JPH05290835A - Rectangular nickel-hydrogen storage battery - Google Patents

Rectangular nickel-hydrogen storage battery

Info

Publication number
JPH05290835A
JPH05290835A JP4085194A JP8519492A JPH05290835A JP H05290835 A JPH05290835 A JP H05290835A JP 4085194 A JP4085194 A JP 4085194A JP 8519492 A JP8519492 A JP 8519492A JP H05290835 A JPH05290835 A JP H05290835A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
area
electrode plate
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4085194A
Other languages
Japanese (ja)
Inventor
Hiromu Matsuda
宏夢 松田
Kazuhiro Ota
和宏 太田
Tadao Kimura
忠雄 木村
Katsunori Komori
克典 児守
Yoshinori Toyoguchi
吉徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4085194A priority Critical patent/JPH05290835A/en
Publication of JPH05290835A publication Critical patent/JPH05290835A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To realize high-energy densification with the utilization factor of a positive electrode improved, by lessen the area of a positive electrode plate compared with that of a negative electrode plate. CONSTITUTION:Positive electrodes 3 and negative electrodes 2 are composed so that the area of one of nickel hydroxide positive electrodes 3 is made 0.9 time or less that of one of hydrogen storage alloy negative electrodes 2 oppositely provided via separators 1. By thus lessening the area of the positive electrode 3 compared with that of the negative electrode 2, the electrode 3 can be retained in a platelike state not in a wavelike state even they are expanded after a charge/discharge cycle, allowing to receive sufficient dynamical press force from the faced negative electrodes 2. Consequently the energy density per battery weight can be increased with the discharge utilization factor of the positive electrodes 3 improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は角形ニッケル水素蓄電池
に関し、特に正極容量規制で組み立てられた電池の正極
の利用率向上により、重量当りのエネルギーを増加させ
た角形ニッケル水素蓄電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a prismatic nickel-hydrogen storage battery, and more particularly to a prismatic nickel-hydrogen storage battery in which energy per weight is increased by improving the utilization rate of the positive electrode of a battery assembled under positive electrode capacity regulation.

【0002】[0002]

【従来の技術】近年、正極に水酸化ニッケル、負極に水
素吸蔵合金、電解質にアルカリ水溶液を用いた密閉形ニ
ッケル水素蓄電池が、高エネルギー密度を達成できると
して注目を集めている。この電池での充電機構は次のよ
うに進む。放電反応はこの逆である。正極では式(1)
の反応が、負極では式(2)の反応が反応式の右方向に
起こる。e-は電子であり、Mは水素吸蔵合金を、MH
は水素を吸蔵した水素吸蔵合金である。
2. Description of the Related Art In recent years, a sealed nickel-metal hydride storage battery using nickel hydroxide for a positive electrode, a hydrogen storage alloy for a negative electrode, and an alkaline aqueous solution for an electrolyte has been attracting attention because it can achieve high energy density. The charging mechanism with this battery proceeds as follows. The discharge reaction is the opposite. Formula (1) for the positive electrode
In the negative electrode, the reaction of formula (2) occurs to the right of the reaction formula. e is an electron, M is a hydrogen storage alloy, MH
Is a hydrogen storage alloy that has stored hydrogen.

【0003】 Ni(OH)2+OH-=NiOOH+H2O+e- (1) M+H2O+e-=MH+OH- (2) したがって、電池全体の充電反応は式(3)で表わせ
る。
Ni (OH) 2 + OH = NiOOH + H 2 O + e (1) M + H 2 O + e = MH + OH (2) Therefore, the charging reaction of the entire battery can be expressed by the equation (3).

【0004】 Ni(OH)2+M=NiOOH+MH (3) ニッケル水素蓄電池では、放電時に負極の電位が大きく
貴な電位に分極すると充放電サイクル寿命が低下するた
めに、正極容量規制で作られるのが一般的である。
Ni (OH) 2 + M = NiOOH + MH (3) In a nickel-metal hydride storage battery, when the potential of the negative electrode is large during discharge and the charge / discharge cycle life is shortened when polarized to a noble potential, the positive electrode capacity regulation is used. It is common.

【0005】しかし、充電時には上記反応だけでなく副
反応も起こる。副反応として正極では式(4)が起こ
る。
However, during charging, not only the above reaction but also a side reaction occurs. Formula (4) occurs in the positive electrode as a side reaction.

【0006】 4OH-=2H2O+O2+4e- (4) この副反応が起こると、酸素ガスが発生するため充電効
率、つまり電気量効率が悪くなる。
4OH = 2H 2 O + O 2 + 4e (4) When this side reaction occurs, oxygen gas is generated, so that charging efficiency, that is, electric quantity efficiency is deteriorated.

【0007】正極での式(1)と式(4)の副反応の割
合は電池の作り方により大きく変わる。一般的に円筒形
電池において、電池の緊縛率が大きいほど、つまり正極
と負極が電池ケース内で強く押しあっているほど正極の
充電効率がよく式(1)の反応が起こり易いとされてい
る。円筒形ニッケル水素蓄電池では正極、負極はほぼ同
じ面積の極板を渦巻状に巻いた構成で作られていて、電
池の緊縛率、つまり正極、負極、セパレータの存在する
部分での電池のケース内の断面積を考えた場合に正極、
負極、セパレータの占める面積割合が90%以上になる
と、充電後の正極の放電利用率は100%になると言わ
れている。
The ratio of the side reactions of the formulas (1) and (4) at the positive electrode varies greatly depending on how the battery is made. Generally, in a cylindrical battery, the higher the battery binding rate, that is, the stronger the positive electrode and the negative electrode are pressed against each other in the battery case, the better the charging efficiency of the positive electrode and the easier the reaction of the formula (1) occurs. .. In a cylindrical nickel-metal hydride storage battery, the positive electrode and the negative electrode are made up of spirally wound electrode plates with almost the same area, and the binding ratio of the battery, that is, the inside of the battery case where the positive electrode, the negative electrode, and the separator are present. Positive electrode, considering the cross-sectional area of
It is said that when the area ratio of the negative electrode and the separator is 90% or more, the discharge utilization rate of the positive electrode after charging becomes 100%.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、角形電
池では緊縛率を95%にしても、正極の放電利用率は8
0%程度と小さかった。このため電池の重量当りのエネ
ルギー密度は小さくなっていた。
However, in the prismatic battery, even if the binding rate is 95%, the discharge utilization rate of the positive electrode is 8%.
It was as small as 0%. Therefore, the energy density per weight of the battery was small.

【0009】本発明はこのような課題を解決するもので
正極の利用率の向上により、電池の重量当りのエネルギ
ー密度を向上した角形ニッケル水素蓄電池を提供するこ
とを目的とする。
An object of the present invention is to solve the above problems and to provide a prismatic nickel-hydrogen storage battery in which the energy density per weight of the battery is improved by improving the utilization rate of the positive electrode.

【0010】[0010]

【課題を解決するための手段】本発明は、正極に水酸化
ニッケル、負極に水素吸蔵合金、電解質にアルカリ水溶
液を用いる角形ニッケル水素蓄電池において、正極1枚
の面積が、負極1枚の面積の0.9倍以下としたもので
ある。
According to the present invention, in a prismatic nickel-hydrogen storage battery using nickel hydroxide for the positive electrode, a hydrogen storage alloy for the negative electrode, and an alkaline aqueous solution for the electrolyte, the area of one positive electrode is equal to the area of one negative electrode. It is 0.9 times or less.

【0011】[0011]

【作用】角形ニッケル水素蓄電池では、1サイクル目の
正極の利用率は高い。しかし充放電サイクルとともに低
下する傾向があった。10サイクル経過後の電池を分解
してみると、正極板は負極板の間で波打った形状になっ
ていた。これは、正極板の膨張が負極板に較べて顕著
で、厚み方向には膨張しにくく、膨張しようとする正極
が逃げ場がないために、このような形状になったと考え
た。この正極板が波打ったような形状になる傾向は円筒
形電池ではあまり見られない。
In the prismatic nickel-hydrogen storage battery, the utilization rate of the positive electrode in the first cycle is high. However, it tended to decrease with charge / discharge cycles. When the battery was disassembled after 10 cycles, the positive electrode plate had a wavy shape between the negative electrode plates. It is considered that this is because the expansion of the positive electrode plate is more remarkable than that of the negative electrode plate, the positive electrode plate is less likely to expand in the thickness direction, and there is no escape area for the positive electrode which is about to expand. This tendency of the positive electrode plate to have a wavy shape is rarely seen in the cylindrical battery.

【0012】膨張した正極板の内の、セパレータを介し
て負極板と接している凸凹部には押さえようとする力学
的力がかかるが、その他の部分には力がかかりにくい。
このために利用率が低下したと考えた。1サイクル目に
おいて正極の利用率が高いのは、まだ正極板が膨張して
いないためであろう。これまで円筒形電池で言われてい
た緊縛率が高い電池が良いとされてきたのは、そのほう
が正極板を押さえようとする力が大になるためと考え
る。円筒形電池では分解してみると、正極板は縦方向に
も横方向にもあまり膨張していない。このことは円筒形
電池では相当強く正極板は圧迫されていることを示して
いる。角形電池では正極板の圧迫という観点からは弱く
なる構成法と言える。
In the expanded positive electrode plate, a mechanical force for pressing is applied to the convex and concave portions which are in contact with the negative electrode plate through the separator, but the other parts are less likely to receive the mechanical force.
It was thought that this resulted in a drop in utilization. The high utilization rate of the positive electrode in the first cycle is probably because the positive electrode plate has not expanded yet. It has been considered that a battery with a high binding rate, which has been said to be a cylindrical battery until now, is good because the force to hold down the positive electrode plate becomes larger. When the cylindrical battery is disassembled, the positive electrode plate does not expand much in the vertical and horizontal directions. This indicates that in the cylindrical battery, the positive electrode plate is pressed strongly. It can be said that a prismatic battery is a weak construction method from the viewpoint of pressing the positive electrode plate.

【0013】そこで、角形電池においては、正極が膨張
しても波打った形にならないようにするため、正極板の
面積を負極板に較べて小さくすることにした。これによ
り正極は膨張しても縦横に伸び、負極からの押さえる力
には変化がなくなると考えた。1サイクル目の利用率が
高いことは、正極板が波打たない限り電池構成時にかか
る力だけで十分であることを意味していると考えたから
である。
Therefore, in the prismatic battery, the area of the positive electrode plate is made smaller than that of the negative electrode plate so that the positive electrode does not have a wavy shape even when expanded. As a result, it was considered that the positive electrode would expand in the vertical and horizontal directions even if it expanded, and that the pressing force from the negative electrode would not change. The reason why the high utilization rate in the first cycle is that it means that the force applied when the battery is constructed is sufficient as long as the positive electrode plate is not wavy.

【0014】円筒形電池においても、正極板の長さを負
極板より短くして、渦巻状に巻いて構成されることがあ
る。渦巻状に巻くため、正極負極の対面する電極面を揃
えるには外周にくる電極を長くすることが必要となるた
めである。円筒形電池ではケースを負極とするため、負
極を外周にもって来ることになり、正極板の方が短くな
ることが多い。これは、電極面を揃えるためであって正
極の膨張を考慮したものではない。電池組み立て時に、
正極負極が一致して対面していることより明らかであ
る。
Also in the cylindrical battery, the length of the positive electrode plate may be shorter than that of the negative electrode plate, and the positive electrode plate may be wound in a spiral shape. This is because it is wound in a spiral shape, so that it is necessary to lengthen the electrodes on the outer periphery in order to align the facing electrode surfaces of the positive and negative electrodes. In a cylindrical battery, the case serves as the negative electrode, so the negative electrode is brought to the outer circumference, and the positive electrode plate is often shorter. This is to make the electrode surfaces uniform, and does not consider expansion of the positive electrode. When assembling the battery,
It is clear from the fact that the positive electrode and the negative electrode are facing each other.

【0015】[0015]

【実施例】以下本発明の実施例の角形ニッケル水素蓄電
池について図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A prismatic nickel metal hydride storage battery according to an embodiment of the present invention will be described below with reference to the drawings.

【0016】負極活物質として水素吸蔵合金であるラン
タン含量10%のミッシュメタル(Mm)を用いたMm
Ni3.55Mn0.4Al0.3Co0.75を用い、この合金1
9.4gに水を加えてペーストとした。横60mm縦81
mm重量3.1gの発泡ニッケル中に、このペーストを充
填し乾燥後、厚み1.20mmに圧縮し負極板とした。負
極板の角にリードとしてのニッケル板をスポット溶接し
た。この時負極板1枚の理論容量は5.63Ahであ
る。試験用電池にはこの負極板を6枚用いた。
Mm using misch metal (Mm), which is a hydrogen storage alloy and has a lanthanum content of 10%, as the negative electrode active material
Using Ni 3.55 Mn 0.4 Al 0.3 Co 0.75 , this alloy 1
Water was added to 9.4 g to make a paste. Width 60mm length 81
This paste was filled in nickel foam having a weight of 3.1 g and dried, and then compressed to a thickness of 1.20 mm to obtain a negative electrode plate. A nickel plate as a lead was spot-welded to the corner of the negative electrode plate. At this time, the theoretical capacity of one negative electrode plate is 5.63 Ah. Six negative plates were used for the test battery.

【0017】次に正極として水酸化ニッケルと金属コバ
ルトと水酸化コバルトを重量比で100:7:5に秤量
した粉末を良く混合した後、混合粉末20gに水を添加
しペースト状にした。横60mm縦81mm重量3.1gの
発泡ニッケル中に、このペーストを充填し乾燥後、厚み
1.74mmに圧縮し正極板とした。正極板の角にリード
としてのニッケル板をスポット溶接した。この時の正極
板1枚の理論容量は5.16Ahである。また正極板の
面積は負極と同じである。
Next, nickel hydroxide, metallic cobalt, and cobalt hydroxide were weighed at a weight ratio of 100: 7: 5 as a positive electrode, and the powders were well mixed, and then 20 g of the mixed powder was added with water to form a paste. This paste was filled in nickel foam having a width of 60 mm, a length of 81 mm, and a weight of 3.1 g, dried, and then compressed to a thickness of 1.74 mm to obtain a positive electrode plate. A nickel plate as a lead was spot-welded to the corner of the positive electrode plate. At this time, the theoretical capacity of one positive electrode plate is 5.16 Ah. The area of the positive electrode plate is the same as that of the negative electrode.

【0018】このようにして作った正極板を切り出し
て、負極より小さい面積の正極板を作った。正極板の縦
横の寸法比率を同じにした。例えば負極板の面積の80
%の正極の場合には、縦横の寸法に0.8の平方根0.
894を掛けて、横53.7mm縦72.4mmとした。同
様のやり方で、負極に対してさまざまな面積比率を持つ
正極板を作った。試験用電池には、このようにして作っ
た同じサイズの正極板を5枚用いた。つまり負極板の面
積に対して、面積比率で1,0.95,0.90,0.
85,0.80,0.75,0.70,0.65,0.
60の正極板を各々5枚ずつ作り試験に用いた。
The positive electrode plate thus prepared was cut out to prepare a positive electrode plate having an area smaller than that of the negative electrode. The vertical and horizontal dimensional ratios of the positive electrode plate were the same. For example, the area of the negative electrode plate is 80
% Positive electrode, the square root of 0.8 in the vertical and horizontal dimensions is 0.
By multiplying by 894, the width is 53.7 mm and the height is 72.4 mm. In the same way, positive electrode plates with various area ratios to the negative electrode were made. Five positive electrode plates of the same size thus produced were used for the test battery. That is, the area ratio is 1,0.95,0.90,0.
85, 0.80, 0.75, 0.70, 0.65, 0.
Five positive electrode plates of 60 were prepared and used for the test.

【0019】図1のようにスルフォン化処理を行ったポ
リプロピレンセパレータ1を介して、負極2、正極3の
順に外側に負極2がくるように配置した。この図は正極
3の面積比率が0.8の場合である。負極2のリードを
ニッケル製負極端子4に、正極のリードをニッケル製正
極端子(図示していない)にスポット溶接した。これら
の極板群を厚み3mmのアルリロニトリル−スチレン樹脂
からなる縦108mm、横69mm、幅18mmのケース5に
入れた。比重1.3の水酸化カリウム水溶液を電解液と
して54cc、70.1g加えた。
As shown in FIG. 1, the negative electrode 2 and the positive electrode 3 were arranged in this order so that the negative electrode 2 came to the outside through the sulfonation-treated polypropylene separator 1. This figure shows the case where the area ratio of the positive electrode 3 is 0.8. The lead of the negative electrode 2 was spot-welded to the nickel negative electrode terminal 4, and the positive electrode lead was spot-welded to the nickel positive electrode terminal (not shown). These electrode plates were placed in a case 5 of 3 mm thick, made of acrylonitrile-styrene resin, which had a length of 108 mm, a width of 69 mm, and a width of 18 mm. An aqueous solution of potassium hydroxide having a specific gravity of 1.3 was added as an electrolytic solution in an amount of 54 cc and 70.1 g.

【0020】2気圧で作動する安全弁6を取り付けたア
ルリロニトリル−スチレン樹脂からなる封口板7をケー
ス5にエポキシ樹脂で接着した。その後正極端子、負極
端子4を封口板7にオーリングを介して圧接固定し、密
閉電池とした。
A sealing plate 7 made of allylonitrile-styrene resin having a safety valve 6 operating at 2 atmospheres was adhered to the case 5 with an epoxy resin. After that, the positive electrode terminal and the negative electrode terminal 4 were pressed and fixed to the sealing plate 7 via an O-ring to form a sealed battery.

【0021】これらの電池を20℃で10時間率で15
時間充電し、5時間率で端子間電圧が1Vになるまで放
電する充放電サイクルを繰り返した。(表1)にこれら
の電池の50サイクル目の放電容量、正極活物質の利用
率を示す。
These batteries were tested at 20 ° C. for 15 hours at a rate of 15 hours.
The charging / discharging cycle of charging for 5 hours and discharging until the terminal voltage became 1 V at a rate of 5 hours was repeated. Table 1 shows the discharge capacity at the 50th cycle of these batteries and the utilization rate of the positive electrode active material.

【0022】これより、正極板の面積を負極に較べて小
さくすることにより、特に面積比率が0.9以下で利用
率が向上することがわかる。
From this, it can be seen that by making the area of the positive electrode plate smaller than that of the negative electrode, the utilization factor is improved especially when the area ratio is 0.9 or less.

【0023】また表には、発電要素である正極板、負極
板、電解液重量を合計した重量を元にしたエネルギー密
度を示した。各電池とも放電平均電圧は1.25Vと同
じであり、このエネルギー密度を1.25で割ると重量
当りの電気量密度となる。このエネルギー密度の点から
も、面積比率は0.9以下、0.7以上が良好となる。
The table also shows the energy density based on the total weight of the positive electrode plate, the negative electrode plate, and the electrolytic solution, which are the power generating elements. The average discharge voltage of each battery is the same as 1.25 V, and this energy density is divided by 1.25 to obtain the electricity quantity density per weight. Also from the viewpoint of this energy density, the area ratio is preferably 0.9 or less and 0.7 or more.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【発明の効果】以上の実施例の説明により明らかなよう
に本発明の角形ニッケル水素蓄電池によれば正極板の面
積を負極板の面積に較べて小さくすることにより、正極
の利用率を高め、エネルギー密度をも向上させることが
できる。
As is apparent from the above description of the embodiments, according to the prismatic nickel-metal hydride storage battery of the present invention, the area of the positive electrode plate is made smaller than the area of the negative electrode plate to increase the utilization rate of the positive electrode. The energy density can also be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の角形ニッケル水素蓄電池の
縦断面図
FIG. 1 is a vertical sectional view of a prismatic nickel metal hydride storage battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 セパレータ 2 負極 3 正極 1 Separator 2 Negative electrode 3 Positive electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 児守 克典 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 豊口 吉徳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Katsunori Komori 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Yoshinori Toyokuchi 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】セパレータを介して対向して設けた水酸化
ニッケル正極と、水素吸蔵合金負極と、アルカリ電解液
を主体として構成され、正極1枚の面積が、負極1枚の
面積の0.9倍以下とした前記正極および負極を具備し
た角形ニッケル水素蓄電池。
1. A nickel hydroxide positive electrode provided facing each other via a separator, a hydrogen storage alloy negative electrode, and an alkaline electrolyte as main components, and the area of one positive electrode is less than the area of one negative electrode. A prismatic nickel-metal hydride storage battery comprising the positive electrode and the negative electrode that are 9 times or less.
JP4085194A 1992-04-07 1992-04-07 Rectangular nickel-hydrogen storage battery Pending JPH05290835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4085194A JPH05290835A (en) 1992-04-07 1992-04-07 Rectangular nickel-hydrogen storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4085194A JPH05290835A (en) 1992-04-07 1992-04-07 Rectangular nickel-hydrogen storage battery

Publications (1)

Publication Number Publication Date
JPH05290835A true JPH05290835A (en) 1993-11-05

Family

ID=13851843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4085194A Pending JPH05290835A (en) 1992-04-07 1992-04-07 Rectangular nickel-hydrogen storage battery

Country Status (1)

Country Link
JP (1) JPH05290835A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015082455A (en) * 2013-10-24 2015-04-27 株式会社豊田自動織機 Laminated battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015082455A (en) * 2013-10-24 2015-04-27 株式会社豊田自動織機 Laminated battery

Similar Documents

Publication Publication Date Title
JPH1064537A (en) Nickel positive electrode for alkaline storage battery and nickel hydrogen storage battery using this electrode
EP1222702B1 (en) Layered metal hydride electrode providing reduced cell pressure
JPH05290835A (en) Rectangular nickel-hydrogen storage battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JP3815511B2 (en) Nickel / metal hydride sealed alkaline storage battery
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3221040B2 (en) Alkaline storage battery
JP2566912B2 (en) Nickel oxide / hydrogen battery
JP3412161B2 (en) Sealed nickel-metal hydride storage battery
JP3412162B2 (en) Alkaline storage battery
JP2988974B2 (en) Prismatic nickel-metal hydride storage battery
JP2594147B2 (en) Metal-hydrogen alkaline storage battery
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3343413B2 (en) Alkaline secondary battery
JP3392700B2 (en) Alkaline secondary battery
JPH1040950A (en) Alkaline secondary battery
JPH05290829A (en) Sealed alkaline storage battery
JPH10172554A (en) Alkaline secondary battery
JP3742149B2 (en) Alkaline secondary battery
JP3568316B2 (en) Prismatic alkaline storage battery
JP2919544B2 (en) Hydrogen storage electrode
JP2003173815A (en) Sealed square alkaline storage battery
JPH05283056A (en) Sealed alkaline storage battery
JP2001068146A (en) Nickel hydrogen storage battery
JP2002075349A (en) Alkaline secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090212

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090212

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100212

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees