JPH044574A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH044574A
JPH044574A JP2104686A JP10468690A JPH044574A JP H044574 A JPH044574 A JP H044574A JP 2104686 A JP2104686 A JP 2104686A JP 10468690 A JP10468690 A JP 10468690A JP H044574 A JPH044574 A JP H044574A
Authority
JP
Japan
Prior art keywords
electrode
battery
pos
oxygen gas
neg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2104686A
Other languages
Japanese (ja)
Inventor
Jinichi Imahashi
甚一 今橋
Tatsuo Horiba
達雄 堀場
Hisao Yamashita
寿生 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2104686A priority Critical patent/JPH044574A/en
Publication of JPH044574A publication Critical patent/JPH044574A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To enhance the absorption ability for oxygen gas generated by a pos. electrode, maintain the inner pressure of a cell can at a low level at the time of quick charging, and provide the cell with a long life without causing change in the active substance filling efficiency of pos. electrode and neg. electrode by furnishing a gas absorbent at the pos. and neg. electrodes and in the center of electrode group wherein a separator is wound spirally. CONSTITUTION:Gas absorbent 1 is provided at a pos. and a neg. electrode and in the winding axis space of an electrode group 2 wherein a separator is wound spirally. Oxygen gas generated from the pos. electrode is absorbed by using gas absorbent 1 consisting of a material, which is unsoluble in electrolyte and has an electrochemical activity in the degree equal to or similar to the neg. electrode, or by adding a catalyst which enables chemical reaction of oxygen gas. In the battery, as described, the central part of the wound electrode group 2 is filled with the gas absorbent 1. This makes it possible to enhance the absorption ability for oxygen gas generated from the pos. electrode, maintain the inner pressure of the cell can at a low level at the time of quick charging, and provide the cell with a long life, that can be achieved without varying the active substance filling efficiency of the pos. and neg. electrodes occupied in the battery.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、充電時に正極から発生する酸素ガスに係り、
特にその酸素を吸収するガス吸収体の構成に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to oxygen gas generated from a positive electrode during charging,
In particular, it relates to the structure of a gas absorber that absorbs oxygen.

従来の技術 ポータプル化、コードレス化した装置の電源となる電池
の需要が増大している。一般に、可動部を有し比較的に
消費電力が大きいものでは二次電池が主流となっている
。二次電池の中でも、ニッケルーカドミウム電池などの
アルカリ性水溶液を電解液とするアルカリ蓄電池は、軽
量であること、エネルギー密度が高いこと、過充放電に
耐えることなどの点で、従来の鉛蓄電池よりも優れてお
り、そのため、小型密閉型のものの需要増大が著しい。
BACKGROUND OF THE INVENTION Demand for batteries to power portable and cordless devices is increasing. Generally, secondary batteries are the mainstream for devices that have moving parts and consume relatively large amounts of power. Among secondary batteries, alkaline storage batteries that use an alkaline aqueous solution as an electrolyte, such as nickel-cadmium batteries, are lighter than conventional lead-acid batteries because they are lighter, have higher energy density, and can withstand overcharging and discharging. As a result, the demand for small, sealed types is increasing significantly.

ニッケルーカドミウム電池は充電時に電池内で発生する
ガスを消費するような機構に作られている。
Nickel-cadmium batteries are designed to consume the gas generated within the battery during charging.

正極にッケル極)の容量よりも負極(カドミウム極)の
容量を大きくし、正極は負極より先に充電が完了するよ
うにして、正極より発生する酸素ガスを次の(1)式に
より化学的に消費させることで、電池内で圧力低下及び
容量のバランスさらに電解液濃度の均衡を保っている。
The capacity of the negative electrode (cadmium electrode) is made larger than the capacity of the positive electrode (Keckel electrode), and the positive electrode completes charging before the negative electrode, and the oxygen gas generated from the positive electrode is chemically By consuming it, the balance between pressure drop and capacity as well as electrolyte concentration is maintained within the battery.

2Cd + O!  +HzO→2Cd (OH) z
      (1)従来の負極は焼結式であり、(1)
式に反応は、Ni焼結体の表面に含浸析出させたカドミ
ウムが高比表面積に大きく寄与している。
2Cd+O! +HzO→2Cd (OH) z
(1) The conventional negative electrode is a sintered type, (1)
In the reaction shown in the formula, cadmium impregnated and precipitated on the surface of the Ni sintered body greatly contributes to the high specific surface area.

しかし、最近は、高容量ニッケルーカドミウム電池が望
まれているため、高容量密度にするためには、焼結式で
は基体であるNi焼結体の占める体積が大であり、この
方式でき高密度化が困難が生じていた。そのため、カド
ミウムをペースト化し基体に塗着させたペースト式カド
ミウム極が開発されている。このペースト式カドミウム
極は、焼結式に比較し高密度化されていることがら、気
孔率が減少するため、酸素ガス吸収能も減少する傾向に
あるため、その吸収能を向上させるため種々検討されて
いる。従来技術では、ペースト式カドミウム極板表面に
炭素粉末からは導電層を設けることで、ガス吸収能を高
める方法(特開昭60−63875号公報)、また、電
池内部にガス消費用の触媒種を内蔵させる方法〔電気化
学■、 747 (1976) )などが提案されてい
る。
However, recently, high-capacity nickel-cadmium batteries are desired, and in order to achieve high capacity density, the sintered type requires a large volume of Ni sintered body, which is the base, Densification was becoming difficult. For this reason, a paste-type cadmium electrode has been developed in which cadmium is made into a paste and applied to a substrate. Since this paste-type cadmium electrode has a higher density than the sintered type, its porosity decreases and its oxygen gas absorption capacity also tends to decrease, so various studies were conducted to improve its absorption capacity. has been done. In the conventional technology, a conductive layer made of carbon powder is provided on the surface of a paste-type cadmium electrode plate to increase gas absorption capacity (Japanese Patent Application Laid-Open No. 60-63875), and a method is proposed in which a catalyst species for gas consumption is installed inside the battery. A method has been proposed in which a device is incorporated [Electrochemistry ■, 747 (1976)].

発明が解決しようとする課題 上記従来技術は、正極から発生する酸素ガスを吸収する
には有効に働くものと考えられる。しかし、カドミウム
極の表面に炭素粉末層を設ける場合はカドミウム活物質
層を薄くする必要がある。
Problems to be Solved by the Invention The above-mentioned conventional techniques are considered to work effectively in absorbing oxygen gas generated from the positive electrode. However, when providing a carbon powder layer on the surface of a cadmium electrode, it is necessary to make the cadmium active material layer thin.

また、カドミウム活物質層内に炭素粉末を混合する場合
は、活物質の充填量が少なくなることで、活物質の充填
容量密度が低下すると考えられる。
Furthermore, when carbon powder is mixed into the cadmium active material layer, it is thought that the filling amount of the active material decreases, thereby reducing the filling capacity density of the active material.

また、触媒電極を電極外周部に設けることは、電池内で
正極及び負極の占める体積割合が低下し、正極及び負極
の充填容量が低下するものと考えられる。従って、いず
れの場合も高充填容量化が不利になるものと考えられる
Furthermore, it is thought that providing the catalyst electrode on the outer periphery of the electrode reduces the volume ratio occupied by the positive electrode and the negative electrode within the battery, and the filling capacity of the positive electrode and negative electrode decreases. Therefore, in either case, increasing the filling capacity is considered to be disadvantageous.

本発明の目的は、正極及び負極の活物質充填効率を変化
させずに、正極から発生する酸素ガスの吸収能を向上さ
せることにあるので、泊、迷光放電が可能な高容量電池
が得られる。
The purpose of the present invention is to improve the absorption capacity of oxygen gas generated from the positive electrode without changing the active material filling efficiency of the positive electrode and negative electrode, so that a high capacity battery capable of night and stray light discharge can be obtained. .

課題を解決するための手段 上記の課題を解決するために、本発明では正極及び負極
、セパレータを、渦巻状に捲回した電極群の捲回軸芯空
間部にガス吸収体を設置した。そのガス吸収体として、
電解液に不溶でなおかつ負極と同じまたは同程度の電気
化学的活性を有する材料を用いる方法、あるいは、酸素
ガスの化学反応を可能とする触媒を添加する方法によっ
て正極から発生する酸素ガスを吸収させることができる
Means for Solving the Problems In order to solve the above-mentioned problems, in the present invention, a gas absorber is installed in the winding core space of an electrode group in which a positive electrode, a negative electrode, and a separator are spirally wound. As the gas absorber,
Oxygen gas generated from the positive electrode is absorbed by a method using a material that is insoluble in the electrolyte and has the same or similar electrochemical activity as the negative electrode, or by adding a catalyst that enables a chemical reaction of oxygen gas. be able to.

また、捲回電極の空間部に酸素ガス吸収体を設けるので
、電池内で占める正極及び負極の充填効率を低下させる
ことなく、正極及び負極の活物質充填容量の効率が向上
する。
Further, since the oxygen gas absorber is provided in the space of the wound electrode, the efficiency of the active material filling capacity of the positive electrode and the negative electrode is improved without reducing the filling efficiency of the positive electrode and the negative electrode that occupy the inside of the battery.

上記における酸素ガス吸収体で負極と同程度の電気化学
的活性を有する材料として、カドミウム、亜鉛、鉄及び
それらを主成分とする合金、また、酸素ガス吸収体が酸
素ガスと化学反応を可能とする材料として、白金、パラ
ジウム、ロジウム、銀及びそれらを主成分とする合金な
どである。しかし、上記の物質に限らず、酸素ガス吸収
体であるならば電解液に不溶な材料に担持させて、それ
らが酸素ガス吸収能を発生するならば、導電性、非導電
性を問わない。
In the oxygen gas absorber mentioned above, cadmium, zinc, iron, and alloys containing these as main components are used as materials that have the same electrochemical activity as the negative electrode. Materials that can be used include platinum, palladium, rhodium, silver, and alloys containing these as main components. However, the substance is not limited to the above-mentioned substances, and as long as the oxygen gas absorber is supported on a material that is insoluble in the electrolytic solution and has an ability to absorb oxygen gas, it does not matter whether it is conductive or non-conductive.

上記の触媒を用いる方法においては、ガス吸収体はガス
電極を形成しており、導電、性基体上への塗布、含浸、
蒸着などの方法の適用が可能である。
In the method using the above-mentioned catalyst, the gas absorber forms a gas electrode, and the gas absorber forms a gas electrode and is coated, impregnated, or
Methods such as vapor deposition can be applied.

また、ガス電極であるため、たとえばポリテトラフルオ
ロエチレン(RTFE)などの撥水性結着剤を用いるこ
とにより撥水性を持たせ、ガス吸収能を高めることや、
触媒を導電性あるいは高比表面積の担体上に担持するこ
となども有効な方法である。
In addition, since it is a gas electrode, it is possible to make it water repellent by using a water repellent binder such as polytetrafluoroethylene (RTFE) to increase gas absorption ability.
An effective method is to support the catalyst on a conductive or high specific surface area carrier.

また、捲回電極中心部の空間部に充填する酸素ガス吸収
体の形状は、円筒状、円柱状、六角柱状などがあるが、
空間部に充填されて酸素ガス吸収をするならば形状は制
限されない。
In addition, the shape of the oxygen gas absorber that fills the space in the center of the wound electrode may be cylindrical, cylindrical, hexagonal column, etc.
The shape is not limited as long as it fills the space and absorbs oxygen gas.

さらに、ガス吸収体を捲回電極の軸芯とすることも可能
であり、コンパクトな構造となる。
Furthermore, it is also possible to use the gas absorber as the axis of the wound electrode, resulting in a compact structure.

このようにして得られるガス吸収体は、そのガス吸収反
応に金属の酸化反応を利用するものでも、触媒反応を利
用するものであっても、負極と電気的接続を確保してお
く必要がある。つまり、前者の場合は、生成した金属酸
化物を金属に還元する反応が、電気化学的反応であり、
後者の場合は酸素ガスの反応自体が電気化学的反応であ
るためである。
The gas absorber obtained in this way must have an electrical connection with the negative electrode, regardless of whether the gas absorption reaction uses a metal oxidation reaction or a catalytic reaction. . In other words, in the former case, the reaction that reduces the generated metal oxide to metal is an electrochemical reaction;
In the latter case, this is because the reaction of oxygen gas itself is an electrochemical reaction.

作用 本発明によれば電池内において捲回電極群の中心部にガ
ス吸収体を充填することにより、電池内に占める正極及
び負極を体積変化させることなく、酸素ガス吸収能だけ
向上させることができるので、カドミウム極の高容量化
が図れる。また、カドミウム極以外にガス吸収体が存在
するため、ガス吸収面積が増大するため、カドミウム極
の活物質容量が低下しない。さらに、ガス吸収面積の増
大で、ガス吸収能が高まるので、急速充電時の電池缶内
の圧力を低下させることになる。
According to the present invention, by filling the center of the wound electrode group with a gas absorber in the battery, it is possible to improve only the oxygen gas absorption capacity without changing the volume of the positive electrode and negative electrode occupying the battery. Therefore, the capacity of the cadmium electrode can be increased. Furthermore, since the gas absorber is present in addition to the cadmium electrode, the gas absorption area increases, so the active material capacity of the cadmium electrode does not decrease. Furthermore, since the gas absorption area is increased, the gas absorption capacity is increased, which reduces the pressure inside the battery can during rapid charging.

このように電池内部で酸素ガスを消費する反応は、下記
の(1)、(2)で代表される反応による。
The reactions that consume oxygen gas inside the battery in this way are represented by the following reactions (1) and (2).

2Cd +Oz + H!’0→Cd (OH) z 
 ・・・(1)Oz+ 2HzO+ 4e →40H−
−(2)(1)は吸収体が負極と同程度も電気化学的活
性を有する場合であり、ここでは例としてカドミウムの
場合を示しであるが、その他の金属も可能であり、同様
な金属と酸素の酸化反応である。(2)は吸収体が触媒
の添加されたものである場合であって、その反応は酸素
の電気化学的な還元反応である。
2Cd+Oz+H! '0→Cd (OH) z
...(1) Oz+ 2HzO+ 4e →40H-
- (2) (1) is a case where the absorber has electrochemical activity to the same extent as the negative electrode, and although the case of cadmium is shown here as an example, other metals are also possible, and similar metals can be used. This is an oxidation reaction of oxygen. (2) is a case in which the absorber has a catalyst added thereto, and the reaction is an electrochemical reduction reaction of oxygen.

高活性な酸素ガス吸収体を内蔵することは、密閉型電池
の長寿命化、安全性にも寄与する。すなわち、電池缶内
圧力が低く保持されるため安全弁の開放による電解液成
分の損失が抑制され、その結果電解液の涸渇による抵抗
増大が防止できる。また電池ケース外部への電解液の漏
出による組電池の短絡あるいは装置、人体等への付着な
どが防止できる。
Having a built-in highly active oxygen gas absorber contributes to the longevity and safety of sealed batteries. That is, since the pressure inside the battery can is kept low, loss of electrolyte components due to opening of the safety valve is suppressed, and as a result, an increase in resistance due to depletion of the electrolyte can be prevented. Further, it is possible to prevent a short circuit of the assembled battery due to leakage of the electrolyte to the outside of the battery case or adhesion to devices, human bodies, etc.

実施例 実施例1 本発明となる密閉型円筒形電池を作製し、その電池性能
を測定した。供試カドミウム極は以下の材料で構成した
。酸化カドミウム80−t%、導電剤としてNi粉末1
0eet%の粉末とPTFEディスバージョン(ダイキ
ン工業製、ポリフロンデイスパージョンD−1)をPT
FEとして10−t%になるようにライカイ機中に添加
し混練した。それをニッケル金網60メツシユに添着さ
せ乾燥して測定用カドミウム極とした。
Examples Example 1 A sealed cylindrical battery according to the present invention was produced, and its battery performance was measured. The test cadmium electrode was composed of the following materials. Cadmium oxide 80-t%, Ni powder 1 as conductive agent
0eet% powder and PTFE dispersion (Daikin Industries, Polyflon Dispersion D-1)
It was added to a Raikai machine and kneaded so that the amount of FE was 10-t%. It was attached to a 60-meter nickel wire mesh and dried to obtain a cadmium electrode for measurement.

供試ニッケル極は、活物質として水酸化ニッケル80−
t%、導電剤として、金属ニッケル粉末10−t%及び
活物質の活性剤とし金属コバルト粉末5wt%の粉末と
水とPTFEディスバージョンをPTFEとして5wt
%になるようにしてライカイ機中に添加し混練した。そ
れをニッケル金網60メツシユに添着し、乾燥して測定
用ニッケル極とした。
The test nickel electrode used 80% nickel hydroxide as the active material.
t%, 10-t% of metal nickel powder as a conductive agent, 5wt% of metal cobalt powder as an activator for the active material, water, and 5wt% of PTFE dispersion as PTFE.
% in a Laikai machine and kneaded. It was attached to 60 meshes of nickel wire gauze and dried to obtain a nickel electrode for measurement.

作製した円筒形電池の断面模式図を第1図に示す。ガス
吸収体lは、電池の中心部に充填した。
A schematic cross-sectional view of the produced cylindrical battery is shown in FIG. The gas absorber 1 was filled in the center of the battery.

ガス吸収体は、供試カドミウム極と同一の材料で構成さ
れた円柱形のものを用いた。ガス吸収体の端子はカドミ
ウム極と缶底部で電気的に接続させた。ガス吸収体の径
は3φとした。比較のため、従来技術となる電池を作製
した。電池の構成は、本発明で得られたガス吸収体を除
いた他は同一とした。上記の正極及び負極をセパレータ
を介在させて捲回電極2を形成し、その中心部にガス吸
収体を充填させ電池ケース3に収納した。それに300
g/j!の水酸化カリウムと15 g/l水酸化リチウ
ムの電解液を注入して25°Cで充放電サイクルをした
。充電率IC,充電時間1.5hとしてその時の電池内
圧を測定した。得られた結果を第2図に示す。図におい
て本発明になる電池4は、過充電時に内圧が2kg/a
m”に上昇するが、それ以上内圧が上昇することなくガ
ス吸収能が優れている。それに対して、従来技術の電池
5は、過充電時の電池内圧が6kg/am”に上昇した
A cylindrical gas absorber made of the same material as the cadmium electrode under test was used. The terminal of the gas absorber was electrically connected to the cadmium electrode at the bottom of the can. The diameter of the gas absorber was 3φ. For comparison, a conventional battery was fabricated. The configuration of the battery was the same except for the gas absorber obtained in the present invention. A wound electrode 2 was formed by interposing the positive electrode and negative electrode with a separator interposed therebetween, and a gas absorber was filled in the center of the wound electrode 2, and the wound electrode 2 was housed in a battery case 3. And 300
g/j! An electrolyte of potassium hydroxide and 15 g/l lithium hydroxide was injected into the cell and subjected to charge/discharge cycles at 25°C. The battery internal pressure at that time was measured at a charging rate IC and a charging time of 1.5 hours. The results obtained are shown in FIG. In the figure, the battery 4 according to the present invention has an internal pressure of 2 kg/a during overcharging.
m", but the internal pressure does not rise any further and the gas absorption ability is excellent. On the other hand, in the battery 5 of the prior art, the battery internal pressure rose to 6 kg/am" during overcharging.

また、充電率を0.20から30まで段階的に変化させ
、その時の電池内圧を測定した。その結果を第3図に示
す。本発明になる電池6は、充電率が変化しても電池内
圧は一定であった。それに対して従来技術の電池7は、
電池内圧が大きく上昇した。また、充電率が高くなるに
従い急激な圧力上昇に伴い、電解液の漏液が住じた。従
って、本発明になる電池は従来技術よりも酸素ガス吸収
能が優れており、かつ漏液も生じに(いものであること
が明らかとなった。
Further, the charging rate was changed stepwise from 0.20 to 30, and the internal pressure of the battery at that time was measured. The results are shown in FIG. In the battery 6 according to the present invention, the battery internal pressure remained constant even when the charging rate changed. On the other hand, the battery 7 of the prior art is
The internal pressure of the battery has increased significantly. Furthermore, as the charging rate increased, the pressure rapidly increased, causing electrolyte leakage. Therefore, it has been revealed that the battery according to the present invention has better oxygen gas absorption ability than the prior art, and does not cause leakage.

実施例2 触媒成分に銀を用いた酸素ガス吸収体を充填した。Ag
N0:lを出発物質としそれをメタノール溶液中で還元
しAgブラックとした。Agブラックを円筒状のニッケ
ル焼結体にAgとして5wt%になるように担持させた
ガス吸収体8を電池の中心部に充填させた。密閉型円筒
形電池の断面模式図を第4図に示す。それ以外のニッケ
ル極及びカドミウム極は実施例1と同一条件で作製した
電極を用いて電池とし、充電率ICで連続充電をしてそ
の時の電池内圧を測定した。比較のために従来技術の電
池も測定した。その結果を第5図に示す。従来の電極9
よりも、本発明の電池10が大巾に酸素ガス吸収能が優
れていることが明らかとなった。また、本実施例の酸素
ガス吸収体を同一体積で厚さ0.311III+シート
状に成形し、それを同一の捲回電極の外周部に巻きつけ
、かつ該ガス吸収体をカドミウム極と電気的に接続した
ものを缶に充填し単三型の密閉型円筒形電池を作製した
。この電池の容量は720mAhであった。これに対し
、上記実施例による単三型電池の容量は830mAhで
あった。このことから本発明になる技術は高容量化にも
大きく寄与することが明らかになった。
Example 2 An oxygen gas absorber using silver as a catalyst component was filled. Ag
Using N0:l as a starting material, it was reduced in a methanol solution to obtain Ag black. A gas absorber 8 in which Ag black was supported on a cylindrical nickel sintered body at an amount of 5 wt % as Ag was filled in the center of the battery. A schematic cross-sectional view of a sealed cylindrical battery is shown in FIG. The other nickel electrodes and cadmium electrodes were fabricated under the same conditions as in Example 1 to form a battery, and the battery was continuously charged at a charging rate of IC, and the internal pressure of the battery at that time was measured. A prior art battery was also measured for comparison. The results are shown in FIG. Conventional electrode 9
It has become clear that the battery 10 of the present invention has significantly superior oxygen gas absorption ability. Further, the oxygen gas absorber of this example was formed into a sheet having the same volume and thickness of 0.311III+, and was wound around the outer periphery of the same wound electrode, and the gas absorber was electrically connected to the cadmium electrode. A sealed cylindrical AA battery was produced by filling a can with the battery connected to the battery. The capacity of this battery was 720mAh. In contrast, the capacity of the AA battery according to the above example was 830 mAh. From this, it has become clear that the technology of the present invention greatly contributes to increasing capacity.

実施例3 金属カドミウム50−t%、亜鉛50−t%の合金の円
柱形のガス吸収体3φを捲回軸芯とし、それ以外のニッ
ケル極及びカドミウム極は実施例1と同一の条件で作製
した電極をセパレータを介してガス吸収体に捲回して捲
回電極とし、電池を作製した。充電率はIC1充電時間
1.5hとし、電池の内圧を測定した。比較のために従
来電池も測定した。その結果を第6図に示す。本発明の
電池11缶内圧は約2kg/cm2であるのに対して、
従来電池12は6kg/cm2に内圧が上昇した。従っ
て、本発明になる電池は従来電池よりも酸素ガス吸収能
が優れていることが明らかとなった。
Example 3 A cylindrical gas absorber made of an alloy of 50-t% metal cadmium and 50-t% zinc was used as the winding shaft core, and the other nickel electrodes and cadmium electrodes were manufactured under the same conditions as in Example 1. The obtained electrode was wound around a gas absorber via a separator to form a wound electrode, and a battery was manufactured. The charging rate was 1.5 hours for IC1 charging, and the internal pressure of the battery was measured. For comparison, a conventional battery was also measured. The results are shown in FIG. The internal pressure of the battery 11 of the present invention is about 2 kg/cm2, whereas
In the conventional battery 12, the internal pressure increased to 6 kg/cm2. Therefore, it has become clear that the battery according to the present invention has better oxygen gas absorption ability than the conventional battery.

発明の効果 本発明によれば、捲回電極の空間部分である中心部にガ
ス吸収体を設けるので、電池内で捲回電極が占める割合
が変化しないので、正極及び負極とも活物質の充填容量
を低下させることがない。
Effects of the Invention According to the present invention, since the gas absorber is provided in the center, which is the space of the wound electrode, the proportion occupied by the wound electrode in the battery does not change, so that the filling capacity of the active material for both the positive electrode and the negative electrode is reduced. will not deteriorate.

また、正極から発生する酸素ガスをカドミウム極の活物
質と同様にガスを吸収するので、電池内での酸素ガス吸
収能が向上する。従って、電池缶内での圧力が上昇しな
いことから急速充電が可能となり充電時間が短縮できる
。また、ガス圧が上昇しないことで安全性が向上する。
In addition, since it absorbs oxygen gas generated from the positive electrode in the same way as the active material of the cadmium electrode, the ability to absorb oxygen gas within the battery is improved. Therefore, since the pressure within the battery can does not increase, rapid charging is possible and the charging time can be shortened. Additionally, safety is improved because the gas pressure does not increase.

さらには、電解液の漏液がな(なるので電極と電解液の
バランスが保たれ、電池の長寿命化にも効果がある。
Furthermore, since there is no electrolyte leakage, the balance between the electrode and electrolyte is maintained, which is effective in extending the life of the battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第4図は円筒形電池の断面模式図、第2図
、第3図、第5図、第6図は本発明と従来品との電池缶
内圧の比較特性図である。 1:ガス吸収体、2:電極群、3:電池ケース、4:本
発明品、6:本発明品、8:ガス吸収体、lO二本発明
品、11:本発明品。 °;“を; 第1図 第2図 充電時間 (筑in)) 第3図 第4図 5電爪チース 第7図 サイクル数 電池缶内圧(kg/c7712) 電池缶内圧(kg/cm2)
1 and 4 are schematic cross-sectional views of a cylindrical battery, and FIGS. 2, 3, 5, and 6 are characteristic diagrams comparing the internal pressure of a battery can between the present invention and a conventional product. 1: gas absorber, 2: electrode group, 3: battery case, 4: product of the present invention, 6: product of the present invention, 8: gas absorber, IO2 product of the present invention, 11: product of the present invention. Figure 1 Figure 2 Charging time (Chikuin)) Figure 3 Figure 4 Figure 5 Electric claw cheese Figure 7 Number of cycles Battery can internal pressure (kg/c7712) Battery can internal pressure (kg/cm2)

Claims (1)

【特許請求の範囲】 1、正極及び負極、セパレータからなる電極群の中心部
にガス吸収体を設けたことを特徴とする二次電池。 2、ガス吸収体が負極し電気的に接続されている請求項
第1項に記載の二次電池。 3、ガス吸収体が金属と酸素の反応を利用した機構で作
動する請求項第1項に記載の二次電池。 4、ガス吸収体が触媒を担持し電気化学反応によりガス
を吸収する請求項第1項に記載の二次電池。 5、ガス吸収体にセパレータ、正極、負極を捲回して形
成された捲回電極を用いる請求項第1項に記載の二次電
池。
[Claims] 1. A secondary battery characterized in that a gas absorber is provided at the center of an electrode group consisting of a positive electrode, a negative electrode, and a separator. 2. The secondary battery according to claim 1, wherein the gas absorber is a negative electrode and is electrically connected. 3. The secondary battery according to claim 1, wherein the gas absorber operates by a mechanism utilizing a reaction between metal and oxygen. 4. The secondary battery according to claim 1, wherein the gas absorber supports a catalyst and absorbs gas through an electrochemical reaction. 5. The secondary battery according to claim 1, wherein a wound electrode formed by winding a separator, a positive electrode, and a negative electrode around the gas absorber is used.
JP2104686A 1990-04-20 1990-04-20 Secondary battery Pending JPH044574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2104686A JPH044574A (en) 1990-04-20 1990-04-20 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2104686A JPH044574A (en) 1990-04-20 1990-04-20 Secondary battery

Publications (1)

Publication Number Publication Date
JPH044574A true JPH044574A (en) 1992-01-09

Family

ID=14387355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2104686A Pending JPH044574A (en) 1990-04-20 1990-04-20 Secondary battery

Country Status (1)

Country Link
JP (1) JPH044574A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077549A (en) * 2001-08-31 2003-03-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2015092493A (en) * 2010-09-02 2015-05-14 株式会社Gsユアサ Battery
US9337454B2 (en) 2010-12-03 2016-05-10 Panasonic Intellectual Property Management Co., Ltd. Battery pack including gas absorption portion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077549A (en) * 2001-08-31 2003-03-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2015092493A (en) * 2010-09-02 2015-05-14 株式会社Gsユアサ Battery
US9337454B2 (en) 2010-12-03 2016-05-10 Panasonic Intellectual Property Management Co., Ltd. Battery pack including gas absorption portion

Similar Documents

Publication Publication Date Title
JP2730121B2 (en) Alkaline secondary battery and manufacturing method thereof
US5032475A (en) Nickel-metal hydride secondary cell
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP3042043B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
US4994334A (en) Sealed alkaline storage battery and method of producing negative electrode thereof
US5480741A (en) Cell provided with gaseous diffusion electrode, and method of charging and discharging the same
JP2001338645A (en) Paste type positive electrode for alkaline battery and nickel hydrogen battery
US5707761A (en) Nickel positive electrode and alkaline storage battery using the same
KR100224464B1 (en) Alkaline secondary battery manufacturing method, alkaline secondary battery positive electrode, alkaline secondary battery, and a method of manufacturing an initially charged alkaline secondary battery
JP4556315B2 (en) Alkaline storage battery
US5131920A (en) Method of manufacturing sealed rechargeable batteries
JPH044574A (en) Secondary battery
KR100404658B1 (en) Nickel-Metal Hydride Batteries and Manufacturing Method
JP2989877B2 (en) Nickel hydride rechargeable battery
JP2004303678A (en) Energy storage element and combined energy storage element
JPH0714578A (en) Nickel positive electrode for alkaline storage battery and sealed nickel-hydrogen storage battery
JPS61208755A (en) Pasted negative cadmium plate for sealed alkaline storage battery
KR100790563B1 (en) Structure of electrode group for large capacity nickel/metal hydryde secondary battery
JPH05159779A (en) Nickel hydroxide electrode and alkaline secondary battery with this electrode serving as positive pole
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2861057B2 (en) Alkaline secondary battery
JP2591985B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3876960B2 (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery using the same
JP2001256948A (en) Nickel/hydrogen secondary battery
JP2000299123A (en) Nickel-hydrogen secondary battery