JP3229801B2 - Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the same - Google Patents
Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the sameInfo
- Publication number
- JP3229801B2 JP3229801B2 JP06840096A JP6840096A JP3229801B2 JP 3229801 B2 JP3229801 B2 JP 3229801B2 JP 06840096 A JP06840096 A JP 06840096A JP 6840096 A JP6840096 A JP 6840096A JP 3229801 B2 JP3229801 B2 JP 3229801B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- lithium
- alkaline storage
- storage battery
- conductive agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ニッケルー水素蓄
電池やニッケルーカドミウム蓄電池等のアルカリ蓄電池
に用いられるアルカリ蓄電池用導電剤及びそれを用いた
非焼結式ニッケル極に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive agent for an alkaline storage battery used for an alkaline storage battery such as a nickel-hydrogen storage battery or a nickel-cadmium storage battery, and a non-sintered nickel electrode using the same.
【0002】[0002]
【従来の技術】従来、ニッケルー水素蓄電池やニッケル
ーカドミウム蓄電池等のアルカリ蓄電池のニッケル極と
して、ニッケル粉末を穿孔鋼板等に焼結させて得た焼結
基板に活物質(水酸化ニッケル)を含浸させてなる焼結
式ニッケル極がよく知られている。2. Description of the Related Art Conventionally, as a nickel electrode of an alkaline storage battery such as a nickel-hydrogen storage battery or a nickel-cadmium storage battery, a sintered substrate obtained by sintering nickel powder on a perforated steel plate or the like is impregnated with an active material (nickel hydroxide). Sintered nickel electrodes are well known.
【0003】焼結式ニッケル極において活物質の充填密
度を大きくするためには、多孔度の大きい焼結基板を用
いる必要がある。しかし、焼結によるニッケル粒子間の
結合は弱く、焼結基板の多孔度を大きくするとニッケル
粉末が焼結基体から脱落し易くなる。従って、実用上は
焼結基板の多孔度を80%より大きくすることができず、
それ故、焼結式ニッケル極には、活物質の充填量が少な
いという問題がある。また、一般に、ニッケル粉末の焼
結体の孔径は10μm以下と小さいため、活物質の基板
(焼結体)への充填を、繁雑な含浸工程を数回繰り返し
行う溶液含浸法により行わなければならないという問題
もある。[0003] In order to increase the packing density of the active material in the sintered nickel electrode, it is necessary to use a sintered substrate having a high porosity. However, the bond between the nickel particles due to sintering is weak, and if the porosity of the sintered substrate is increased, the nickel powder tends to fall off the sintered substrate. Therefore, in practice, the porosity of the sintered substrate cannot be made larger than 80%,
Therefore, the sintered nickel electrode has a problem that the amount of the active material charged is small. In addition, since the pore size of a sintered body of nickel powder is generally as small as 10 μm or less, the active material must be filled into a substrate (sintered body) by a solution impregnation method in which a complicated impregnation step is repeated several times. There is also a problem.
【0004】このようなことから、最近、非焼結式ニッ
ケル極が提案されている。非焼結式ニッケル極は、活物
質(水酸化ニッケル)と結着剤溶液(メチルセルロース
溶液など)との混練物(ペースト)を多孔度の大きい基
板(耐アルカリ性金属などをメッキした発泡メタルな
ど)に直接充填することにより作製される。非焼結式ニ
ッケル極では、多孔度の大きい基板を用いることができ
るので(多孔度が95%以上の基板を用いることができ
る)、活物質の充填密度を大きくすることができるとと
もに、活物質の基板への充填を簡易に行うことが可能と
なる。[0004] Under such circumstances, a non-sintered nickel electrode has recently been proposed. Non-sintered nickel electrodes are prepared by mixing a kneaded product (paste) of an active material (nickel hydroxide) and a binder solution (methylcellulose solution) with a highly porous substrate (foam metal plated with an alkali-resistant metal, etc.). It is made by directly filling the In the non-sintered nickel electrode, a substrate having a high porosity can be used (a substrate having a porosity of 95% or more can be used), so that the packing density of the active material can be increased and Can be easily filled into the substrate.
【0005】然し乍ら、非焼結式ニッケル極において活
物質の充填密度を大きくするべく多孔度の大きい基板を
用いると、基板の集電能力が焼結式ニッケル極に比べ
て、導電性が悪くなり、活物質利用率が低下する。[0005] However, when a non-sintered nickel electrode having a large porosity is used to increase the packing density of the active material, the current collecting capability of the substrate is lower than that of the sintered nickel electrode. As a result, the active material utilization rate decreases.
【0006】そこで、非焼結式ニッケル極の導電性を高
めるべく、水酸化ニッケル粉末に、水酸化コバルトを添
加したり(特開昭61−74261号公報参照)、黒鉛粉末を
添加したり(特開平7−211316号公報参照)することが
提案されている。Therefore, in order to enhance the conductivity of the non-sintered nickel electrode, cobalt hydroxide is added to the nickel hydroxide powder (see JP-A-61-74261), or graphite powder is added ( Japanese Patent Laid-Open No. 7-211316) has been proposed.
【0007】然し乍ら、本発明者等が検討したところ、
水酸化コバルト粉末や黒鉛粉末を添加しても、活物質利
用率の十分高い非焼結式ニッケル極を得ることは困難で
あることが分かった。However, the present inventors have studied and found that
It has been found that it is difficult to obtain a non-sintered nickel electrode having a sufficiently high active material utilization rate even if cobalt hydroxide powder or graphite powder is added.
【0008】[0008]
【発明が解決しようとする課題】本発明は、かかる問題
点に鑑みて成されたものであって、その目的とするとこ
ろは、導電率の高いアルカリ蓄電池用導電剤及びそれを
用いた活物質利用率の高いアルカリ蓄電池用非焼結式ニ
ッケル極を提供することにある。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a conductive agent for an alkaline storage battery having high conductivity and an active material using the same. An object of the present invention is to provide a non-sintered nickel electrode for an alkaline storage battery having a high utilization factor.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するた
め、本発明に係るアルカリ蓄電池用導電剤(本発明導電
剤)は、コバルトまたはコバルト化合物を、これに水酸
化リチウム水溶液を加えた状態で、50℃〜200℃で加熱
処理することにより得られ、且つリチウムを原子換算で
0.1重量〜10重量%含有するものである。リチウム含有
量がこの範囲を外れると、導電率の十分高い導電剤が得
られない。In order to achieve the above object, the conductive agent for an alkaline storage battery according to the present invention (the conductive agent of the present invention) is prepared by adding cobalt or a cobalt compound to a lithium hydroxide aqueous solution. , Obtained by heat treatment at 50 ° C to 200 ° C, and converting lithium into atoms.
It contains 0.1% to 10% by weight. If the lithium content is out of this range, a conductive agent having sufficiently high conductivity cannot be obtained.
【0010】尚、このリチウム含有量は、導電剤の全重
量を100とし、含有されたリチウムを原子の重量に換算
即ち原子換算して、重量%で表している。言い換えれ
ば、次式で求められるものである。The lithium content is expressed in terms of% by weight, that is, when the total weight of the conductive agent is 100 and the contained lithium is converted to the weight of atoms, that is, converted to atoms. In other words, it is obtained by the following equation.
【0011】リチウム含有量(重量%)=(原子換算さ
れたリチウム重量/導電剤の全重量)×100 前記コバルト化合物としては、水酸化コバルト、酸化コ
バルトが例示される。Lithium content (% by weight) = (atomic weight of lithium / total weight of conductive agent) × 100 Examples of the cobalt compound include cobalt hydroxide and cobalt oxide.
【0012】本発明導電剤の化学構造は現在のところ定
かではないが、本発明導電剤は、極めて高い導電性を有
することから、コバルト化合物(オキシ水酸化コバルト
など)とリチウムとの単なる混合物ではなく、コバルト
化合物の結晶中にリチウムが取り込まれた形の層間化合
物ではないかと推察される。Although the chemical structure of the conductive agent of the present invention is not known at present, since the conductive agent of the present invention has extremely high conductivity, a simple mixture of a cobalt compound (such as cobalt oxyhydroxide) and lithium cannot be used. Therefore, it is presumed that the intercalation compound has a form in which lithium is incorporated in the crystal of the cobalt compound.
【0013】本発明導電剤を作製する際の加熱処理温度
は、50℃〜200℃である。加熱処理温度がこの範囲を外
れると、導電率の高い導電剤が得られない。[0013] The heat treatment temperature for producing the conductive agent of the present invention is 50 ° C to 200 ° C. If the heat treatment temperature is out of this range, a conductive agent having high conductivity cannot be obtained.
【0014】即ち、本発明導電剤は、例えば水酸化コバ
ルトを出発物質に用いた場合、下記の反応経路で合成さ
れると考えられる。しかるに、加熱処理温度が50℃未満
の場合は、CoHO2からLi含有コバルト化合物への反応が
十分に進行しにくくなるため、導電率の低いCoHO2が多
く生成する。一方、加熱処理温度が200℃を越えた場合
には、導電率の低い四酸化三コバルト(Co3O4)が多く
生成する。以上の理由から、加熱処理温度が50℃〜200
℃を外れた場合は、導電率の高い導電剤が得られなくな
ると考えられる。That is, when, for example, cobalt hydroxide is used as a starting material, the conductive agent of the present invention is considered to be synthesized by the following reaction route. However, when the heat treatment temperature is lower than 50 ° C., the reaction from CoHO 2 to the Li-containing cobalt compound does not easily proceed sufficiently, so that a large amount of CoHO 2 having low conductivity is generated. On the other hand, when the heat treatment temperature exceeds 200 ° C., a large amount of tricobalt tetroxide (Co 3 O 4 ) having low conductivity is generated. For the above reasons, the heat treatment temperature is 50 ℃ ~ 200
When the temperature is out of the range, it is considered that a conductive agent having high conductivity cannot be obtained.
【0015】[0015]
【化1】 Embedded image
【0016】本発明導電剤を作製する際の加熱処理時間
は、水酸化リチウム水溶液の量、濃度、加熱処理温度等
によって異なるが、一般的には、0.5時間〜10時間であ
る。The heat treatment time for preparing the conductive agent of the present invention varies depending on the amount and concentration of the aqueous lithium hydroxide solution, the heat treatment temperature and the like, but is generally 0.5 to 10 hours.
【0017】本発明に係るアルカリ蓄電池用非焼結式ニ
ッケル極(本発明電極)は、上述した高い導電率を有す
る本発明導電剤を、非焼結式ニッケル極の導電剤として
使用したものであり、本発明導電剤が、水酸化ニッケル
粒子または水酸化ニッケルを主成分とする粒子からなる
活物質粉末に、この活物質粉末中の水酸化ニッケル100
重量部に対して、1重量部〜20重量部添加されたもので
ある。導電剤の添加割合が1重量部未満の場合は、活物
質利用率の十分高い非焼結式ニッケル極が得られない。
一方、導電剤の添加割合が20重量部を越えた場合には、
活物質たる水酸化ニッケルの充填量が減少するため、電
極容量が減少する。The non-sintered nickel electrode for an alkaline storage battery according to the present invention (the electrode of the present invention) uses the above-described conductive agent of the present invention having a high conductivity as the conductive agent of the non-sintered nickel electrode. Yes, the conductive agent of the present invention, the active material powder consisting of nickel hydroxide particles or particles containing nickel hydroxide as a main component, nickel hydroxide 100 in this active material powder
1 part by weight to 20 parts by weight are added to parts by weight. When the addition ratio of the conductive agent is less than 1 part by weight, a non-sintered nickel electrode having a sufficiently high active material utilization rate cannot be obtained.
On the other hand, if the addition ratio of the conductive agent exceeds 20 parts by weight,
Since the filling amount of nickel hydroxide as the active material is reduced, the electrode capacity is reduced.
【0018】水酸化ニッケルを主成分とする粒子として
は、コバルト、亜鉛、カドミウム、カルシウム、マンガ
ン、マグネシウムなどのニッケル極の膨化を抑制する作
用を有する元素を水酸化ニッケルに固溶させたものが例
示される。The particles containing nickel hydroxide as a main component include particles obtained by dissolving elements such as cobalt, zinc, cadmium, calcium, manganese, and magnesium having an action of suppressing the expansion of the nickel electrode into nickel hydroxide. Is exemplified.
【0019】[0019]
【発明の実施の形態】以下、本発明を実施例に基づいて
詳細に説明するが、本発明は下記実施例に何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施が可能である。 (実験1) [導電剤の作製]水酸化コバルトと、水酸化リチウムの
4重量%水溶液とを、重量比1:10で混合し、80℃で8
時間加熱処理した。加熱処理後、水洗し、60℃で乾燥し
て、本発明導電剤たるリチウム含有コバルト化合物を作
製した。このリチウム含有コバルト化合物のリチウム含
有率を原子吸光法により分析したところ、1重量%であ
った。この1重量%という値は、原子に換算されたリチ
ウム重量を、本発明導電剤の全重量で割り、100倍した
ものである。 [非焼結式ニッケル極の作製]活物質としての水酸化ニ
ッケル100重量部と、導電剤としての上記のリチウム含
有コバルト化合物10重量部と、結着剤としてのメチルセ
ルロースの1重量%水溶液20重量部とを混練してペース
トを調整した。このペーストを、ニッケルメッキを施し
た発泡メタル(多孔度95%、平均孔径200μm)からな
る多孔性の基板に充填し、乾燥した後、加圧成形して、
本発明に係る非焼結式ニッケル極を作製した。 [アルカリ蓄電池の作製]上記の非焼結式ニッケル極
(正極)、この正極よりも電気化学的容量が大きい公知
のペースト式カドミウム極(負極)、ポリアミド不織布
(セパレータ)、30重量%水酸化カリウム水溶液(アル
カリ電解液)、金属製の電池缶、金属製の電池蓋などを
用いて、アルカリ蓄電池A1を作製した。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to embodiments. However, the present invention is not limited to the following embodiments, and the present invention is implemented by appropriately changing the scope of the invention. Is possible. (Experiment 1) [Preparation of Conductive Agent] Cobalt hydroxide and a 4% by weight aqueous solution of lithium hydroxide were mixed at a weight ratio of 1:10, and mixed at 80 ° C. for 8 hours.
Heated for hours. After the heat treatment, the film was washed with water and dried at 60 ° C. to prepare a lithium-containing cobalt compound as a conductive agent of the present invention. When the lithium content of this lithium-containing cobalt compound was analyzed by an atomic absorption method, it was 1% by weight. The value of 1% by weight is obtained by dividing the weight of lithium converted into atoms by the total weight of the conductive agent of the present invention and multiplying by 100. [Production of non-sintered nickel electrode] 100 parts by weight of nickel hydroxide as an active material, 10 parts by weight of the above-mentioned lithium-containing cobalt compound as a conductive agent, and 20 parts by weight of a 1% by weight aqueous solution of methylcellulose as a binder And the mixture was kneaded to prepare a paste. This paste is filled into a porous substrate made of nickel-plated foam metal (porosity 95%, average pore diameter 200 μm), dried, and then pressed and molded.
A non-sintered nickel electrode according to the present invention was produced. [Preparation of alkaline storage battery] The above-mentioned non-sintered nickel electrode (positive electrode), a known paste-type cadmium electrode (negative electrode) having a larger electrochemical capacity than this positive electrode, a polyamide nonwoven fabric (separator), 30% by weight potassium hydroxide An alkaline storage battery A1 was produced using an aqueous solution (alkaline electrolyte), a metal battery can, a metal battery cover, and the like.
【0020】別途、先の非焼結式ニッケル極の作製にお
いて、導電剤として、リチウム含有コバルト化合物10重
量部に代えて水酸化コバルト10重量部または黒鉛10重量
部を用いたこと以外は同様にして、比較のために、それ
ぞれアルカリ蓄電池A2及びA3を作製した。 〈活物質利用率〉上記のアルカリ蓄電池A1〜A3につ
いて、25℃にて0.1Cで160%充電した後、25℃にて1C
で1.0Vまで放電する工程を1サイクルとする充放電を1
0サイクル行って、下式で定義される10サイクル目の正
極の活物質利用率を求めた。Separately, except that 10 parts by weight of cobalt hydroxide or 10 parts by weight of graphite were used instead of 10 parts by weight of the lithium-containing cobalt compound as the conductive agent in the preparation of the non-sintered nickel electrode. For comparison, alkaline storage batteries A2 and A3 were produced, respectively. <Active Material Utilization> The above alkaline storage batteries A1 to A3 were charged 160% at 25 ° C. at 0.1 C, and then charged at 1 ° C. at 25 ° C.
Charge and discharge with one cycle of discharging to 1.0 V
After 0 cycles, the active material utilization of the positive electrode at the tenth cycle defined by the following equation was determined.
【0021】活物質利用率(%)={10サイクル目の放電
容量(mAh)/(水酸化ニッケルの量(g)×288(mAh/
g))}×100 結果を、表1に示す。表1中の活物質利用率は、アルカ
リ蓄電池A1の活物質利用率を100とした場合の相対的
な指数である。Active material utilization rate (%) = {discharge capacity at 10th cycle (mAh) / (amount of nickel hydroxide (g) × 288 (mAh /
g))} × 100 The results are shown in Table 1. The active material utilization rate in Table 1 is a relative index when the active material utilization rate of the alkaline storage battery A1 is set to 100.
【0022】[0022]
【表1】 [Table 1]
【0023】表1に示すように、アルカリ蓄電池A2、
A3の正極の活物質利用率は、アルカリ蓄電池A1のそ
れに比べて、それぞれ96及び88と低い。この結果から本
発明に係る導電剤(リチウム含有コバルト化合物)は、
水酸化コバルト及び黒鉛に比べて、格段高い導電率を有
することが分かる。As shown in Table 1, the alkaline storage batteries A2,
The active material utilization of the positive electrode of A3 is 96 and 88, respectively, lower than that of the alkaline storage battery A1. From these results, the conductive agent (lithium-containing cobalt compound) according to the present invention is:
It can be seen that it has a significantly higher conductivity than cobalt hydroxide and graphite.
【0024】尚、実施例1では、リチウム含有コバルト
化合物を合成する際のコバルト原料として水酸化コバル
トを用いたが、金属コバルト、酸化コバルトなどを用い
た場合にも、水酸化コバルトを用いた場合と同様に導電
率の高いリチウム含有コバルト化合物が得られることを
確認している。 (実験2)リチウム含有コバルト化合物の作製におい
て、4重量%水酸化リチウム水溶液に代えて、1重量
%、2重量%、3重量%、5重量%、6重量%、7重量
%または8重量%水酸化リチウム水溶液を用いた以外は
実験1と同様にして、リチウム含有量の異なるリチウム
含有コバルト化合物を作製した。これらのリチウム含有
コバルト化合物のリチウム含有率を原子吸光法により分
析したところ、順に0.05重量%、0.1重量%、0.5重量
%、5重量%、10重量%、12重量%、15重量%であっ
た。次いで、これらのリチウム含有コバルト化合物をそ
れぞれ用いたこと以外は前記実験1と同様にして、順に
アルカリ蓄電池A4〜A10を作製した。In Example 1, cobalt hydroxide was used as a cobalt raw material for synthesizing a lithium-containing cobalt compound. However, when cobalt metal, cobalt oxide, or the like was used, cobalt hydroxide was used. It has been confirmed that a lithium-containing cobalt compound having high electrical conductivity can be obtained in the same manner as described above. (Experiment 2) In preparing a lithium-containing cobalt compound, 1% by weight, 2% by weight, 3% by weight, 5% by weight, 6% by weight, 7% by weight or 8% by weight instead of 4% by weight aqueous lithium hydroxide solution Lithium-containing cobalt compounds having different lithium contents were produced in the same manner as in Experiment 1 except that a lithium hydroxide aqueous solution was used. When the lithium content of these lithium-containing cobalt compounds was analyzed by the atomic absorption method, they were 0.05% by weight, 0.1% by weight, 0.5% by weight, 5% by weight, 10% by weight, 12% by weight, and 15% by weight, respectively. . Next, alkaline storage batteries A4 to A10 were prepared in the same manner as in Experiment 1 except that each of these lithium-containing cobalt compounds was used.
【0025】これらのアルカリ蓄電池A4〜A10につい
て、実験1と同じ条件の充放電を10サイクル行って、10
サイクル目の正極の活物質利用率を求め、リチウム含有
コバルト化合物のリチウム含有率と活物質利用率の関係
を調べた。この結果を、図1に示す。図1は、リチウム
含有コバルト化合物のリチウム含有率と活物質利用率の
関係を示す図である。図1において、縦軸は活物質利用
率を、横軸はリチウム含有コバルト化合物のリチウム含
有率(重量%)をそれぞれプロットしている。尚、図1
には、左記の実験1で作製したアルカリ蓄電池A1につ
いての結果も示してある。また、図1の縦軸に示した活
物質利用率は、アルカリ蓄電池A1の活物質利用率を10
0とした場合の相対的な指数である。The alkaline storage batteries A4 to A10 were charged and discharged under the same conditions as in Experiment 1 for 10 cycles.
The active material utilization of the positive electrode at the cycle was determined, and the relationship between the lithium content of the lithium-containing cobalt compound and the active material utilization was examined. The result is shown in FIG. FIG. 1 is a diagram showing the relationship between the lithium content of a lithium-containing cobalt compound and the active material utilization. In FIG. 1, the vertical axis plots the active material utilization rate, and the horizontal axis plots the lithium content (% by weight) of the lithium-containing cobalt compound. FIG.
Also shows the results for the alkaline storage battery A1 produced in Experiment 1 on the left. The active material utilization rate shown on the vertical axis of FIG.
This is a relative index when 0 is set.
【0026】図1に示すように、アルカリ蓄電池A1、
A5〜A8の活物質利用率が極めて高いことから、リチ
ウム含有率が0.1重量%〜10重量%であるリチウム含有
コバルト化合物(本発明導電剤)は、極めて高い導電率
を有することが分かる。 (実験3)非焼結式ニッケル極の作製において、水酸化
ニッケル100重量部に対するリチウム含有コバルト化合
物の添加量を、0.5重量部、1重量部、5重量部、15重
量部、20重量部、22.5重量部または25重量部としたこと
以外は、前記実験1と同様にして、リチウム含有コバル
ト化合物(導電剤)の添加量が異なる非焼結式ニッケル
極を作製した。但し、リチウム含有コバルト化合物とし
て、リチウム含有率が1重量%のものを使用した。次い
で、これらの非焼結式ニッケル極をそれぞれ用いたこと
以外は実験1と同様にして、順にアルカリ蓄電池A11〜
A17を作製した。As shown in FIG. 1, the alkaline storage batteries A1,
Since the active material utilization of A5 to A8 is extremely high, it can be seen that the lithium-containing cobalt compound (the conductive agent of the present invention) having a lithium content of 0.1% by weight to 10% by weight has an extremely high electrical conductivity. (Experiment 3) In the production of a non-sintered nickel electrode, the addition amount of the lithium-containing cobalt compound to 100 parts by weight of nickel hydroxide was 0.5 parts by weight, 1 part by weight, 5 parts by weight, 15 parts by weight, 20 parts by weight, Except that the amount was 22.5 parts by weight or 25 parts by weight, a non-sintered nickel electrode having a different addition amount of the lithium-containing cobalt compound (conductive agent) was produced in the same manner as in Experiment 1. However, a lithium-containing cobalt compound having a lithium content of 1% by weight was used. Next, in the same manner as in Experiment 1, except that these non-sintered nickel electrodes were used, the alkaline storage batteries A11 to A11 were sequentially used.
A17 was produced.
【0027】これらのアルカリ蓄電池A11〜A17につい
て、実験1と同じ条件の充放電を10サイクル行って、10
サイクル目の正極の活物質利用率を求め、リチウム含有
コバルト化合物の添加量と活物質利用率との関係を調べ
た。この結果を、表2に示す。表2には、先の実験1で
作製したアルカリ蓄電池A1についての結果も示してあ
る。The alkaline storage batteries A11 to A17 were charged and discharged under the same conditions as in Experiment 1 for 10 cycles, and
The active material utilization of the positive electrode at the cycle was determined, and the relationship between the added amount of the lithium-containing cobalt compound and the active material utilization was examined. Table 2 shows the results. Table 2 also shows the results for the alkaline storage battery A1 produced in the above Experiment 1.
【0028】[0028]
【表2】 [Table 2]
【0029】表2より、リチウム含有コバルト化合物を
水酸化ニッケル100重量部に対して1重量部以上添加し
た場合に、活物質利用率の高い非焼結式ニッケル極が得
られることが分かる。Table 2 shows that when 1 part by weight or more of the lithium-containing cobalt compound is added to 100 parts by weight of nickel hydroxide, a non-sintered nickel electrode having a high active material utilization rate can be obtained.
【0030】図2は、リチウム含有コバルト化合物の添
加量と、電池容量の関係を示す図である。図2におい
て、横軸にはリチウム含有コバルト化合物の添加量(水
酸化ニッケル100重量部に対する重量部数)が、縦軸に
は電池容量をそれぞれプロットしている。尚、図2に
は、先の実験1で作製したアルカリ蓄電池A1について
の結果も示してある。また、図2の縦軸の電池容量は、
アルカリ蓄電池A1の電池容量を100とした場合の指数
で、相対的に表されている。FIG. 2 is a diagram showing the relationship between the amount of lithium-containing cobalt compound added and the battery capacity. In FIG. 2, the abscissa plots the added amount of the lithium-containing cobalt compound (parts by weight based on 100 parts by weight of nickel hydroxide), and the ordinate plots the battery capacity. FIG. 2 also shows the result of the alkaline storage battery A1 produced in the above-mentioned experiment 1. The battery capacity on the vertical axis in FIG.
An index when the battery capacity of the alkaline storage battery A1 is set to 100, which is relatively expressed.
【0031】図2に示すようにアルカリ蓄電池A1、A
12〜A15の電池容量が極めて高いことが理解できる。こ
のように電池容量が大きいことから、水酸化ニッケル10
0重量部に対するリチウム含有コバルト化合物の添加量
が1重量部〜20重量部である非焼結式ニッケル極(本発
明電極)は、極めて高い電極容量を有することが分か
る。 (実験4)リチウム含有コバルト化合物の作製におい
て、加熱処理温度を、45℃、50℃、60℃、100℃、150
℃、200℃、220℃または250℃としたこと以外は実験1
と同様にしてリチウム含有コバルト化合物を作製した。
これらのリチウム含有コバルト化合物のリチウム含有率
を原子吸光法により分析したところ、順に0.05重量%(4
5℃)、1重量%(50℃)、1重量%(60℃)、1重量%(100
℃)、1重量%(150℃)、1重量%(200℃)、0.05重量%
(220℃)、0.02重量%(250℃)であった。次いで、これら
のリチウム含有コバルト化合物をそれぞれ用いたこと以
外は実験1と同様にして、順にアルカリ蓄電池A18〜A
25を作製した。As shown in FIG. 2, the alkaline storage batteries A1, A
It can be understood that the battery capacities of 12 to A15 are extremely high. Because of the large battery capacity, nickel hydroxide 10
It is understood that the non-sintered nickel electrode (the electrode of the present invention) in which the addition amount of the lithium-containing cobalt compound is 1 part by weight to 20 parts by weight with respect to 0 part by weight has an extremely high electrode capacity. (Experiment 4) In the preparation of the lithium-containing cobalt compound, the heat treatment temperature was set at 45 ° C, 50 ° C, 60 ° C, 100 ° C, 150 ° C.
Experiment 1 except that the temperature was 200 ℃, 220 ℃, or 250 ℃
In the same manner as in the above, a lithium-containing cobalt compound was produced.
The lithium content of these lithium-containing cobalt compounds was analyzed by atomic absorption spectroscopy.
5%), 1% by weight (50 ° C), 1% by weight (60 ° C), 1% by weight (100%
° C), 1% by weight (150 ° C), 1% by weight (200 ° C), 0.05% by weight
(220 ° C.) and 0.02% by weight (250 ° C.). Then, in the same manner as in Experiment 1, except that each of these lithium-containing cobalt compounds was used, the alkaline storage batteries A18 to A18 were sequentially formed.
25 were produced.
【0032】これらのアルカリ蓄電池A18〜A25につい
て、上記実験1と同じ条件の充放電を10サイクル行っ
て、10サイクル目の正極の活物質利用率を求め、加熱処
理温度と活物質利用率との関係を調べた。The alkaline storage batteries A18 to A25 were subjected to 10 cycles of charge / discharge under the same conditions as in Experiment 1 to obtain the active material utilization of the positive electrode at the 10th cycle. Investigated the relationship.
【0033】この結果を、図3に示す。図3は、リチウ
ム含有コバルト化合物を合成する際の加熱処理温度と活
物質利用率との関係を示すものである。図3において、
横軸には加熱処理温度(℃)が、縦軸には活物質利用率
が、それぞれプロットされている。尚、図3には、先の
実験1で作製したアルカリ蓄電池A1についての結果も
示してある。また、図3の縦軸の活物質利用率は、アル
カリ蓄電池A1の活物質利用率を100とした場合の相対
的な指数である。FIG. 3 shows the result. FIG. 3 shows the relationship between the heat treatment temperature and the active material utilization when synthesizing a lithium-containing cobalt compound. In FIG.
The abscissa plots the heat treatment temperature (° C.), and the ordinate plots the active material utilization rate. FIG. 3 also shows the results for the alkaline storage battery A1 produced in the above-mentioned experiment 1. The active material utilization rate on the vertical axis in FIG. 3 is a relative index when the active material utilization rate of the alkaline storage battery A1 is 100.
【0034】図3に示すように、アルカリ蓄電池A1、
A19〜23の活物質利用率が極めて高いことから、50〜20
0℃で加熱処理して作製したリチウム含有コバルト化合
物(本発明導電剤)は、極めて高い導電率を有すること
が分かる。As shown in FIG. 3, the alkaline storage batteries A1,
Since the active material utilization rate of A19-23 is extremely high, 50-20
It can be seen that the lithium-containing cobalt compound (the conductive agent of the present invention) produced by heat treatment at 0 ° C. has an extremely high electrical conductivity.
【0035】上記の実施例では、活物質として水酸化ニ
ッケルを使用したが、水酸化ニッケルに、コバルト、亜
鉛、カドミウム、カルシウム、マンガン、マグネシウム
などを固溶させたものを用いる場合においても、本発明
導電剤を所定量添加することにより活物質利用率の高い
非焼結式ニッケル極が得られることを確認している。In the above embodiment, nickel hydroxide was used as the active material. However, the present invention is also applicable to a case in which nickel, cobalt, zinc, cadmium, calcium, manganese, magnesium or the like is dissolved in nickel hydroxide. It has been confirmed that a non-sintered nickel electrode having a high active material utilization rate can be obtained by adding a predetermined amount of the inventive conductive agent.
【0036】[0036]
【発明の効果】上述した如く、本発明導電剤は、リチウ
ムを含有するので、導電率が高い。また、本発明電極
は、導電率の高い導電剤が活物質に添加されているの
で、活物質利用率が高くなり、その工業的価値は極めて
大きい。As described above, since the conductive agent of the present invention contains lithium, it has high conductivity. Further, since the electrode of the present invention has a conductive agent having a high conductivity added to the active material, the active material utilization rate is high, and the industrial value is extremely large.
【図1】リチウム含有コバルト化合物のリチウム含有率
と、活物質利用率の関係を示したグラフである。FIG. 1 is a graph showing a relationship between a lithium content of a lithium-containing cobalt compound and an active material utilization rate.
【図2】リチウム含有コバルト化合物の添加量と、電池
容量の関係を示したグラフである。FIG. 2 is a graph showing the relationship between the amount of a lithium-containing cobalt compound added and the battery capacity.
【図3】リチウム含有コバルト化合物を合成する際の加
熱処理温度と、活物質利用率の関係を示したグラフであ
る。FIG. 3 is a graph showing the relationship between the heat treatment temperature and the active material utilization when synthesizing a lithium-containing cobalt compound.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 野上 光造 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 米津 育郎 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 昭60−211767(JP,A) 特開 平4−109557(JP,A) 特開 平9−129224(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/24 - 4/62 H01M 10/24 - 10/34 ──────────────────────────────────────────────────続 き Continued on the front page (72) Kozo Nogami 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Ikuo Yonezu 2-5-2 Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-5-5, Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (56) References JP-A-60-211767 (JP, A) JP-A Hei 4-109557 (JP, A) JP-A-9-129224 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/24-4/62 H01M 10/24-10 / 34
Claims (2)
に水酸化リチウム水溶液を加えた状態で、50℃〜200℃
で加熱処理することにより得られ、且つリチウムを原子
換算で0.1重量%〜10重量%含有することを特徴とする
アルカリ蓄電池用導電剤。1. A method according to claim 1, wherein cobalt or a cobalt compound is added with an aqueous solution of lithium hydroxide at 50 ° C. to 200 ° C.
A conductive agent for an alkaline storage battery, wherein the conductive agent is obtained by heat-treating with 0.1% by weight and contains 0.1% by weight to 10% by weight of lithium.
が、水酸化ニッケル粒子または水酸化ニッケルを主成分
とする粒子からなる活物質粉末に、この活物質粉末中の
水酸化ニッケル100重量部に対して1重量部〜20重量部
添加されていることを特徴とするアルカリ蓄電池用非焼
結式ニッケル極。2. The method according to claim 1, wherein the conductive agent for an alkaline storage battery comprises nickel hydroxide particles or an active material powder comprising nickel hydroxide as a main component, and 100 parts by weight of nickel hydroxide in the active material powder. A non-sintered nickel electrode for an alkaline storage battery, wherein 1 to 20 parts by weight is added to the nickel electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06840096A JP3229801B2 (en) | 1996-03-25 | 1996-03-25 | Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06840096A JP3229801B2 (en) | 1996-03-25 | 1996-03-25 | Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09259887A JPH09259887A (en) | 1997-10-03 |
JP3229801B2 true JP3229801B2 (en) | 2001-11-19 |
Family
ID=13372615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06840096A Expired - Fee Related JP3229801B2 (en) | 1996-03-25 | 1996-03-25 | Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3229801B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3191751B2 (en) * | 1997-03-21 | 2001-07-23 | 松下電器産業株式会社 | Alkaline storage battery and surface treatment method for positive electrode active material thereof |
-
1996
- 1996-03-25 JP JP06840096A patent/JP3229801B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09259887A (en) | 1997-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1164650B1 (en) | Nickel rechargeable battery and process for the production thereof | |
JPH0626138B2 (en) | Secondary battery | |
JPH11149921A (en) | Alkali storage battery and surface treatment method of its positive electrode substance | |
JPWO2002071527A1 (en) | Manufacturing method of nickel metal hydride battery | |
JP3079303B2 (en) | Activation method of alkaline secondary battery | |
JP3229801B2 (en) | Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the same | |
JP3324781B2 (en) | Alkaline secondary battery | |
JP3229800B2 (en) | Non-sintered nickel electrode for alkaline storage batteries | |
JP3744642B2 (en) | Nickel-metal hydride storage battery and method for manufacturing the same | |
JP3249398B2 (en) | Non-sintered nickel electrode for alkaline storage batteries | |
JP3234492B2 (en) | Non-sintered nickel electrode for alkaline storage batteries | |
JP3249366B2 (en) | Paste nickel electrode for alkaline storage batteries | |
JP3249414B2 (en) | Method for producing non-sintered nickel electrode for alkaline storage battery | |
JP3234491B2 (en) | Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the same | |
JP3263603B2 (en) | Alkaline storage battery | |
JP3263601B2 (en) | Non-sintered nickel electrode for alkaline storage batteries | |
JP3995288B2 (en) | Cadmium negative electrode for alkaline storage battery and method for producing the same | |
JP3433043B2 (en) | Non-sintered nickel electrode for alkaline storage batteries | |
JP3003218B2 (en) | Method for producing nickel electrode plate and method for producing alkaline storage battery | |
JP3233013B2 (en) | Nickel electrode for alkaline storage battery | |
JP3433062B2 (en) | Non-sintered nickel electrode for alkaline storage batteries | |
JPH10214619A (en) | Manufacture of unsintered nickel electrode for alkaline storage battery | |
JPH04163861A (en) | Secondary battery with non-aqueous electrolyte | |
KR100288472B1 (en) | Nickel electrode active material, nickel electrode using same, nickel alkaline storage battery and manufacturing method thereof | |
JP3482478B2 (en) | Nickel-metal hydride storage battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |