JP3234491B2 - Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the same - Google Patents

Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the same

Info

Publication number
JP3234491B2
JP3234491B2 JP04657596A JP4657596A JP3234491B2 JP 3234491 B2 JP3234491 B2 JP 3234491B2 JP 04657596 A JP04657596 A JP 04657596A JP 4657596 A JP4657596 A JP 4657596A JP 3234491 B2 JP3234491 B2 JP 3234491B2
Authority
JP
Japan
Prior art keywords
weight
alkaline storage
storage battery
sodium
conductive agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04657596A
Other languages
Japanese (ja)
Other versions
JPH09219198A (en
Inventor
睦 矢野
光造 野上
克彦 新山
雅雄 井上
浩志 渡辺
礼造 前田
育郎 米津
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12751110&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3234491(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP04657596A priority Critical patent/JP3234491B2/en
Priority to SG1997000236A priority patent/SG71014A1/en
Priority to US08/796,541 priority patent/US6057057A/en
Priority to KR1019970003810A priority patent/KR100362132B1/en
Priority to CN97103199A priority patent/CN1114961C/en
Priority to EP97101912A priority patent/EP0789408B1/en
Priority to CA002196927A priority patent/CA2196927C/en
Priority to IDP970396A priority patent/ID15907A/en
Publication of JPH09219198A publication Critical patent/JPH09219198A/en
Publication of JP3234491B2 publication Critical patent/JP3234491B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ蓄電池用
導電剤及びそれを用いたアルカリ蓄電池用非焼結式ニッ
ケル極に関する。
The present invention relates to a conductive agent for an alkaline storage battery and a non-sintered nickel electrode for an alkaline storage battery using the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
ニッケル−カドミウム蓄電池、ニッケル−水素蓄電池な
どのアルカリ蓄電池のニッケル極として、ニッケル粉末
を穿孔鋼板等に焼結させて得た焼結基板に活物質(水酸
化ニッケル)を含浸させてなる焼結式ニッケル極がよく
知られている。
2. Description of the Related Art
As a nickel electrode of an alkaline storage battery such as a nickel-cadmium storage battery and a nickel-hydrogen storage battery, a sintering method in which an active material (nickel hydroxide) is impregnated into a sintered substrate obtained by sintering nickel powder on a perforated steel plate or the like. Nickel electrodes are well known.

【0003】焼結式ニッケル極において活物質の充填密
度を大きくするためには、多孔度の大きい焼結基板を用
いる必要がある。しかし、焼結によるニッケル粒子間の
結合は弱く、焼結基板の多孔度を大きくするとニッケル
粉末が焼結基板から脱落し易くなる。従って、実用上
は、焼結基板の多孔度を80%より大きくすることがで
きず、それゆえ焼結式ニッケル極には、活物質の充填密
度が小さいという問題がある。また、一般にニッケル粉
末の焼結体の孔径は10μm以下と小さいため、活物質
の基板(焼結体)への充填を、煩雑な含浸工程を数回繰
り返し行う必要がある溶液含浸法により行わなければな
らないという問題もある。
[0003] In order to increase the packing density of the active material in the sintered nickel electrode, it is necessary to use a sintered substrate having a high porosity. However, the bond between the nickel particles due to sintering is weak, and if the porosity of the sintered substrate is increased, the nickel powder tends to fall off the sintered substrate. Therefore, in practice, the porosity of the sintered substrate cannot be made larger than 80%, and the sintered nickel electrode has a problem that the packing density of the active material is small. Further, since the pore diameter of the sintered body of nickel powder is generally as small as 10 μm or less, the active material must be filled into the substrate (sintered body) by a solution impregnation method which requires a complicated impregnation step to be repeated several times. There is also the problem that it must be done.

【0004】このようなことから、最近、非焼結式ニッ
ケル極が新たに提案されている。非焼結式ニッケル極
は、活物質(水酸化ニッケル)と結合剤溶液(メチルセ
ルロース水溶液など)との混練物(ペースト)を多孔度
の大きい基板(耐アルカリ性金属をめっきした発泡メタ
ルなど)に直接充填することにより作製される。非焼結
式ニッケル極では、多孔度の大きい基板を用いることが
できるので(多孔度が95%以上の基板を用いることが
できる)、活物質の充填密度を大きくすることができる
とともに、活物質の基板への充填を一回的に行うことが
できる。
[0004] Under such circumstances, a non-sintered nickel electrode has recently been newly proposed. Non-sintered nickel electrodes are prepared by directly mixing a kneaded material (paste) of an active material (nickel hydroxide) and a binder solution (methylcellulose aqueous solution) onto a substrate with high porosity (such as foamed metal plated with an alkali-resistant metal). It is made by filling. In the non-sintered nickel electrode, a substrate having a high porosity can be used (a substrate having a porosity of 95% or more can be used), so that the packing density of the active material can be increased and Can be once filled into the substrate.

【0005】しかしながら、非焼結式ニッケル極におい
て活物質の充填密度を大きくするべく多孔度の大きい基
板を用いると、基板の集電能力が焼結式ニッケル極で用
いられる焼結基板に比べて悪くなるので、焼結式ニッケ
ル極に比べて、導電性が悪くなり、活物質利用率が低下
する。
However, when a non-sintered nickel electrode having a large porosity is used to increase the packing density of the active material, the current collecting capability of the substrate is lower than that of the sintered substrate used in the sintered nickel electrode. As a result, the conductivity becomes worse as compared with the sintered nickel electrode, and the active material utilization decreases.

【0006】そこで、非焼結式ニッケル極の導電性を高
めるべく、水酸化ニッケル粉末に、水酸化コバルト粉末
を添加したり(特開昭61−74261号公報参照)、
黒鉛粉末を添加したり(特開平7−211316号公報
参照)することが提案されている。
Therefore, in order to increase the conductivity of the non-sintered nickel electrode, cobalt hydroxide powder is added to nickel hydroxide powder (see JP-A-61-74261).
It has been proposed to add graphite powder (see JP-A-7-212316).

【0007】しかしながら、本発明者らが検討したとこ
ろ、水酸化コバルト粉末や黒鉛粉末を添加しても、活物
質利用率の充分高い非焼結式ニッケル極を得ることは困
難であることが分かった。
However, the present inventors have studied and found that it is difficult to obtain a non-sintered nickel electrode having a sufficiently high active material utilization rate even if cobalt hydroxide powder or graphite powder is added. Was.

【0008】本発明は、以上の事情に鑑みなされたもの
であって、その目的とするところは、電導率の高いアル
カリ蓄電池用導電剤及びそれを用いた活物質利用率の高
いアルカリ蓄電池用非焼結式ニッケル極を提供するにあ
る。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a conductive agent for an alkaline storage battery having a high conductivity and a non-conductive agent for an alkaline storage battery having a high utilization rate of an active material using the same. To provide a sintered nickel electrode.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
の本発明に係るアルカリ蓄電池用導電剤(本発明導電
剤)は、コバルト又はコバルト化合物を、これに水酸化
ナトリウム水溶液を加えた状態で、50〜200°Cで
加熱処理することにより得られ、且つナトリウムを0.
1〜10重量%含有するものである。ナトリウム含有量
がこの範囲を外れると、電導率の充分高い導電剤が得ら
れない。
In order to achieve the above object, a conductive agent for an alkaline storage battery according to the present invention (conductive agent of the present invention) is prepared by adding cobalt or a cobalt compound to an aqueous solution of sodium hydroxide. , 50-200 ° C., and sodium content of 0.1.
It contains 1 to 10% by weight. If the sodium content is out of this range, a conductive agent having sufficiently high conductivity cannot be obtained.

【0010】コバルト化合物としては、水酸化コバル
ト、酸化コバルトが例示される。
Examples of the cobalt compound include cobalt hydroxide and cobalt oxide.

【0011】本発明導電剤の化学構造は現在のところ定
かでないが、本発明導電剤は、極めて高い電導率を有す
ることから、コバルト化合物(オキシ水酸化コバルトな
ど)とナトリウムとの単なる混合物ではなく、コバルト
化合物の結晶中にナトリウムが取り込まれた形の層間化
合物ではないかと推察される。
Although the chemical structure of the conductive agent of the present invention is not known at present, the conductive agent of the present invention has an extremely high conductivity, and is not a simple mixture of a cobalt compound (such as cobalt oxyhydroxide) and sodium. It is presumed that the intercalation compound is a form in which sodium is incorporated in the crystal of the cobalt compound.

【0012】本発明導電剤を作製する際の加熱処理温度
は、50〜200°Cである。加熱処理温度がこの範囲
を外れると、電導率の高い導電剤が得られない。
The heat treatment temperature for producing the conductive agent of the present invention is 50 to 200 ° C. If the heat treatment temperature is out of this range, a conductive agent having high conductivity cannot be obtained.

【0013】すなわち、本発明導電剤は、例えば水酸化
コバルトを出発物質に用いた場合、下記の反応経路で合
成されると考えられる。しかるに、加熱処理温度が50
°C未満の場合は、CoHO2 ⇒Na含有コバルト化合
物の反応が充分に進行しにくくなるため、電導率の低い
CoHO2 が多く生成する。一方、加熱処理温度が20
0°Cを越えた場合は、電導率の低い四酸化三コバルト
(Co3 4 )が多く生成する。以上の理由から、加熱
処理温度が50〜200°Cを外れた場合は、電導率の
高い導電剤が得られなくなると考えられる。
That is, when the conductive agent of the present invention uses, for example, cobalt hydroxide as a starting material, it is considered that it is synthesized by the following reaction route. However, if the heat treatment temperature is 50
When the temperature is lower than ° C, the reaction of CoHO 2 ⇒Na-containing cobalt compound becomes difficult to proceed sufficiently, so that a large amount of CoHO 2 having low electric conductivity is generated. On the other hand, when the heat treatment temperature is 20
When the temperature exceeds 0 ° C., a large amount of tricobalt tetroxide (Co 3 O 4 ) having low conductivity is generated. For the above reasons, it is considered that when the heat treatment temperature is out of the range of 50 to 200 ° C., a conductive agent having high conductivity cannot be obtained.

【0014】Co(OH)2 ⇔ HCoO2 - ⇔ Co
HO2 ⇒Na含有コバルト化合物(本発明導電剤)
[0014] Co (OH) 2 ⇔ HCoO 2 - ⇔ Co
HO 2 ⇒Na-containing cobalt compound (conductive agent of the present invention)

【0015】本発明導電剤を作製する際の加熱処理時間
は、水酸化ナトリウム水溶液の量、濃度、加熱処理温度
などによって異なるが、一般的には、0.5〜10時間
である。
The heat treatment time for preparing the conductive agent of the present invention varies depending on the amount and concentration of the aqueous sodium hydroxide solution, the heat treatment temperature and the like, but is generally 0.5 to 10 hours.

【0016】本発明に係るアルカリ蓄電池用非焼結式ニ
ッケル極(本発明電極)は、上述した高電導率を有する
本発明導電剤を、非焼結式ニッケル極の導電剤として使
用したものであり、本発明導電剤が、水酸化ニッケル粒
子又は水酸化ニッケルを主成分とする粒子からなる活物
質粉末に、当該活物質粉末中の水酸化ニッケル100重
量部に対して、1〜20重量部添加されたものである。
導電剤の添加割合が1重量部未満の場合は、活物質利用
率の充分高い非焼結式ニッケル極が得られない。一方、
導電剤の添加割合が20重量部を越えた場合は、活物質
たる水酸化ニッケルの充填量が減少するため、電極容量
が低下する。
The non-sintered nickel electrode for an alkaline storage battery according to the present invention (the electrode of the present invention) uses the above-described conductive agent of the present invention having a high conductivity as the conductive agent of the non-sintered nickel electrode. Yes, the conductive agent of the present invention, the active material powder consisting of nickel hydroxide particles or particles containing nickel hydroxide as a main component, 100 parts by weight of nickel hydroxide in the active material powder, 1 to 20 parts by weight It has been added.
When the addition ratio of the conductive agent is less than 1 part by weight, a non-sintered nickel electrode having a sufficiently high active material utilization rate cannot be obtained. on the other hand,
When the proportion of the conductive agent exceeds 20 parts by weight, the filling amount of nickel hydroxide, which is an active material, decreases, so that the electrode capacity decreases.

【0017】水酸化ニッケルを主成分とする粒子として
は、コバルト、亜鉛、カドミウム、カルシウム、マンガ
ン、マグネシウムなどのニッケル極の膨化を抑制する作
用を有する元素を水酸化ニッケルに固溶させたものが例
示される。
The particles containing nickel hydroxide as a main component include those obtained by dissolving an element having a function of suppressing swelling of the nickel electrode, such as cobalt, zinc, cadmium, calcium, manganese, and magnesium, in nickel hydroxide. Is exemplified.

【0018】[0018]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention may be practiced by appropriately changing the gist of the invention. Is possible.

【0019】(実験1) 〔導電剤の作製〕水酸化コバルトと、水酸化ナトリウム
の25重量%水溶液とを、重量比1:10で混合し、8
0°Cで8時間加熱処理した。加熱処理後、水洗し、6
0°Cで乾燥して、本発明導電剤たるナトリウム含有コ
バルト化合物を作製した。このナトリウム含有コバルト
化合物のナトリウム含有率を原子吸光法により分析した
ところ、1重量%であった。
(Experiment 1) [Preparation of Conductive Agent] Cobalt hydroxide and a 25% by weight aqueous solution of sodium hydroxide were mixed at a weight ratio of 1:10, and mixed.
Heat treatment was performed at 0 ° C. for 8 hours. After heat treatment, wash with water, 6
After drying at 0 ° C., a sodium-containing cobalt compound as a conductive agent of the present invention was prepared. When the sodium content of this sodium-containing cobalt compound was analyzed by atomic absorption spectrometry, it was 1% by weight.

【0020】〔非焼結式ニッケル極の作製〕活物質とし
ての水酸化ニッケル100重量部と、導電剤としての上
記のナトリウム含有コバルト化合物10重量部と、結合
剤としてのメチルセルロースの1重量%水溶液20重量
部とを混練してペーストを調製し、このペーストをニッ
ケルめっきした発泡メタル(多孔度95%;平均孔径2
00μm)からなる多孔性の基板に充填し、乾燥し、加
圧成形して、本発明に係る非焼結式ニッケル極を作製し
た。
[Preparation of Non-Sintered Nickel Electrode] 100 parts by weight of nickel hydroxide as an active material, 10 parts by weight of the above sodium-containing cobalt compound as a conductive agent, and a 1% by weight aqueous solution of methylcellulose as a binder 20 parts by weight to prepare a paste, and the paste is nickel-plated foam metal (porosity 95%; average pore diameter 2).
A non-sintered nickel electrode according to the present invention was prepared by filling a porous substrate of (00 μm), drying and pressing.

【0021】〔アルカリ蓄電池の作製〕上記の非焼結式
ニッケル極(正極)、この正極よりも電気化学的容量が
大きい公知のペースト式カドミウム極(負極)、ポリア
ミド不織布(セパレータ)、30重量%水酸化カリウム
水溶液(アルカリ電解液)、金属製の電池缶、金属製の
電池蓋などを用いて、アルカリ蓄電池A1を作製した。
[Preparation of Alkaline Storage Battery] The above-mentioned non-sintered nickel electrode (positive electrode), a known paste cadmium electrode (negative electrode) having a larger electrochemical capacity than this positive electrode, a polyamide nonwoven fabric (separator), 30% by weight An alkaline storage battery A1 was produced using a potassium hydroxide aqueous solution (alkaline electrolyte), a metal battery can, a metal battery cover, and the like.

【0022】別途、先の非焼結式ニッケル極の作製にお
いて、導電剤として、ナトリウム含有コバルト化合物1
0重量部に代えて水酸化コバルト10重量部又は黒鉛1
0重量部を用いたこと以外は同様にして、それぞれアル
カリ蓄電池A2及びA3を作製した。
Separately, in the preparation of the non-sintered nickel electrode, a sodium-containing cobalt compound 1 was used as a conductive agent.
10 parts by weight of cobalt hydroxide or graphite 1 instead of 0 parts by weight
Except that 0 parts by weight were used, alkaline storage batteries A2 and A3 were produced in the same manner.

【0023】〈活物質利用率〉上記のアルカリ蓄電池A
1〜A3について、25°Cにて0.1Cで160%充
電した後、25°Cにて1Cで1.0Vまで放電する工
程を1サイクルとする充放電を10サイクル行って、下
式で定義される10サイクル目の正極の活物質利用率を
求めた。結果を表1に示す。表1中の活物質利用率は、
アルカリ蓄電池A1の活物質利用率を100とした場合
の指数である。
<Active Material Utilization> The above alkaline storage battery A
For 1 to A3, charge / discharge was performed 10 times at 25 ° C. at a rate of 0.1 C at 160 ° C. and then discharged at 25 ° C. to 1.0 V at 1 C as 10 cycles. The active material utilization rate of the positive electrode at the defined 10th cycle was determined. Table 1 shows the results. The active material utilization rate in Table 1 is
This is an index when the active material utilization rate of the alkaline storage battery A1 is set to 100.

【0024】活物質利用率(%)={10サイクル目の
放電容量(mAh)/(水酸化ニッケルの量(g)×2
88(mAh/g)}×100
Active material utilization rate (%) = {discharge capacity at the 10th cycle (mAh) / (amount of nickel hydroxide (g) × 2)
88 (mAh / g)} × 100

【0025】[0025]

【表1】 [Table 1]

【0026】表1に示すように、アルカリ蓄電池A2、
A3の正極の活物質利用率は、アルカリ蓄電池A1のそ
れに比べて、それぞれ95及び87と低い。この結果か
ら、本発明に係る導電剤(ナトリウム含有コバルト化合
物)は、水酸化コバルト及び黒鉛に比べて、格段高い導
電率を有することが分かる。なお、実施例1ではナトリ
ウム含有コバルト化合物を合成する際のコバルト原料と
して水酸化コバルトを用いたが、金属コバルト、酸化コ
バルトなどを用いた場合にも、水酸化コバルトを用いた
場合と同様に導電率の高いナトリウム含有コバルト化合
物が得られることを確認している。
As shown in Table 1, the alkaline storage batteries A2,
The active material utilization of the positive electrode of A3 is lower at 95 and 87 , respectively, than that of the alkaline storage battery A1. From these results, it can be seen that the conductive agent (sodium-containing cobalt compound) according to the present invention has significantly higher conductivity than cobalt hydroxide and graphite. In Example 1, cobalt hydroxide was used as a cobalt raw material when synthesizing a sodium-containing cobalt compound. However, when cobalt metal, cobalt oxide, or the like was used, the conductivity was the same as when cobalt hydroxide was used. It has been confirmed that a high-content sodium-containing cobalt compound can be obtained.

【0027】(実験2)ナトリウム含有コバルト化合物
の作製において、25重量%水酸化ナトリウム水溶液に
代えて、5重量%、10重量%、15重量%、35重量
%、40重量%、45重量%又は50重量%水酸化ナト
リウム水溶液を用いたこと以外は実験1と同様にして、
ナトリウム含有率の異なるナトリウム含有コバルト化合
物を作製した。これらのナトリウム含有コバルト化合物
のナトリウム含有率を原子吸光法により分析したとこ
ろ、順に0.05重量%、0.1重量%、0.5重量
%、5重量%、10重量%、12重量%、15重量%で
あった。次いで、これらのナトリウム含有コバルト化合
物をそれぞれ用いたこと以外は実験1と同様にして、順
にアルカリ蓄電池A4〜A10を作製した。
(Experiment 2) In preparing a sodium-containing cobalt compound, 5% by weight, 10% by weight, 15% by weight, 35% by weight, 40% by weight, 45% by weight or Except that a 50% by weight aqueous sodium hydroxide solution was used,
Sodium-containing cobalt compounds having different sodium contents were prepared. When the sodium content of these sodium-containing cobalt compounds was analyzed by atomic absorption spectroscopy, they were sequentially 0.05% by weight, 0.1% by weight, 0.5% by weight, 5% by weight, 10% by weight, 12% by weight, It was 15% by weight. Next, alkaline storage batteries A4 to A10 were prepared in the same manner as in Experiment 1, except that each of these sodium-containing cobalt compounds was used.

【0028】これらのアルカリ蓄電池A4〜A10につ
いて、実験1と同じ条件の充放電を10サイクル行っ
て、10サイクル目の正極の活物質利用率を求め、ナト
リウム含有コバルト化合物のナトリウム含有率と活物質
利用率の関係を調べた。結果を図1に示す。図1は、ナ
トリウム含有コバルト化合物のナトリウム含有率と活物
質利用率の関係を、縦軸に活物質利用率を、また横軸に
ナトリウム含有コバルト化合物のナトリウム含有率(重
量%)をとって示したグラフである。なお、図1には、
先の実験1で作製したアルカリ蓄電池A1についての結
果も示してある。また、図1の縦軸の活物質利用率は、
アルカリ蓄電池A1の活物質利用率を100とした場合
の指数である。
For these alkaline storage batteries A4 to A10, 10 cycles of charge / discharge under the same conditions as in Experiment 1 were performed to determine the active material utilization of the positive electrode at the 10th cycle, and the sodium content of the sodium-containing cobalt compound and the active material were determined. The relationship of utilization rate was investigated. The results are shown in FIG. FIG. 1 shows the relationship between the sodium content of the sodium-containing cobalt compound and the active material utilization, the active material utilization on the vertical axis, and the sodium content (% by weight) of the sodium-containing cobalt compound on the horizontal axis. FIG. In FIG. 1,
The results for the alkaline storage battery A1 produced in Experiment 1 above are also shown. The active material utilization rate on the vertical axis in FIG.
This is an index when the active material utilization rate of the alkaline storage battery A1 is set to 100.

【0029】図1に示すようにアルカリ蓄電池A1,A
5〜A8の活物質利用率が極めて高いことから、ナトリ
ウム含有率が0.1〜10重量%であるナトリウム含有
コバルト化合物(本発明導電剤)は、極めて高い電導率
を有することが分かる。
As shown in FIG. 1, the alkaline storage batteries A1, A
Since the active material utilization ratio of 5-A8 is extremely high, it is understood that the sodium-containing cobalt compound (the conductive agent of the present invention) having a sodium content of 0.1 to 10% by weight has an extremely high electric conductivity.

【0030】(実験3)非焼結式ニッケル極の作製にお
いて、水酸化ニッケル100重量部に対するナトリウム
含有コバルト化合物の添加量を、0.5重量部、1重量
部、5重量部、15重量部、20重量部、22.5重量
部又は25重量部としたこと以外は実験1と同様にし
て、ナトリウム含有コバルト化合物(導電剤)の添加量
が異なる非焼結式ニッケル極を作製した。但し、ナトリ
ウム含有コバルト化合物として、ナトリウム含有率が1
重量%のものを使用した。次いで、これらの非焼結式ニ
ッケル極をそれぞれ用いたこと以外は実験1と同様にし
て、順にアルカリ蓄電池A11〜A17を作製した。
(Experiment 3) In the preparation of a non-sintered nickel electrode, the amount of the sodium-containing cobalt compound added was 0.5 parts by weight, 1 part by weight, 5 parts by weight, and 15 parts by weight based on 100 parts by weight of nickel hydroxide. , 20 parts by weight, 22.5 parts by weight, or 25 parts by weight in the same manner as in Experiment 1, to produce non-sintered nickel electrodes having different addition amounts of the sodium-containing cobalt compound (conductive agent). However, as the sodium-containing cobalt compound, the sodium content is 1
% By weight. Next, alkaline storage batteries A11 to A17 were manufactured in the same manner as in Experiment 1, except that each of these non-sintered nickel electrodes was used.

【0031】これらのアルカリ蓄電池A11〜A17に
ついて、実験1と同じ条件の充放電を10サイクル行っ
て、10サイクル目の正極の活物質利用率を求め、ナト
リウム含有コバルト化合物の添加量と活物質利用率の関
係を調べた。結果を表2に示す。表2には、先の実験1
で作製したアルカリ蓄電池A1についての結果も示して
ある。
With respect to these alkaline storage batteries A11 to A17, 10 cycles of charge / discharge under the same conditions as in Experiment 1 were performed to determine the active material utilization rate of the positive electrode at the 10th cycle. The relationship between the rates was examined. Table 2 shows the results. Table 2 shows that the previous experiment 1
Also shown are the results for the alkaline storage battery A1 manufactured in the above.

【0032】[0032]

【表2】 [Table 2]

【0033】表2より、ナトリウム含有コバルト化合物
を水酸化ニッケル100重量部に対して1重量部以上添
加した場合に、活物質利用率の高い非焼結式ニッケル極
が得られることが分かる。
From Table 2, it can be seen that when 1 part by weight or more of the sodium-containing cobalt compound is added to 100 parts by weight of nickel hydroxide, a non-sintered nickel electrode having a high active material utilization rate can be obtained.

【0034】図2は、ナトリウム含有コバルト化合物の
添加量と電池容量の関係を、縦軸に電池容量を、また横
軸にナトリウム含有コバルト化合物の添加量(水酸化ニ
ッケル100重量部に対する重量部数)をとって示した
グラフである。なお、図2には、先の実験1で作製した
アルカリ蓄電池A1についての結果も示してある。ま
た、図2の縦軸の電池容量は、アルカリ蓄電池A1の電
池容量を100とした場合の指数である。
FIG. 2 shows the relationship between the added amount of the sodium-containing cobalt compound and the battery capacity, the vertical axis represents the battery capacity, and the horizontal axis represents the added amount of the sodium-containing cobalt compound (parts by weight based on 100 parts by weight of nickel hydroxide). FIG. FIG. 2 also shows the result of the alkaline storage battery A1 manufactured in the above-described experiment 1. The battery capacity on the vertical axis in FIG. 2 is an index when the battery capacity of the alkaline storage battery A1 is set to 100.

【0035】図2に示すようにアルカリ蓄電池A1,A
12〜A15の電池容量が極めて高いことから、水酸化
ニッケル100重量部に対するナトリウム含有コバルト
化合物の添加量が1〜20重量部である非焼結式ニッケ
ル極(本発明電極)は、極めて高い電極容量を有するこ
とが分かる。
As shown in FIG. 2, the alkaline storage batteries A1, A
Since the battery capacity of 12 to A15 is extremely high, the non-sintered nickel electrode (the electrode of the present invention) in which the addition amount of the sodium-containing cobalt compound is 1 to 20 parts by weight based on 100 parts by weight of nickel hydroxide is extremely high. It can be seen that it has a capacity.

【0036】(実験4)ナトリウム含有コバルト化合物
の作製において、加熱処理温度を、45°C、50°
C、60°C、100°C、150°C、200°C、
220°C又は250°Cとしたこと以外は実験1と同
様にして、ナトリウム含有コバルト化合物を作製した。
これらのナトリウム含有コバルト化合物のナトリウム含
有率を原子吸光法により分析したところ、順に0.05
重量%、1重量%、1重量%、1重量%、1重量%、1
重量%、0.05重量%、0.02重量%であった。次
いで、これらのナトリウム含有コバルト化合物をそれぞ
れ用いたこと以外は実験1と同様にして、順にアルカリ
蓄電池A18〜A25を作製した。
(Experiment 4) In the preparation of the sodium-containing cobalt compound, the heat treatment temperature was set to 45 ° C. and 50 ° C.
C, 60 ° C, 100 ° C, 150 ° C, 200 ° C,
A sodium-containing cobalt compound was prepared in the same manner as in Experiment 1 except that the temperature was 220 ° C. or 250 ° C.
The sodium content of these sodium-containing cobalt compounds was analyzed by atomic absorption spectroscopy.
% By weight, 1% by weight, 1% by weight, 1% by weight, 1% by weight, 1%
%, 0.05% and 0.02% by weight. Next, alkaline storage batteries A18 to A25 were produced in the same manner as in Experiment 1, except that each of these sodium-containing cobalt compounds was used.

【0037】これらのアルカリ蓄電池A18〜A25に
ついて、実験1と同じ条件の充放電を10サイクル行っ
て、10サイクル目の正極の活物質利用率を求め、加熱
処理温度と活物質利用率の関係を調べた。結果を図3に
示す。図3は、ナトリウム含有コバルト化合物を合成す
る際の加熱処理温度と活物質利用率の関係を、縦軸に活
物質利用率を、また横軸に加熱処理温度(°C)をとっ
て示したグラフである。なお、図3には、先の実験1で
作製したアルカリ蓄電池A1についての結果も示してあ
る。また、図3の縦軸の活物質利用率は、アルカリ蓄電
池A1の活物質利用率を100とした場合の指数であ
る。
For these alkaline storage batteries A18 to A25, 10 cycles of charge / discharge under the same conditions as in Experiment 1 were performed to determine the active material utilization of the positive electrode at the 10th cycle, and the relationship between the heat treatment temperature and the active material utilization was determined. Examined. The results are shown in FIG. FIG. 3 shows the relationship between the heat treatment temperature and the active material utilization rate when synthesizing the sodium-containing cobalt compound, the vertical axis represents the active material utilization rate, and the horizontal axis represents the heat treatment temperature (° C.). It is a graph. FIG. 3 also shows the result of the alkaline storage battery A1 produced in the above-mentioned experiment 1. The active material utilization rate on the vertical axis in FIG. 3 is an index when the active material utilization rate of the alkaline storage battery A1 is set to 100.

【0038】図3に示すようにアルカリ蓄電池A1,A
19〜A23の活物質利用率が極めて高いことから、5
0〜200°Cで加熱処理して作製したナトリウム含有
コバルト化合物(本発明導電剤)は、極めて高い電導率
を有することが分かる。
As shown in FIG. 3, the alkaline storage batteries A1, A
Since the active material utilization rate of 19 to A23 is extremely high, 5
It can be seen that the sodium-containing cobalt compound (the conductive agent of the present invention) produced by heat treatment at 0 to 200 ° C. has an extremely high conductivity.

【0039】上記の実施例では、活物質として水酸化ニ
ッケルを使用したが、水酸化ニッケルに、コバルト、亜
鉛、カドミウム、カルシウム、マンガン、マグネシウム
などを固溶させたものを用いる場合においても、本発明
導電剤を所定量添加することにより活物質利用率の高い
非焼結式ニッケル極が得られることを確認している。
In the above embodiment, nickel hydroxide was used as an active material. However, the present invention is also applicable to a case where cobalt hydroxide, zinc, cadmium, calcium, manganese, magnesium or the like is dissolved in nickel hydroxide. It has been confirmed that a non-sintered nickel electrode having a high active material utilization rate can be obtained by adding a predetermined amount of the inventive conductive agent.

【0040】[0040]

【発明の効果】本発明導電剤は、ナトリウムを含有する
ので、電導率が高い。また、本発明電極は、電導率の高
い導電剤が活物質に添加されているので活物質利用率が
高い。
According to the present invention, since the conductive agent contains sodium, it has high conductivity. Further, the electrode of the present invention has a high active material utilization rate because a conductive agent having high conductivity is added to the active material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ナトリウム含有コバルト化合物のナトリウム含
有率と活物質利用率の関係を示したグラフである。
FIG. 1 is a graph showing the relationship between the sodium content of a sodium-containing cobalt compound and the active material utilization rate.

【図2】ナトリウム含有コバルト化合物の添加量と電池
容量の関係を示したグラフである。
FIG. 2 is a graph showing the relationship between the amount of sodium-containing cobalt compound added and the battery capacity.

【図3】ナトリウム含有コバルト化合物を合成する際の
加熱処理温度と活物質利用率の関係を示したグラフであ
る。
FIG. 3 is a graph showing the relationship between the heat treatment temperature and the active material utilization when synthesizing a sodium-containing cobalt compound.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 雅雄 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 渡辺 浩志 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 前田 礼造 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 米津 育郎 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 平4−109557(JP,A) 特開 平7−22027(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/24 - 4/62 H01M 10/24 - 10/34 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Masao Inoue 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Hiroshi Watanabe 2-5-2 Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. (72) Inventor Reizou Maeda 2-5-5 Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. (72) Inventor Ikuo Yonezu 2-chome, Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (56) References JP-A-4-109557 (JP, A) Kaihei 7-22027 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01M 4/24-4/62 H01M 10/24-10/34

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】コバルト又はコバルト化合物を、これに水
酸化ナトリウム水溶液を加えた状態で、50〜200°
Cで加熱処理することにより得られ、且つナトリウムを
0.1〜10重量%含有するアルカリ蓄電池用導電剤。
(1) Cobalt or a cobalt compound, to which an aqueous solution of sodium hydroxide is added, is added at 50 to 200 ° C.
A conductive agent for an alkaline storage battery obtained by heat treatment with C and containing 0.1 to 10% by weight of sodium.
【請求項2】請求項1記載のアルカリ蓄電池用導電剤
が、水酸化ニッケル粒子又は水酸化ニッケルを主成分と
する粒子からなる活物質粉末に、当該活物質粉末中の水
酸化ニッケル100重量部に対して1〜20重量部添加
されていることを特徴とするアルカリ蓄電池用非焼結式
ニッケル極。
2. The method according to claim 1, wherein the conductive agent for an alkaline storage battery comprises nickel hydroxide particles or particles containing nickel hydroxide as a main component, and 100 parts by weight of nickel hydroxide in the active material powder. A non-sintered nickel electrode for an alkaline storage battery, wherein 1 to 20 parts by weight of the nickel electrode is added.
JP04657596A 1996-02-07 1996-02-07 Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the same Expired - Lifetime JP3234491B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP04657596A JP3234491B2 (en) 1996-02-07 1996-02-07 Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the same
SG1997000236A SG71014A1 (en) 1996-02-07 1997-02-03 Conductive agent and non-sintered nickel electrode for alkaline storage batteries
CN97103199A CN1114961C (en) 1996-02-07 1997-02-06 Conductive agent and non-sintered nickel electrode for alkaline storage batteries
KR1019970003810A KR100362132B1 (en) 1996-02-07 1997-02-06 Conductive Agent for Alkaline Batteries and Non-Sintered Nickel Electrode for Alkaline Batteries Using the Same
US08/796,541 US6057057A (en) 1996-02-07 1997-02-06 Conductive agent and non-sintered nickel electrode for alkaline storage batteries
EP97101912A EP0789408B1 (en) 1996-02-07 1997-02-06 Conductive agent and non-sintered nickel electrode for alkaline storage batteries
CA002196927A CA2196927C (en) 1996-02-07 1997-02-06 Conductive agent and non-sintered nickel electrode for alkaline storage batteries
IDP970396A ID15907A (en) 1996-02-07 1997-02-07 CONDUCTIVE MATERIALS AND ELECTRONIC SOLID NICKELS FOR ALKALIN BATTERIES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04657596A JP3234491B2 (en) 1996-02-07 1996-02-07 Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the same

Publications (2)

Publication Number Publication Date
JPH09219198A JPH09219198A (en) 1997-08-19
JP3234491B2 true JP3234491B2 (en) 2001-12-04

Family

ID=12751110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04657596A Expired - Lifetime JP3234491B2 (en) 1996-02-07 1996-02-07 Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the same

Country Status (1)

Country Link
JP (1) JP3234491B2 (en)

Also Published As

Publication number Publication date
JPH09219198A (en) 1997-08-19

Similar Documents

Publication Publication Date Title
JPH10125318A (en) Positive active material and positive electrode for alkaline storage battery
JP2004071304A (en) Positive active material for alkaline storage battery, positive electrode using it, and alkaline storage battery
JPH117950A (en) Non-sintered nickel electrode for alkali storage battery
JP3234491B2 (en) Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the same
JP3433049B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH11219701A (en) Unsintered nickel electrode for sealed alkaline storage battery and battery
JP3234492B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3229800B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3249414B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3229801B2 (en) Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the same
JP3249398B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3249366B2 (en) Paste nickel electrode for alkaline storage batteries
JP3481068B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery
JP3263603B2 (en) Alkaline storage battery
JP3263601B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP2000058062A (en) Non-sintered nickel positive electrode for alkaline storage battery
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JPH1021909A (en) Non-sintered nickel electrode for alkaline storage battery
JP3433043B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3433062B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH103940A (en) Nickel-metal hydride storage battery and its manufacture
JP2002093414A (en) Nonsintered nickel electrode for alkaline storage battery
JPH1173956A (en) Non-sintered nickel electrode for alkaline storage battery
JP3233013B2 (en) Nickel electrode for alkaline storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070921

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160921

Year of fee payment: 15

EXPY Cancellation because of completion of term