same manner as in Example 1. As a result of repeated measurements, the tap density of nickel hydroxide was 2.01 g / ml, the utilization rate of the active material was 84%, and the swelling rate of the electrode was 110%.

【0019】(実施例4)ランタンの添加量が0.1重
量%で、Ni品位が60.1%の水酸化ニッケル(平均
粒径8μm)を使用した以外は、実施例1と同様にして
開放系のモデルセルを組み立て、実施例1と同様に充電
と放電を繰り返しながら計測した結果、水酸化ニッケル
のタップ密度は2.00g/mlであり、活物質の利用
率は86%、電極の膨潤率は112%であった。
Example 4 The procedure of Example 1 was repeated, except that the amount of lanthanum added was 0.1% by weight, and nickel hydroxide having a Ni grade of 60.1% (average particle size 8 μm) was used. As a result of assembling an open model cell and measuring while repeating charging and discharging in the same manner as in Example 1, the tap density of nickel hydroxide was 2.00 g / ml, the utilization rate of the active material was 86%, and the electrode The swelling ratio was 112%.

【0020】(実施例5)ランタンの添加量が0.1重
量%で、亜鉛添加量が0.5重量%で、Ni品位が6
1.5%の水酸化ニッケル(平均粒径9μm)を使用し
た以外は、実施例1と同様にして開放系のモデルセルを
組み立て、実施例1と同様に充電と放電を繰り返しなが
ら計測した結果、水酸化ニッケルのタップ密度は2.0
5g/mlであり、活物質の利用率は83%、電極の膨
潤率は120%であった。
(Example 5) The amount of lanthanum added was 0.1% by weight, the amount of zinc added was 0.5% by weight, and the Ni grade was 6%.
An open system model cell was assembled in the same manner as in Example 1 except that 1.5% of nickel hydroxide (average particle size: 9 μm) was used, and the results were measured while repeating charging and discharging as in Example 1. The tap density of nickel hydroxide is 2.0
5 g / ml, the utilization rate of the active material was 83%, and the swelling rate of the electrode was 120%.

【0021】(実施例6)ランタンの代わりに0.5重
量%のセリウムを添加した水酸化ニッケル(平均粒径7
μm)を使用した以外は、実施例1と同様にして開放系
のモデルセルを組み立て、実施例1と同様に充電と放電
を繰り返しながら計測した結果、水酸化ニッケルのタッ
プ密度は2.00g/mlであり、活物質の利用率は8
6%、電極の膨潤率は104%であった。
Example 6 Nickel hydroxide to which 0.5% by weight of cerium was added instead of lanthanum (average particle size of 7%)
An open model cell was assembled in the same manner as in Example 1 except that μm) was used, and measurement was performed while repeating charging and discharging in the same manner as in Example 1. As a result, the tap density of nickel hydroxide was 2.00 g / ml and the utilization rate of the active material is 8
6%, and the swelling ratio of the electrode was 104%.

【0022】(実施例7)ランタンの代わりに0.5重
量%のプラセオジウムをの添加し、Ni品位が60.1
%の水酸化ニッケル(平均粒径11μm)を使用した以
外は、実施例1と同様にして開放系のモデルセルを組み
立て、実施例1と同様に充電と放電を繰り返しながら計
測した結果、水酸化ニッケルのタップ密度は2.00g
/mlであり、活物質の利用率は86%、電極の膨潤率
は105%であった。
Example 7 In place of lanthanum, 0.5% by weight of praseodymium was added, and Ni grade was 60.1%.
% Of nickel hydroxide (average particle size: 11 μm), an open model cell was assembled in the same manner as in Example 1, and the measurement was performed while repeating charge and discharge in the same manner as in Example 1. Nickel tap density is 2.00g
/ Ml, the utilization rate of the active material was 86%, and the swelling rate of the electrode was 105%.

【0023】(実施例8)ランタンの代わりに0.5重
量%のプラセオジウムを添加し、亜鉛添加量を2.5重
量%にし、Ni品位が60.1%の水酸化ニッケル(平
均粒径10μm)を使用した以外は、実施例1と同様に
して開放系のモデルセルを組み立て、実施例1と同様に
充電と放電を繰り返しながら計測した結果、水酸化ニッ
ケルのタップ密度は2.00g/mlであり、活物質の
利用率は86%、電極の膨潤率は105%であった。
Example 8 In place of lanthanum, 0.5% by weight of praseodymium was added, the amount of zinc added was increased to 2.5% by weight, and nickel grade was 60.1% nickel hydroxide (average particle size: 10 μm ) Was used to assemble an open model cell in the same manner as in Example 1, and the charging and discharging were repeated and measured in the same manner as in Example 1. As a result, the tap density of nickel hydroxide was 2.00 g / ml. The utilization rate of the active material was 86%, and the swelling rate of the electrode was 105%.

【0024】(実施例9)ランタンの代わりに0.5重
量%のネオジウムを添加し、Ni品位が60.1%の水
酸化ニッケル(平均粒径8μm)を使用した以外は、実
施例1と同様にして開放系のモデルセルを組み立て、実
施例1と同様に充電と放電を繰り返しながら計測した結
果、水酸化ニッケルのタップ密度は2.00g/mlで
あり、活物質の利用率は84%、電極の膨潤率は104
%であった。
Example 9 The procedure of Example 1 was repeated except that 0.5% by weight of neodymium was added instead of lanthanum, and nickel hydroxide having a Ni grade of 60.1% (average particle size: 8 μm) was used. An open model cell was assembled in the same manner, and the measurement was performed while repeating charging and discharging as in Example 1. As a result, the tap density of nickel hydroxide was 2.00 g / ml, and the utilization rate of the active material was 84%. And the electrode swelling ratio is 104
%Met.

【0025】(実施例10)ランタンの代わりに0.5
重量%のイッテルビウムを添加した水酸化ニッケル(平
均粒径7μm)を使用した以外は、実施例1と同様にし
て開放系のモデルセルを組み立て、実施例1と同様に充
電と放電を繰り返しながら計測した結果、水酸化ニッケ
ルのタップ密度は2.00g/mlであり、活物質の利
用率は83%、電極の膨潤率は106%であった。
Example 10 Instead of lanthanum, 0.5
An open model cell was assembled in the same manner as in Example 1 except that nickel hydroxide (average particle size: 7 μm) to which wt% ytterbium was added, and measurement was performed while repeating charge and discharge as in Example 1. As a result, the tap density of nickel hydroxide was 2.00 g / ml, the utilization rate of the active material was 83%, and the swelling rate of the electrode was 106%.

【0026】(実施例11)ランタンの代わりに0.5
重量%のイットリウムを添加し、Ni品位が60.3%
の水酸化ニッケル(平均粒径11μm)を使用した以外
は、実施例1と同様にして開放系のモデルセルを組み立
て、実施例1と同様に充電と放電を繰り返しながら計測
した結果、水酸化ニッケルのタップ密度は1.98g/
mlであり、活物質の利用率は87%、電極の膨潤率は
104%であった。
(Example 11) Instead of lanthanum, 0.5
Weight percent yttrium, Ni grade 60.3%
An open model cell was assembled in the same manner as in Example 1 except that nickel hydroxide (average particle size: 11 μm) was used, and measurement was performed while repeating charging and discharging in the same manner as in Example 1. Has a tap density of 1.98 g /
ml, the utilization rate of the active material was 87%, and the swelling rate of the electrode was 104%.

【0027】(実施例12)ランタンの代わりに0.1
重量%のネオジウムを添加し、Ni品位が60.8%の
水酸化ニッケル(平均粒径13μm)を使用した以外
は、実施例1と同様にして開放系のモデルセルを組み立
て、実施例1と同様に充電と放電を繰り返しながら計測
した結果、水酸化ニッケルのタップ密度は2.06g/
mlであり、活物質の利用率は84%、電極の膨潤率は
114%であった。
Example 12 Instead of lanthanum, 0.1
An open type model cell was assembled in the same manner as in Example 1, except that neodymium was added in an amount of 0.8% by weight, and nickel hydroxide having a Ni grade of 60.8% (average particle size: 13 μm) was used. As a result of measurement while repeating charge and discharge, the tap density of nickel hydroxide was 2.06 g /
ml, the utilization rate of the active material was 84%, and the swelling rate of the electrode was 114%.

【0028】(実施例13)ランタンの添加量が0.7
重量%で、Ni品位が60.1%の水酸化ニッケル(平
均粒径7μm)を使用した以外は、実施例1と同様にし
て開放系のモデルセルを組み立て、実施例1と同様に充
電と放電を繰り返しながら計測した結果、水酸化ニッケ
ルのタップ密度は2.01g/mlであり、活物質の利
用率は83%、電極の膨潤率は104%であった。
(Example 13) The amount of lanthanum added was 0.7
An open type model cell was assembled in the same manner as in Example 1 except that nickel hydroxide (average particle size: 7 μm) having a Ni grade of 60.1% by weight was used, and charging and charging were performed in the same manner as in Example 1. As a result of measurement while repeating discharge, the tap density of nickel hydroxide was 2.01 g / ml, the utilization rate of the active material was 83%, and the swelling rate of the electrode was 104%.

【0029】(比較例1)ランタンの添加量を1.1重
量%とし、Ni品位が58.7%の水酸化ニッケル(平
均粒径6μm)を使用した以外は、実施例1と同様にし
て開放系のモデルセルを組み立て、実施例1と同様に充
電と放電を繰り返しながら計測した結果、水酸化ニッケ
ルのタップ密度は1.85g/mlであり、活物質の利
用率は75%、電極の膨潤率は104%であった。
Comparative Example 1 The procedure of Example 1 was repeated except that the amount of lanthanum was 1.1% by weight and nickel hydroxide having a nickel grade of 58.7% (average particle size: 6 μm) was used. As a result of assembling an open model cell and repeating charging and discharging in the same manner as in Example 1, the tap density of nickel hydroxide was 1.85 g / ml, the utilization rate of the active material was 75%, and the electrode The swelling ratio was 104%.

【0030】(比較例2)ランタンの添加量を0.08
重量%とし、Ni品位が60.5%の水酸化ニッケル
(平均粒径9μm)を使用した以外は、実施例1と同様
にして開放系のモデルセルを組み立て、実施例1と同様
に充電と放電を繰り返しながら計測した結果、水酸化ニ
ッケルのタップ密度は2.05g/mlであり、活物質
の利用率は84%、電極の膨潤率は128%であった。
Comparative Example 2 The amount of lanthanum was 0.08
Wt.%, And an open model cell was assembled in the same manner as in Example 1 except that nickel hydroxide having a nickel grade of 60.5% (average particle size: 9 μm) was used. As a result of measurement while repeating discharge, the tap density of nickel hydroxide was 2.05 g / ml, the utilization rate of the active material was 84%, and the swelling rate of the electrode was 128%.

【0031】(比較例3)ランタンノイド元素やイット
リウムを添加せず、2.0重量%の亜鉛のみを添加し、
Ni品位が60.3%の水酸化ニッケル(平均粒径11
μm)を使用した以外は、実施例1と同様にして開放系
のモデルセルを組み立て、実施例1と同様に充電と放電
を繰り返しながら計測した結果、水酸化ニッケルのタッ
プ密度は2.08g/mlであり、活物質の利用率は8
6%、電極の膨潤率は130%であった。
Comparative Example 3 Without adding a lanthanoid element or yttrium, only 2.0% by weight of zinc was added.
Nickel hydroxide with Ni grade of 60.3% (average particle size 11
An open system model cell was assembled in the same manner as in Example 1 except that μm) was used, and measurement was performed while repeating charge and discharge in the same manner as in Example 1. As a result, the tap density of nickel hydroxide was 2.08 g / ml and the utilization rate of the active material is 8
6% and the swelling ratio of the electrode was 130%.

【0032】(比較例4)ランタンノイド元素やイット
リウムを添加せず、3.1重量%の亜鉛のみを添加し、
Ni品位が57.9%の水酸化ニッケル(平均粒径6μ
m)を使用した以外は、実施例1と同様にして開放系の
モデルセルを組み立て、実施例1と同様に充電と放電を
繰り返しながら計測した結果、水酸化ニッケルのタップ
密度は2.03g/mlであり、活物質の利用率は86
%、電極の膨潤率は110%であった。
Comparative Example 4 Without adding a lanthanoid element or yttrium, only 3.1% by weight of zinc was added.
Nickel hydroxide with Ni grade of 57.9% (average particle size 6μ)
An open model cell was assembled in the same manner as in Example 1 except that m) was used, and the charging and discharging were repeated and measured as in Example 1. As a result, the tap density of nickel hydroxide was 2.03 g / ml, and the utilization rate of the active material is 86
%, And the swelling ratio of the electrode was 110%.

【0033】上記の実施例および比較例の結果を表1に
示す。
Table 1 shows the results of the above Examples and Comparative Examples.

【0034】[0034]

【表1】 Zn La等 Ni タップ密度 膨潤 利用率 平均粒径 (重量%) (g/ml) (%) (%) (μm) 実施例 1 2.0 La 0.5 60.2 2.00 103 86 5 2 1.0 La 0.5 61.0 2.01 105 86 12 3 0.5 La 0.5 61.0 2.01 110 84 20 4 2.0 La 0.1 60.1 2.00 112 86 8 5 0.5 La 0.1 61.5 2.05 120 83 9 6 2.0 Ce 0.5 60.2 2.00 104 86 7 7 2.0 Pr 0.5 60.1 2.00 105 86 11 8 2.5 La 0.5 60.0 2.04 103 86 6 9 2.0 Nd 0.5 60.1 2.00 104 84 8 10 2.0 Ib 0.5 60.2 2.00 106 83 7 11 2.0 Y 0.5 60.3 1.98 104 87 11 12 2.0 Nd 0.1 60.8 2.06 114 84 13 13 2.0 La 0.7 60.1 2.01 104 83 7 比較例 1 2.0 La 1.1 58.7 1.85 104 75 6 2 2.0 La0.08 60.5 2.05 128 84 9 3 2.0 − 60.3 2.08 130 86 11 4 3.1 − 57.9 2.03 110 86 6[Table 1] Ni tap density, such as Zn La, swelling utilization factor, average particle size (% by weight) (g / ml) (%) (%) (μm) Example 1 2.0 La 0.5 60.2 2.00 103 86 65 21.0 La 0.5 61.0 2.01 105 86 12 3 0.5 La 0.5 61.0 2.01 110 84 204 42.0 La 0.1 60.1 2.00 112 86 80.5 0.5 La 0.1 61.5 2.05 120 839 62.0 Ce 0.5 60.2 2.00 104 86 7 7 2.0 Pr 0.5 60.1 2.00 105 86 11 8 2.5 La 0.5 60.0 2.04 103 86 69 9 Nd 0.5 60.1 2.00 104 84 8 10 2.0 Ib 0.5 60.2 2.00 106 83 7 11 2.0 Y 0.5 60.3 1.98 104 87 11 12 2.0 Nd 0.1 60.8 2.06 114 84 13 13 2.0 La 0.7 60.1 2.01 104 837 Comparative Example 1 2.0 La 1.1 58.7 1.85 104 75 6 22.0 La0.08 60.5 05 128 84 9 3 2.0-60.3 2.08 130 86 11 4 3.1-57.9 2.03 110 86 6

【0035】[0035]

【発明の効果】本発明によるニッケル電極用活物質およ
びニッケル極は、以上のように構成されているので、γ
−NiOOHの生成を抑制し、かつ、従来の水酸化ニッ
ケル活物質よりもニッケル品位を高くしてエネルギ−密
度を高めることができる。
As described above, the active material for a nickel electrode and the nickel electrode according to the present invention are constituted as described above.
-The generation of NiOOH can be suppressed, and the energy density can be increased by increasing the nickel quality as compared with the conventional nickel hydroxide active material.

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アルカリ電池のニッケル電極を構成する
水酸化ニッケル活物質が、0.1〜1重量%のランタノ
イド元素と、亜鉛と、実質的に残部の水酸化ニッケルと
からなり、ランタノイド元素と亜鉛の合計量が3重量%
未満であることを特徴とするニッケル電極用活物質。
1. A nickel hydroxide active material constituting a nickel electrode of an alkaline battery comprises 0.1 to 1% by weight of a lanthanoid element, zinc, and substantially the balance of nickel hydroxide. 3% by weight of total zinc
An active material for a nickel electrode.
【請求項2】 アルカリ電池のニッケル電極を構成する
水酸化ニッケル活物質が、0.1〜1重量%のランタノ
イド元素および/またはイットリウムおよび/またはス
カンジウムと、0.5重量%以上3重量%未満の亜鉛
と、実質的に残部の水酸化ニッケルとからなり、ランタ
ノイド元素、イットリウム、スカンジウムの合計量が3
重量%未満であることを特徴とするニッケル電極用活物
質。
2. The method according to claim 1, wherein the nickel hydroxide active material constituting the nickel electrode of the alkaline battery comprises 0.1 to 1% by weight of a lanthanoid element and / or yttrium and / or scandium, and 0.5% to less than 3% by weight. Of zinc and substantially the remainder of nickel hydroxide, and the total amount of the lanthanoid element, yttrium, and scandium is 3
An active material for a nickel electrode, which is less than 10% by weight.
【請求項3】 ランタノイド元素および/またはイット
リウムおよび/またはスカンジウムおよび亜鉛と共に水
酸化ニッケルが攪拌造粒されることを特徴とする請求項
1に記載のニッケル電極用活物質。
3. The active material for a nickel electrode according to claim 1, wherein nickel hydroxide is granulated with stirring together with a lanthanoid element and / or yttrium and / or scandium and zinc.
【請求項4】 ランタノイド元素がLa、Ce、Pr、
Nd、Ybの一種類以上であることを特徴とする請求項
1〜2のいずれかに記載のニッケル電極用活物質。
4. The method according to claim 1, wherein the lanthanoid element is La, Ce, Pr,
The active material for a nickel electrode according to claim 1, wherein the active material is at least one of Nd and Yb.
【請求項5】 水酸化ニッケル活物質が平均粒子径5μ
m〜100μmの粒子であることを特徴とする請求項1
〜3のいずれかに記載のニッケル電極用活物質。
5. The nickel hydroxide active material has an average particle size of 5 μm.
2. A particle having a particle size of m to 100 [mu] m.
4. The active material for a nickel electrode according to any one of claims 1 to 3.
【請求項6】 多孔性の耐アルカリ金属基板の凹部に、
請求項1〜4のいずれかに記載のニッケル電極用活物質
がニッケル粉末とコバルト粉末と共に充填されているこ
とを特徴とするニッケル電極。
6. The method according to claim 6, wherein the concave portions of the porous alkali-resistant metal substrate are
5. A nickel electrode, wherein the nickel electrode active material according to claim 1 is filled together with nickel powder and cobalt powder.
【請求項7】 多孔性の耐アルカリ金属基板が樹脂製ス
ポンジにニッケルメッキを施し、これを焙焼し、焼純し
てなるスポンジ状ニッケル多孔体である請求項5に記載
のニッケル電極。
7. The nickel electrode according to claim 5, wherein the porous alkali-resistant metal substrate is a sponge-like nickel porous body obtained by subjecting a resin sponge to nickel plating, roasting and refining the sponge.
【請求項8】 多孔性の耐アルカリ金属基板の凹部が、
100μm〜1000μmの平均径を有することを特徴
とする請求項5または6に記載のニッケル電極。
8. The concave portion of the porous alkali-resistant metal substrate,
The nickel electrode according to claim 5, having an average diameter of 100 μm to 1000 μm.
【請求項9】 水酸化ニッケルに対し、ランタノイド元
素および/またはイットリウムと、亜鉛とを固溶させ
て、0.1〜1重量%のランタノイド元素および/また
はイットリウムと、0.5〜3重量%の亜鉛とを含有す
る粒子状の水酸化ニッケル活物質を形成するニッケル電
極用活物質の製法。
9. A lanthanoid element and / or yttrium and a solid solution of zinc with respect to nickel hydroxide, and 0.1 to 1% by weight of the lanthanoid element and / or yttrium, and 0.5 to 3% by weight. A method for producing a nickel electrode active material for forming a particulate nickel hydroxide active material containing zinc.
JP31943194A 1994-11-30 1994-11-30 Active material for nickel electrode and method for producing the same Expired - Fee Related JP3183073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31943194A JP3183073B2 (en) 1994-11-30 1994-11-30 Active material for nickel electrode and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31943194A JP3183073B2 (en) 1994-11-30 1994-11-30 Active material for nickel electrode and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08162111A JPH08162111A (en) 1996-06-21
JP3183073B2 true JP3183073B2 (en) 2001-07-03

Family

ID=18110126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31943194A Expired - Fee Related JP3183073B2 (en) 1994-11-30 1994-11-30 Active material for nickel electrode and method for producing the same

Country Status (1)

Country Link
JP (1) JP3183073B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100381217B1 (en) 1997-01-30 2003-04-21 산요 덴키 가부시키가이샤 Enclosed alkali storage battery
US6566008B2 (en) 1997-01-30 2003-05-20 Sanyo Electric Co., Ltd. Sealed alkaline storage battery
WO2012117989A1 (en) * 2011-02-28 2012-09-07 三洋電機株式会社 Alkaline storage battery

Also Published As

Publication number Publication date
JPH08162111A (en) 1996-06-21

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
WO1992008251A1 (en) Hydrogen-storing electrode, nickel electrode, and nickel-hydrogen battery
JPH07122271A (en) Manufacture of nickel hydroxide for nickel pole, manufacture of nickel pole using the nickel hydroxide and alkaline secondary battery incorporating the nickel pole
JP3183073B2 (en) Active material for nickel electrode and method for producing the same
JPH0845508A (en) Active material for nickel electrode and nickel electrode
JP3079303B2 (en) Activation method of alkaline secondary battery
JP3324781B2 (en) Alkaline secondary battery
JP3788484B2 (en) Nickel electrode for alkaline storage battery
JPS5983347A (en) Sealed nickel-cadmium storage battery
JP3788485B2 (en) Alkaline storage battery
JP3204275B2 (en) Nickel electrode for alkaline storage battery
JP3520573B2 (en) Method for producing nickel-metal hydride battery
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JP4458749B2 (en) Alkaline storage battery
JP3229801B2 (en) Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the same
JPH11238507A (en) Alkaline storage battery
JP3482478B2 (en) Nickel-metal hydride storage battery
JP2000106184A (en) Nickel hydroxide electrode for alkaline storage battery, and the alkaline storage battery using this electrode
JPH1021904A (en) Alkaline storage battery
JP2589750B2 (en) Nickel cadmium storage battery
JP2003317712A (en) Nickel - hydrogen storage battery
JP2846673B2 (en) Method for producing zinc electrode for alkaline storage battery
JP3011386B2 (en) Paste type electrode for alkaline secondary battery
JPH05314981A (en) Alkaline storage battery and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees