JPH05283056A - Sealed alkaline storage battery - Google Patents

Sealed alkaline storage battery

Info

Publication number
JPH05283056A
JPH05283056A JP4076489A JP7648992A JPH05283056A JP H05283056 A JPH05283056 A JP H05283056A JP 4076489 A JP4076489 A JP 4076489A JP 7648992 A JP7648992 A JP 7648992A JP H05283056 A JPH05283056 A JP H05283056A
Authority
JP
Japan
Prior art keywords
negative electrode
battery
storage battery
terminal
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4076489A
Other languages
Japanese (ja)
Inventor
Hiromu Matsuda
宏夢 松田
Kazuhiro Ota
和宏 太田
Tadao Kimura
忠雄 木村
Katsunori Komori
克典 児守
Yoshinori Toyoguchi
吉徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4076489A priority Critical patent/JPH05283056A/en
Publication of JPH05283056A publication Critical patent/JPH05283056A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve the degree of acceptance of charging at high temperature and provide large discharge capacity by changing a negative electrode lead and a terminal material. CONSTITUTION:A sealed alkaline storage battery is constituted of a negative electrode 2 capable of performing charge and discharge processes, and a positive electrode 3 comprising nickel hydroxide. In addition, at least one of the lead 4 and terminal 5 of the negative electrode 2 for the sealed alkaline storage battery using an alkaline water solution as an electrolyte is made of copper. As copper having good heat conduction is used for the lead 4 of the negative electrode 2 and the terminal 5 as mentioned, heat generated on the negative electrode 2 can be quickly discharged outside the battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は密閉形アルカリ蓄電池に
関し、特に充電特性を改良した大形の電池の正極活物質
に水酸化ニッケルを用いる密閉形アルカリ蓄電池に関わ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed alkaline storage battery, and more particularly to a sealed alkaline storage battery using nickel hydroxide as a positive electrode active material of a large battery having improved charging characteristics.

【0002】[0002]

【従来の技術】近年、正極に水酸化ニッケル、負極に水
素吸蔵合金、電解質にアルカリ水溶液を用いた密閉形ニ
ッケル水素蓄電池やニカド蓄電池、ニッケル亜鉛蓄電池
が、高エネルギー密度を達成できるとして注目を集めて
いる。これらの電池の正極や負極のリードや端子には、
電気電導性の良好なニッケルが用いられてきた。
2. Description of the Related Art In recent years, sealed nickel-hydrogen storage batteries, nickel-cadmium storage batteries, and nickel-zinc storage batteries using nickel hydroxide for the positive electrode, hydrogen storage alloy for the negative electrode, and alkaline aqueous solution for the electrolyte have been attracting attention because they can achieve high energy density. ing. For the positive and negative electrode leads and terminals of these batteries,
Nickel, which has good electric conductivity, has been used.

【0003】この電池での正極での充電機構は数(1)
のように進む。放電反応はこの逆である。e-は電子で
ある。
The charging mechanism at the positive electrode of this battery is several (1).
Proceed like. The discharge reaction is the opposite. e - is an electron.

【0004】[0004]

【数1】 [Equation 1]

【0005】しかし、充電時には上記反応だけでなく数
(2)に示す副反応が起こる。
However, during charging, not only the above reaction but also the side reaction shown in the equation (2) occurs.

【0006】[0006]

【数2】 [Equation 2]

【0007】そこで、正極での数(2)の反応に対して
は、密閉形ニッケル水素蓄電池では発生した酸素ガスを
負極に導いて、数(3)のように水にする方法が用いら
れ、
Therefore, for the reaction of the number (2) at the positive electrode, in the sealed nickel-metal hydride storage battery, a method of guiding the generated oxygen gas to the negative electrode and making it water as shown in the number (3) is used.

【0008】[0008]

【数3】 [Equation 3]

【0009】密閉を保っている。ここでMは水素吸蔵合
金を、MHは水素を吸蔵した水素吸蔵合金を表わす。
[0009] The seal is maintained. Here, M represents a hydrogen storage alloy, and MH represents a hydrogen storage alloy that has stored hydrogen.

【0010】[0010]

【発明が解決しようとする課題】この数(2)で示され
る反応は、温度を高くするにつれて正極の充電反応であ
る数(1)に較べ優勢的に起こり、高温例えば45℃で
は正極の充填容量の150%の電気量で充電しても、正
極は50%しか充電されない。
The reaction represented by the number (2) occurs more predominantly as the number (1), which is the charging reaction of the positive electrode, as the temperature increases, and at a high temperature, for example, 45 ° C., the positive electrode is charged. Even if charged with 150% of the capacity, the positive electrode is charged with only 50%.

【0011】密閉形アルカリ蓄電池では数(3)の反応
を利用して密閉化を行っているため数(3)の反応熱が
電池内で発生し電池温度が上昇する。10Ah程度の電
池では、10時間率の充電で電池ケースやニッケル製端
子からの放熱効果により電池温度の上昇は比較的少な
い。しかしながら25Ah以上の電池では放熱より発熱
が顕著になり始める。10Ahの電池でも高率充電では
発熱が顕著である。
Since the sealed alkaline storage battery is sealed by utilizing the reaction of the formula (3), the reaction heat of the formula (3) is generated in the battery and the battery temperature rises. In the case of a battery of about 10 Ah, the temperature rise of the battery is relatively small due to the heat radiation effect from the battery case and the nickel terminal when charged for 10 hours. However, in a battery of 25 Ah or more, heat generation starts to become more remarkable than heat radiation. Even with a 10 Ah battery, heat generation is remarkable at high rate charging.

【0012】この発熱により電池温度が上昇し、正極の
充電受け入れ性が低下し、十分な放電容量が得られなか
った。
Due to this heat generation, the battery temperature increased, the charge acceptance of the positive electrode decreased, and a sufficient discharge capacity could not be obtained.

【0013】本発明は負極のリードや端子材質を変える
ことにより高温での充電受け入れ性を向上し、大きな放
電容量が得られる密閉形アルカリ蓄電池を提供すること
を目的とする。
An object of the present invention is to provide a sealed alkaline storage battery in which charge acceptance at a high temperature is improved and a large discharge capacity is obtained by changing the material of the negative electrode lead or terminal.

【0014】[0014]

【課題を解決するための手段】この目的を達成するため
本発明の密閉形アルカリ蓄電池は、充放電可能な負極、
水酸化ニッケルよりなる正極、電解質にアルカリ水溶液
を用いる密閉形アルカリ蓄電池の負極のリードおよび端
子少なくともその一方を銅で構成したものである。
To achieve this object, the sealed alkaline storage battery of the present invention comprises a chargeable / dischargeable negative electrode,
At least one of a positive electrode made of nickel hydroxide and a lead and a terminal of a negative electrode of a sealed alkaline storage battery using an alkaline aqueous solution as an electrolyte is made of copper.

【0015】[0015]

【作用】密閉形アルカリ蓄電池では正極より発生する酸
素を数(3)の反応により水に戻している。この時の反
応熱により温度が上昇する。数(3)より明らかなよう
に反応する場所は負極上である。したがって熱も負極上
で発生し、電解液,セパレータを通して正極に伝わる。
伝わった熱が正極の温度を上げ、さらに酸素発生をし易
くする。本発明は、負極上で発生した熱をできるだけ速
やかに電池の外に放出し、正極の温度上昇を抑えること
により、正極からの酸素発生を抑え、電池の充電受け入
れ性を向上させようとするものである。
In the sealed alkaline storage battery, oxygen generated from the positive electrode is returned to water by the reaction of the number (3). The temperature rises due to the heat of reaction at this time. As is clear from the equation (3), the place where the reaction occurs is on the negative electrode. Therefore, heat is also generated on the negative electrode and transmitted to the positive electrode through the electrolytic solution and the separator.
The transferred heat raises the temperature of the positive electrode and further facilitates oxygen generation. The present invention intends to improve the charge acceptability of a battery by releasing the heat generated on the negative electrode to the outside of the battery as quickly as possible and suppressing the temperature rise of the positive electrode to suppress oxygen generation from the positive electrode. Is.

【0016】そこで、負極のリードや端子に熱電導性の
良好な銅を使用することにより、負極上で発生する熱を
速やかに電池外に放出することとなる。
Therefore, by using copper, which has good thermal conductivity, for the lead and terminal of the negative electrode, the heat generated on the negative electrode is promptly released to the outside of the battery.

【0017】[0017]

【実施例】以下、本発明の一実施例の密閉形アルカリ蓄
電池について図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A sealed alkaline storage battery according to an embodiment of the present invention will be described below with reference to the drawings.

【0018】水酸化ニッケルと金属コバルトと水酸化コ
バルトを重量比で100:7:5に秤量した粉末を良く
混合した後、混合粉末20gに水を添加しペースト状に
した。横60mm,縦81mm,重量3.1gの発泡状ニッ
ケル中に、このペーストを充填し乾燥後、厚み1.74
mmに圧縮し正極板とした。正極板の角にリードとしての
ニッケル板をスポット溶接した。金属コバルトは放電リ
ザーブの確保に寄与し、水酸化コバルトは20℃での充
電効率の改良に寄与する。この時正極板1枚の理論容量
は5.05Ahである。試験用電池にはこの正極板を5
枚用いた。
Powders in which nickel hydroxide, metallic cobalt and cobalt hydroxide were weighed in a weight ratio of 100: 7: 5 were mixed well, and then 20 g of the mixed powder was added with water to form a paste. This paste was filled into foamed nickel 60 mm wide, 81 mm long, and 3.1 g in weight, and after drying, the thickness was 1.74.
It was compressed to mm to obtain a positive electrode plate. A nickel plate as a lead was spot-welded to the corner of the positive electrode plate. Metallic cobalt contributes to ensuring the discharge reserve, and cobalt hydroxide contributes to improving the charging efficiency at 20 ° C. At this time, the theoretical capacity of one positive electrode plate is 5.05 Ah. This positive electrode plate is used for the test battery.
I used one.

【0019】負極として水素吸蔵合金を用いた。水素吸
蔵合金としてランタン含量10%のミッシュメタル(M
m)を含むMmNi3.5Mn0.4Al0.3Co0.75を用
い、この合金19.4gに同様に水を加えてペーストと
した。横60mm,縦81mm,重量3.1gの発泡状ニッ
ケル中に、このペーストを充填し乾燥後、厚み1.20
mmに圧縮し負極板とした。負極板の角にリードとしての
幅20mm,厚さ0.2mmの銅板をスポット溶接した。こ
の時負極板1枚の理論容量は5.63Ahである。試験
用電池にはこの負極板を6枚用いた。
A hydrogen storage alloy was used as the negative electrode. As hydrogen storage alloy, misch metal with 10% lanthanum content (M
used MmNi 3.5 Mn 0.4 Al 0.3 Co 0.75 containing m), and a paste by adding water in the same manner as in the alloy 19.4 g. This paste is filled in foamed nickel 60 mm wide, 81 mm long, and 3.1 g in weight, and dried to a thickness of 1.20.
It was compressed to mm to obtain a negative electrode plate. A copper plate having a width of 20 mm and a thickness of 0.2 mm was spot-welded to a corner of the negative electrode plate. At this time, the theoretical capacity of one negative electrode plate is 5.63 Ah. Six negative plates were used for the test battery.

【0020】図1のようにスルフォン化処理を行ったポ
リプロピレン不織布セパレータ1を介して、負極2,正
極3の順に外側に負極がくるように配置した。負極の銅
製リード4をニッケル製負極端子5に、正極のニッケル
製リードをニッケル製正極端子にスポット溶接した。こ
れらの極板群を厚み3mmのアクリロニトリルースチレン
樹脂からなる縦108mm,横69mm,幅18mmのケース
6に入れた。比重1.3の水酸化カリウム水溶液を電解
質として54cc加えた。
As shown in FIG. 1, the negative electrode 2 and the positive electrode 3 were arranged in this order with the negative electrode on the outer side through the polypropylene nonwoven fabric separator 1 subjected to the sulfonation treatment. The negative electrode copper lead 4 was spot-welded to the nickel negative electrode terminal 5, and the positive electrode nickel lead was spot-welded to the nickel positive electrode terminal. These electrode plates were placed in a case 6 made of acrylonitrile-styrene resin having a thickness of 3 mm and having a length of 108 mm, a width of 69 mm, and a width of 18 mm. An aqueous solution of potassium hydroxide having a specific gravity of 1.3 was added as an electrolyte in an amount of 54 cc.

【0021】2気圧で作動する安全弁7を取り付けたア
クリロニトリルースチレン樹脂からなる封口板8をケー
スにエポキシ樹脂で接着した。その後正極端子,負極端
子5を封口板8にオーリングを介して圧接固定し、密閉
電池とした。この実施例の電池をAとする。さらに実施
例として、上記とほぼ同じ構成であるが、負極のリード
4に同じ幅,厚さのニッケルを、負極端子4に銅製の端
子を用いた電池をBとする。銅製の負極リード4と負極
端子5を併用した電池をCとする。
A sealing plate 8 made of acrylonitrile-styrene resin attached with a safety valve 7 operating at 2 atm was adhered to the case with epoxy resin. After that, the positive electrode terminal and the negative electrode terminal 5 were pressed and fixed to the sealing plate 8 via an O-ring to form a sealed battery. The battery of this example is designated as A. Further, as an example, B is a battery having substantially the same structure as the above, but using nickel of the same width and thickness for the lead 4 of the negative electrode and a copper terminal for the negative electrode terminal 4. A battery in which the copper negative electrode lead 4 and the negative electrode terminal 5 are used together is designated as C.

【0022】従来例としてニッケル製の負極リード4,
負極端子5を用いた電池をDとする。AからDの電池は
同じ正極理論充填容量を持つ。
As a conventional example, a nickel negative electrode lead 4,
A battery using the negative electrode terminal 5 is designated as D. The batteries A to D have the same positive electrode theoretical fill capacity.

【0023】AからDの電池を20℃で3時間率の8.
45Aで4.5時間充電した後、5時間率5.06Aで
端子間電圧が1Vになるまで放電する充放電サイクルを
繰り返した。
The batteries A to D were stored at 20 ° C. for 3 hours at a rate of 8.
After charging at 45 A for 4.5 hours, a charging / discharging cycle of discharging at a 5-hour rate of 5.06 A until the terminal voltage became 1 V was repeated.

【0024】10サイクル目の放電曲線を図2に示す。
本発明の電池は放電容量が大であり、充電受け入れ性が
良好になっている。
The discharge curve at the 10th cycle is shown in FIG.
The battery of the present invention has a large discharge capacity and good charge acceptance.

【0025】[0025]

【発明の効果】以上の実施例の説明により明らかなよう
に本発明の密閉形アルカリ蓄電池によれば充電受け入れ
性が向上し、大きな放電容量が得られることになり産業
上の意義は大である。
As is clear from the above description of the embodiments, the sealed alkaline storage battery of the present invention has improved charge acceptance and a large discharge capacity, which is of great industrial significance. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例および従来の密閉形アルカリ
蓄電池の縦断面図
FIG. 1 is a vertical sectional view of an embodiment of the present invention and a conventional sealed alkaline storage battery.

【図2】同10サイクル目の放電特性を示すグラフFIG. 2 is a graph showing discharge characteristics at the 10th cycle.

【符号の説明】[Explanation of symbols]

1 セパレータ 2 負極 3 正極 4 負極リード 5 負極端子 1 separator 2 negative electrode 3 positive electrode 4 negative electrode lead 5 negative electrode terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 児守 克典 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 豊口 吉徳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Katsunori Komori 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Yoshinori Toyokuchi 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 セパレータを介して対向する充放電可能
な負極と、水酸化ニッケルよりなる正極と、アルカリ水
溶液主体とする電解質とを有し、負極のリードおよび端
子の少なくとも一方を銅で構成した密閉形アルカリ蓄電
池。
1. A chargeable / dischargeable negative electrode facing each other via a separator, a positive electrode made of nickel hydroxide, and an electrolyte containing an alkaline aqueous solution as a main component, and at least one of a lead and a terminal of the negative electrode is made of copper. Sealed alkaline storage battery.
JP4076489A 1992-03-31 1992-03-31 Sealed alkaline storage battery Pending JPH05283056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4076489A JPH05283056A (en) 1992-03-31 1992-03-31 Sealed alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4076489A JPH05283056A (en) 1992-03-31 1992-03-31 Sealed alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH05283056A true JPH05283056A (en) 1993-10-29

Family

ID=13606636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4076489A Pending JPH05283056A (en) 1992-03-31 1992-03-31 Sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH05283056A (en)

Similar Documents

Publication Publication Date Title
JP3097347B2 (en) Nickel-metal hydride battery
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP3923157B2 (en) Alkaline storage battery
JPH0677451B2 (en) Manufacturing method of hydrogen storage electrode
JP3390309B2 (en) Sealed alkaline storage battery
JPH08329937A (en) Nickel positive electrode for alkaline storage battery and nickel hydrogen storage battery
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP3221040B2 (en) Alkaline storage battery
JPH05283056A (en) Sealed alkaline storage battery
JP3412161B2 (en) Sealed nickel-metal hydride storage battery
JP3412162B2 (en) Alkaline storage battery
JP3429684B2 (en) Hydrogen storage electrode
JPH05290829A (en) Sealed alkaline storage battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JP3815511B2 (en) Nickel / metal hydride sealed alkaline storage battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2750793B2 (en) Nickel-metal hydride battery
JPH0536392A (en) Nickel hydrogen secondary cell module
JPH04109556A (en) Closed-type secondary battery
EP0567132B1 (en) Sealed type nickel/hydrogen alkaline storage battery
JP4531874B2 (en) Nickel metal hydride battery
JP3343413B2 (en) Alkaline secondary battery
JPH05290835A (en) Rectangular nickel-hydrogen storage battery
JP2553775B2 (en) Manufacturing method of hydrogen storage alloy electrode