JP4556315B2 - Alkaline storage battery - Google Patents

Alkaline storage battery Download PDF

Info

Publication number
JP4556315B2
JP4556315B2 JP2000307130A JP2000307130A JP4556315B2 JP 4556315 B2 JP4556315 B2 JP 4556315B2 JP 2000307130 A JP2000307130 A JP 2000307130A JP 2000307130 A JP2000307130 A JP 2000307130A JP 4556315 B2 JP4556315 B2 JP 4556315B2
Authority
JP
Japan
Prior art keywords
positive electrode
nickel
nickel hydroxide
storage battery
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000307130A
Other languages
Japanese (ja)
Other versions
JP2002117842A (en
Inventor
健吾 古川
実 黒▲葛▼原
誠二郎 落合
正治 綿田
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2000307130A priority Critical patent/JP4556315B2/en
Publication of JP2002117842A publication Critical patent/JP2002117842A/en
Application granted granted Critical
Publication of JP4556315B2 publication Critical patent/JP4556315B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アルカリ蓄電池に関する。
【0002】
【従来の技術とその課題】
アルカリ蓄電池の1種であるニッケル−水素蓄電池は、同じアルカリ蓄電池の1種であるニッケル−カドミウム蓄電池に比べて高いエネルギー密度を有し、しかも有害なカドミウムを含まず環境汚染のおそれが少ないことから、携帯電話、小型電動工具および小型パーソナルコンピュータ等の携帯用小型電子機器類用の電源として広く利用されており、これらの小型電子機器類の普及とともに需要が飛躍的に増大している。また、上述の携帯用小型電子機器類は、小型化、軽量化の進捗により電源の設置スペースが大きく制限されるようになっており、その一方、多機能化に伴って消費電力が増大している。このため、このような小型電子機器類に用いられるニッケル−水素蓄電池は、小型化と高容量化という、背反し合う課題を同時に達成する必要に迫られている。
【0003】
ところで、ニッケル−水素蓄電池は、一般に、水酸化ニッケル系活物質を備えた正極と、水素吸蔵合金を備えた負極とを有している。正極に用いられている水酸化ニッケル系活物質は、通常、導電性を高めて利用率を改善するために、水酸化コバルト等のコバルト化合物を含んでいる。このコバルト化合物は、初期充電時に酸化されてオキシ水酸化コバルトに転換され、このオキシ水酸化コバルトが水酸化ニッケルに導電性ネットワークを形成して正極の利用率を高めている。ところが、初期充電時に正極でオキシ水酸化コバルトが生成する反応は不可逆反応であり、一度生成したオキシ水酸化コバルトは放電時に元のコバルト化合物には変換されないため、負極側においては、正極側のコバルト化合物が初期充電時にオキシ水酸化コバルトに転換する際の容量に相当する分の過剰な容量、換言すると、放電時において過剰に放電可能な容量(放電リザーブ)を設ける必要がある。
【0004】
また、ニッケル−水素蓄電池は、過充電時において、正極側で酸素ガスが発生する。この酸素ガスは、密閉型蓄電池においては内圧上昇を招くため、結果的に液漏れに伴う電池寿命の短縮化の原因となり得る。そのため、ニッケル−水素蓄電池では、正極で生成した酸素ガスを負極側の水素吸蔵合金により吸収して消費するために、負極側に過剰に充電可能な容量(充電リザーブ)を設け、その充電リザーブ部分で生成した酸素ガスを吸収する必要がある。
【0005】
以上のような事情から、ニッケル−水素蓄電池は、正極の容量に比べて負極の容量が大きく設定されており、充放電容量が正極の容量により規制されるよう設定されている(正極規制方式)。
【0006】
従って、ニッケル−水素蓄電池は、正極の容量を高めると高容量化を達成できるわけであるが、正極の容量を高めると、それに伴い放電リザーブおよび充電リザーブを考慮して負極の容量も同時に高める必要があるため、小型化が困難になる。
【0007】
本発明の目的は、負極容量の増大を抑制しながら高容量化を達成でき、さらに電池の内圧上昇を招きにくいアルカリ蓄電池用正極活物質を実現することにある。
【0008】
【課題を解決するための手段】
本発明に係るアルカリ蓄電池は、水酸化ニッケルを含む芯層と、コバルト化合物を含みかつ芯層を被覆する表面層とを備え、水酸化ニッケル中のニッケルの酸化数が2.04〜2.40に設定されている水酸化ニッケル系の正極活物質を備えた正極と、負極活物質を備えた負極と、負極と正極との間に配置されたセパレータと、セパレータに保持されたアルカリ電解液とを備えており、負極は、放電リザーブと充電リザーブとの合計が負極容量の40%以下である。
【0018】
【発明の実施の形態】
アルカリ蓄電池用正極活物質
本発明のアルカリ蓄電池用正極活物質は、アルカリ蓄電池用正極を製造するために用いられるものであり、次のような工程を経て製造することができる。
先ず、水酸化ニッケル系材料を用意する。ここで用いられる水酸化ニッケル系材料は、水酸化ニッケルを含む芯層と、当該芯層を被覆する表面層とを備えたものである。
【0019】
芯層に含まれる水酸化ニッケルは、アルカリ蓄電池用の正極活物質として利用されている公知の各種のものであり、特に限定されるものではないが、通常は、α型水酸化ニッケル(α−Ni(OH)2)やβ型水酸化ニッケル(β−Ni(OH)2)が好ましい。また、芯層は、水酸化ニッケルのみからなるものでもよいが、水酸化ニッケルの結晶中にコバルト、亜鉛、マグネシウム、カドミウム、アルミニウムおよびマンガンのうちの少なくとも1つの元素を固溶状態で含むものが好ましい。
【0020】
ここで、水酸化ニッケルの結晶中にコバルトが含まれる場合は、本発明の正極活物質において充電電位を卑側にシフトさせることができ、充電電位と酸素発生電位との電位差を大きく設定することができる。この結果、この正極活物質を用いたアルカリ蓄電池は、高温下での充電効率を向上させることができる。
【0021】
また、水酸化ニッケルの結晶中に亜鉛、マグネシウムおよびカドミウムのうちの少なくとも1つ、特に、亜鉛およびカドミウムのうちの少なくとも1つが含まれる場合は、充電時、特に充電末期において、水酸化ニッケル系活物質の膨潤の原因となるγ−NiOOHが生成するのを効果的に抑制することができる。このため、この正極活物質を用いたアルカリ蓄電池は、正極の膨潤が抑制され得、その結果、電解液の正極側への偏在が緩和されて充放電サイクル寿命が改善され得る。
【0022】
さらに、水酸化ニッケルとしてα−Ni(OH)2を用いる場合において、その結晶中にアルミニウムおよびマンガンのうちの少なくとも1つが含まれる場合は、アルカリ蓄電池において通常用いられる高濃度のアルカリ電解液中で不安定なα−Ni(OH)2を安定化することができ(すなわち、α−Ni(OH)2がβ−Ni(OH)2に形態変化するのを抑制することができ)、その結果、α−Ni(OH)2とその高次酸化物であるγ−NiOOHとの酸化還元反応を充放電反応として利用しやすくなるので、正極の高容量化を達成することが可能になる。すなわち、β−Ni(OH)2を用いた場合は、当該β−Ni(OH)2とβ−NiOOHとの間の可逆反応(酸化還元反応)が1電子反応であるのに対し、α−Ni(OH)2とγ−NiOOHとの可逆反応(酸化還元反応)は1.5電子反応であるため、正極の高容量化が達成され得る。また、α−Ni(OH)2を用いた場合は、正極の膨潤を併せて抑制することができるので、アルカリ蓄電池の充放電サイクル寿命の改善を図ることも可能になる。
【0023】
一方、表面層は、上述の芯層の表面を被覆するように配置されたものであり、コバルト化合物を含んでいる。ここで用いられるコバルト化合物は、通常、一酸化コバルトまたは水酸化コバルトであるが、後述する酸化処理工程において酸化され易く、オキシ水酸化コバルトを生成し易い点で水酸化コバルトが好ましい。
【0024】
上述の水酸化ニッケル系材料中に占める表面層の割合は、通常、4〜10重量%に設定されているのが好ましく、4〜8重量%に設定されているのがより好ましい。表面層の割合が4重量%未満の場合は、本発明の正極活物質の導電性が十分に高まらず、利用率を高めるのが困難になる可能性がある。逆に、10重量%を超える場合は、相対的に水酸化ニッケル量が減少することになるので、容量低下を招くおそれがある。
【0025】
上述のような水酸化ニッケル系材料は、例えば、次のようにして製造することができる。先ず、硫酸ニッケルまたは硝酸ニッケルの水溶液を調製する。そして、この水溶液中にアンモニウムイオン供給体として例えば硫酸アンモニウムを添加してアンミン錯イオンを生成させた後、この水溶液を激しく攪拌しながら、当該水溶液に対してpHが8〜12に維持されるように水酸化ナトリウム水溶液を滴下し、水酸化ニッケル粒子を析出させる。なお、水酸化ニッケルの結晶中に上述のような元素が固溶状態で含まれるものを製造する場合は、硫酸ニッケルまたは硝酸ニッケルの水溶液中に必要な元素の塩(例えば硫酸亜鉛)を所定の割合で加えておく。このようにしておくと、析出する水酸化ニッケル中には、当該元素が固溶状態で導入され得る。なお、このような水酸化ニッケル粒子の製造方法は公知であり、例えば特開平2−30061号に記載されている。
【0026】
因みに、上述のような水酸化ニッケル粒子の製造工程において、水酸化ナトリウム水溶液を滴下中の上記水溶液のpHを10〜12に維持した場合はβ−Ni(OH)2の粒子が得られ、上記水溶液のpHを8〜10に維持した場合はα−Ni(OH)2の粒子が得られる。
【0027】
次に、得られた水酸化ニッケル粒子を乾燥し、この水酸化ニッケル粒子を硫酸アンモニウムと水酸化ナトリウムとを用いてpH8〜13に調整された水溶液中に投入し、水酸化ニッケル水溶液を調製する。そして、この水酸化ニッケル水溶液を攪拌し、その状態でpHが8〜13に維持されるよう硫酸コバルト水溶液と水酸化ナトリウム水溶液とを滴下し、滴下終了後にpHを8〜13程度の範囲に維持しつつ水酸化ニッケル水溶液を10分〜6時間程度保持する。これにより、上述のような芯層と表面層とを備えた目的とする水酸化ニッケル系材料が得られる。なお、このようにして水酸化ニッケル粒子の表面に水酸化コバルトの被覆層を設ける方法は公知であり、例えば特開昭62−234867号に記載されている。
【0028】
本発明の正極活物質は、上述のようにして得られた水酸化ニッケル系材料をアルカリ水溶液中において酸化剤を用いて酸化処理すると製造することができる。
ここでは、先ず、アルカリ水溶液を調製し、このアルカリ水溶液中に水酸化ニッケル系材料を投入する。ここで利用可能なアルカリ水溶液は、特に限定されるものではないが、通常は水酸化カリウムおよび水酸化ナトリウムのうちの少なくとも1つを含むものである。このようなアルカリ水溶液を用いた場合は、γ−NiOOHの生成が抑制される効果を期待することができる。
【0029】
また、アルカリ水溶液は、温度が60℃以上に設定されているのが好ましい。
このような温度に設定されているアルカリ水溶液を用いると、放電容量が大きな正極活物質の実現が可能である。なお、アルカリ水溶液の温度が80℃以上に設定されている場合は、さらに高率放電特性が良好な正極活物質の実現が可能である。また、アルカリ水溶液の温度が100℃以上に設定されている場合は、さらに過放電後の放電回復容量の良好な正極活物質の実現が可能である。なお、アルカリ水溶液の温度の上限は特に限定されるものではないが、通常は常圧下での沸点以下に設定するのが好ましい。
【0030】
次に、上述のアルカリ水溶液中に酸化剤を添加し、当該水溶液中に含まれる水酸化ニッケル系材料を酸化処理する。これにより、上記水酸化ニッケル系材料を構成する表面層が酸化され、当該表面層に含まれるコバルト化合物が高導電性のオキシ水酸化コバルトに転換される。このオキシ水酸化コバルトは、芯層側の水酸化ニッケルに対して効果的な導電性ネットワークを形成し、水酸化ニッケルの導電性を効果的に高めてその利用率を高めることができるので、正極活物質の容量を高めることができる。
【0031】
ここで用いられる酸化剤は、特に限定されるものではなく、公知の各種のものであるが、酸化力が大きく、水酸化ニッケル系材料を効率的に酸化処理することができる点で、ペルオキソ二硫酸カリウム(K228)、ペルオキソ二硫酸ナトリウム(Na228)、ペルオキソ二硫酸アンモニウム((NH4228)および次亜塩素酸ナトリウム(NaClO)からなる群から選択された少なくとも1つを用いるのが好ましい。
【0032】
このような酸化処理工程において、上述の酸化剤の添加量は、酸化剤の種類に応じて変化するため一概に特定できるものではないが、酸化処理対象となる水酸化ニッケル系材料を構成する上述の芯層に含まれる水酸化ニッケル中のニッケルの酸化数が2.04〜2.40になるよう設定するのが好ましい。この酸化数が2.04未満の場合は、本発明の正極活物質を用いた正極を含むアルカリ蓄電池の負極側において、放電リザーブが削減されにくくなり、充電リザーブを増大させにくくなるため、過充電時に正極側で発生した酸素ガスを負極側の充電リザーブにより吸収するのが困難になり、結果的に当該蓄電池の内圧上昇を抑制するのが困難になるおそれがある。一方、この酸化数が2.40を超える場合は、本発明の正極活物質を用いた正極を含むアルカリ蓄電池において、電池容量が負極規制になって放電容量が低下する可能性があり、その結果、サイクル寿命が短くなる可能性がある。
【0033】
なお、上述の酸化数は、硫酸第一鉄法により測定した値である。具体的には、先ず、水酸化ニッケルに含まれる活性酸素量を求める。ここでは、水酸化ニッケルの粉末(試料粉末)0.1gと硫酸第一鉄アンモニウム1gとを秤量し、これを5℃に設定された20体積%濃度の酢酸水溶液に添加する。そして、約3〜10時間攪拌して完全に溶解させた後、この溶液を1/10N(0.02mol/l)の過マンガン酸カリウム溶液を用いて滴定し、次の式(1)から活性酸素量を算出する。
【0034】
【数1】

Figure 0004556315
【0035】
式(1)中、XFeは硫酸第一鉄アンモニウムの秤量量(g)、Vは過マンガン酸カリウム溶液の滴定量(ml)、fは過マンガン酸カリウム溶液のファクター、Xspは試料粉末の秤量量(g)である。
【0036】
次に、試料粉末中に含まれるニッケル量(重量%)を、ICP発光分析法や原子吸光分析法などの方法により定量分析し、次の式(2)から水酸化ニッケル中のニッケルの酸化数を算出する。
【0037】
【数2】
Figure 0004556315
【0038】
アルカリ蓄電池用正極
本発明のアルカリ蓄電池用正極は、集電体に対して本発明に係る上述の正極活物質を配置したものである。ここで用いられる集電体は、アルカリ蓄電池用の正極において通常用いられるものであれば特に限定されるものではないが、上述の正極活物質を密に充填して保持させ易いことから、金属製の多孔体、網状体または多孔板を用いるのが好ましい。
【0039】
金属製の多孔体としては、発泡状金属多孔体を用いるのが好ましい。発泡状金属多孔体とは、スポンジ状の金属体であり、例えば、発泡ウレタンなどの発泡樹脂に対して金属を無電解メッキした後、発泡樹脂を加熱して除去すると製造することができるものである。
【0040】
また、金属製の網状体としては、例えば、金属繊維が三次元的に絡み合った網状体、例えば不織布を用いるのが好ましい。
【0041】
さらに、金属製の多孔板としては、例えばパンチングメタルやエキスパンドメタルを挙げることができる。
【0042】
本発明の正極は、上述の集電板に対して本発明に係る上述の正極活物質を配置すると製造することができる。ここでは、先ず、上述の正極活物質に水を加えてペーストを調製する。この際、必要に応じてカルボキシメチルセルロース(CMC)やメチルセルロース(MC)などの増粘剤を予め水に溶解しておいてもよい。また、必要に応じて、ポリテトラフルオロエチレンやスチレン−ブタジエンゴムなどの結着剤を添加してもよい。次に、調製したペーストを集電体に対して塗布し、乾燥する。なお、集電体が上述のような金属製の多孔体、網状体または多孔板の場合、乾燥後に加圧し、集電体の内部に正極活物質を密に充填するのが好ましい。
【0043】
本発明の正極において用いられる上述の正極活物質は、上述の水酸化ニッケル系材料がアルカリ溶液中において酸化剤を用いて予め酸化処理されたものであるため、アルカリ蓄電池に組み込まれて初期充電される前から、既に表面層に含まれるコバルト化合物が高導電性のオキシ水酸化コバルトに転換されている。したがって、この正極は、従来の正極に比べてより効果的な導電性ネットワークを有し、導電性が高く利用率が高い。また、正極活物質の表面層に含まれるコバルト化合物が予めオキシ水酸化コバルトに転換されている結果、この正極は、それを用いたアルカリ蓄電池の初期充電時において、負極に放電リザーブを形成しにくい。このため、この正極を用いたアルカリ蓄電池は、従来の正極を用いた場合に比べて負極の放電リザーブを削減することができ、負極側の実質的な充放電容量を高めることができるため、負極容量の増大を抑制しながら高容量化を達成することができる。
【0044】
すなわち、この正極は、上述の通り負極側の実質的な充放電容量を高めることができるため、負極活物質の使用量を削減することができる。このため、この正極を用いれば、充放電容量を維持しつつアルカリ蓄電池の小型化を図ることができる。或いは、負極活物質の使用量を維持する場合、放電リザーブの削減分を正極活物質の増加用に充当することができるので、アルカリ蓄電池の大きさを維持しつつ高容量化を図ることができる。
【0045】
また、この正極は、負極の放電リザーブを削減できる結果、その削減分を負極の充電リザーブに充当することが可能になる。したがって、この正極を用いたアルカリ蓄電池は、過充電時に生じるガス(酸素ガスなど)を負極の充電リザーブにより効果的に吸収することができるため、内圧上昇を起こしにくくなり、結果的に充放電サイクル寿命が改善され得る。
【0046】
アルカリ蓄電池
本発明に係るアルカリ蓄電池の実施の一形態を図1に示す。図において、アルカリ蓄電池1は、ニッケル−水素蓄電池であり、ケース2と、当該ケース2内に配置された正極3、負極4、セパレータ5および電解液(図示せず)を主に備えている。
【0047】
ケース2は、上部に開口部2aを有する概ね円筒状の容器であり、その底面部が負極端子に設定されている。正極3、負極4およびセパレータ5は、いずれも柔軟性を有する帯状の部材であり、正極3と負極4とはセパレータ5を挟みつつ渦巻き状に巻き取られた状態でケース2内に配置されている。また、ケース2の開口部2aは、ケース2内に電解液が注入された状態で、絶縁ガスケット6を挟んで封口板7により液密に封鎖されている。なお、封口板7は、上面に正極端子8を有している。この正極端子8は、封口板7と正極3とを電気的に接続するリード9により、正極3に接続されている。
【0048】
このようなアルカリ蓄電池1において用いられる正極3は、上述の本発明に係るアルカリ蓄電池用正極である。すなわち、水酸化ニッケルを含む芯層と、コバルト化合物を含みかつ当該芯層を被覆する表面層とを備え、アルカリ水溶液中において酸化剤を用いて酸化処理された活物質を備えたもの、或いは、水酸化ニッケルを含む芯層と、オキシ水酸化コバルトを含みかつ当該芯層を被覆する表面層とを備え、水酸化ニッケル中のニッケルの酸化数が2.04〜2.40に設定されているものである。
【0049】
また、負極4は、公知の各種のニッケル−水素蓄電池に用いられているものであって特に限定されるものではないが、通常は柔軟性を有する集電体に対して水素吸蔵合金を含む活物質を配置したものである。
【0050】
さらに、セパレータ5は、正極3と負極4とを電気的に絶縁しかつ電解液を保持するためのものであって、公知の各種のニッケル−水素蓄電池において用いられるものであり、特に限定されるものではない。
【0051】
さらに、電解液は、公知のニッケル−水素蓄電池において用いられる各種のアルカリ水溶液であり、特に限定されるものではないが、例えば、水酸化カリウム、水酸化リチウム、水酸化ナトリウムなどの少なくとも1つが溶解された水溶液である。
【0052】
但し、このアルカリ蓄電池1においては、電解液として水酸化カリウム水溶液または水酸化カリウム水溶液に水酸化リチウムおよび水酸化ナトリウムの一方または両方を添加して溶解したものを用いるのが好ましい。このような電解液を用いた場合は、正極3の活物質においてγ−NiOOHの生成が抑制されるため、アルカリ蓄電池1の充電効率を高めることができる。また、このような電解液の使用量は、通常、正極3の容量1Ah当たり、1.0〜1.3mlに設定されているのが好ましい。この使用量が1.0ml未満の場合は、アルカリ蓄電池1の充放電サイクル寿命が短くなるおそれがある。逆に、1.3mlを超える場合は、負極4におけるガス吸収能が低下するため、アルカリ蓄電池1の内圧上昇を抑制するのが困難になるおそれがある。
【0053】
このようなアルカリ蓄電池1は、正極3として本発明に係る上述のものを用いている結果、負極4における放電リザーブが負極4の容量の15%以下になり得る。或いは、負極4における放電リザーブと充電リザーブとの合計が負極4の容量の40%以下になり得る。したがって、このアルカリ蓄電池1は、従来のものに比べ、負極4側の実質的な充放電容量が増大するので、高容量化を達成することができる。より具体的には、このアルカリ蓄電池1は、負極4側において実質的な充放電容量を増大させることができるため、従来のアルカリ蓄電池と同じサイズを維持しつつ高容量化することができる。或いは、従来のものと同程度の容量を維持しつつ、より小型に構成することができる。しかも、このアルカリ蓄電池1は、正極3が上述のような効果を発揮し得るため、従来のニッケル−水素蓄電池に比べて寿命、特に充放電サイクル寿命が良好である。
【0054】
なお、この実施の形態では、本発明に係る正極活物質および正極をニッケル−水素蓄電池に対して適用した場合を例に説明したが、本発明の正極活物質および正極は、ニッケル−カドミウム蓄電池をはじめとする他のアルカリ蓄電池においても同様に用いることができる。
【0055】
【実施例】
比較例1
硝酸ニッケル、硝酸コバルトおよび硝酸亜鉛の混合水溶液を用い、また、反応時のpHを11〜12に設定し、特開平2−30061号に記載された方法に従ってコバルトおよび亜鉛がそれぞれ水酸化物換算で1重量%および5重量%固溶した高密度水酸化ニッケル粉末を得た。粉末X線回折法によりこの粉末の結晶構造を調べた結果、この水酸化ニッケルは、格子定数がa=4.64Å、c=3.11Åのβ型水酸化ニッケルであることを確認した。次に、得られた水酸化ニッケル粉末に対し、特開昭62−234867号に記載された方法を適用し、表面に水酸化コバルトの被覆層が形成された水酸化ニッケル粒子からなる水酸化ニッケル系材料粉末(正極活物質)を調製した。この水酸化ニッケル系材料粉末において、水酸化コバルトの被覆層の量は6重量%であった。なお、この正極活物質に関し、上述の硫酸第一鉄法に従って水酸化ニッケル中のニッケルの酸化数を測定したところ、2.00であった。
【0056】
実施例1〜5
50℃に設定された14Nの水酸化ナトリウム水溶液を用意し、この水溶液中に比較例1で得られた水酸化ニッケル系材料粉末を投入して攪拌した。続いて、当該水溶液中に、水酸化ニッケル中のニッケルの酸化数が2.05、2.10、2.15、2.20および2.40になるようペルオキソ二硫酸カリウム(K228)を加え、2時間に渡って攪拌を継続した。攪拌終了後、水酸化ニッケル系材料粉末を水洗・乾燥し、表面がオキシ水酸化コバルトにより被覆された水酸化ニッケル粒子からなる目的とする正極活物質を得た。
【0057】
得られた正極活物質について、上述の硫酸第一鉄法により水酸化ニッケル中のニッケルの酸化数を測定した結果を表1に示す。なお、表1には、比較例1の結果も併せて示す。
【0058】
【表1】
Figure 0004556315
【0059】
実施例6〜10および比較例2
実施例1〜5および比較例1でそれぞれ得られた正極活物質に対して増粘剤を溶解した水溶液を加えてペースト状にし、このペーストをニッケル多孔体基板に充填した後、プレスして厚さ調整し、正極板を得た。この正極板の電気化学容量は、Ni(II)→Ni(III)の1電子反応を仮定して次の式に基づいて算出し、正極活物質中のNi元素1g当り、456.47mAhに設定した。
【0060】
【化1】
Figure 0004556315
【0061】
一方、MmNiAlCoMn(Mmはミッシュメタルであり、La、Ce、PrおよびNdからなる希土類元素の混合物である)の組成で示される、75μm以下の粒径の水素吸蔵合金粉末を用意し、この水素吸蔵合金粉末に対して増粘剤を溶解した水溶液と結着剤であるポリテトラフルオロエチレンとを加えてペーストを調製した。このペーストをパンチングメタルの両面に塗布して乾燥した後、プレスして厚さ調整し、負極板を得た。なお、この負極板の容量は、上述の正極板の容量の1.6倍に設定した。この負極板において、放電リザーブと充電リザーブとの合計は、負極容量の37.5%になる。
【0062】
得られた正極板と負極板とを、ポリオレフィン系樹脂繊維の不織布からなる厚さ0.12mmのセパレータを挟んで渦巻状に巻き取り、電極群を製造した。そして、側面の肉厚が0.18mmの円筒状金属ケースを用意し、この金属ケース内に電極群を収納した後、7Nの水酸化カリウム水溶液と1Nの水酸化リチウム水溶液とからなる電解液を正極容量1Ah当り1.16ml注入した。そして、安全弁を備えた金属製蓋体を用いて金属ケースを封口し、正極板が異なる6種類のAAサイズの円筒型ニッケル−水素蓄電池を得た。なお、各ニッケル−水素蓄電池で用いた正極活物質は表2に示す通りである。
【0063】
【表2】
Figure 0004556315
【0064】
比較例3
コバルトと亜鉛とを固溶状態で含む水酸化ニッケル粉末90重量部と、一酸化コバルト10重量部とを混合し、正極活物質を調製した。この正極活物質に増粘剤を溶解した水溶液を加えてペーストを調製し、このペーストをニッケル多孔基板に充填した後、プレスして厚さ調整し、正極板を得た。
【0065】
得られた正極板と、その1.75倍の容量を有する、実施例6〜10および比較例2で用いたものと同じ負極板とを、実施例6〜10および比較例2で用いたものと同様のセパレータを挟んで渦巻き状に巻取り、電極群を製造した。そして、側面の肉厚が0.25mmの円筒状金属ケースを用意し、この金属ケース内に電極群を収納した後、7Nの水酸化カリウム水溶液と1Nの水酸化リチウム水溶液とからなる電解液を正極容量1Ah当り1.52ml注入した。そして、安全弁を備えた金属製蓋体を用いて金属ケースを封口し、AAサイズの円筒型ニッケル−水素蓄電池を得た。
【0066】
評価1
実施例6〜10および比較例2で得られたニッケル−水素蓄電池について、次の評価を実施した。
(放電容量)
各蓄電池を、20℃の温度環境下、充電電流0.1Cで15時間充電し、1時間休止した後、放電電流0.2Cで終止電圧を1.0Vとして放電した。そして、この充放電過程を4サイクル繰返した後、5サイクル目の放電容量を調べた。
結果を図2に示す。図2から、実施例6〜10および比較例2の各蓄電池は、良好な放電容量を達成できることがわかるが、正極活物質における水酸化ニッケル中のニッケルの酸化数が2.40を超える場合は、放電容量が低下する可能性のあることが併せてわかる。
【0067】
(電池内圧の変化)
実施例6〜8および比較例2の各ニッケル−水素蓄電池について、充放電サイクル繰返し時の電池内圧の変化を調べた。ここでは、対象となる各ニッケル−水素蓄電池に対して内圧測定用の圧力センサーを装着し、20℃の温度環境下、充電電流1.0Cで1.5時間充電し、1時間休止した後、放電電流1.0Cで終止電圧を1.0Vとして放電する工程を10サイクル繰返し、10サイクル目の蓄電池内圧を調べた。結果を図3に示す。図3より、実施例6〜8の蓄電池は、比較例2の蓄電池に比べて内圧の上昇が起こりにくいことがわかる。特に、正極板に用いた正極活物質において、水酸化ニッケル中のニッケルの酸化数が大きくなるに従って、内圧の上昇が抑制されることがわかる。また、円筒型ニッケル−水素蓄電池において通常用いられる安全弁の作動圧力(1.5MPa)に鑑みると、正極活物質において、水酸化ニッケル中のニッケルの酸化数は2.04以上に設定するのが好ましいことがわかる。
【0068】
(放電リザーブの測定)
電池内圧の変化を調べた実施例6〜8および比較例2の各ニッケル−水素蓄電池について、上述の10サイクルの充放電の繰返し後に1時間放置した後、放電電流を0.2C、終止電圧を1.0Vとして放電した。そして、各蓄電池を解体し、負極板を取り出した。
【0069】
比較例2で用いた正極板と同じ正極板を充電末期状態に設定し、各正極板を、蓄電池から取り出した対応する負極板とポリオレフィン系樹脂からなるセパレータを挟んで積層した。そして、この積層物に均圧を加えて液過剰の開放型試験用セルを構成し、負極の残存容量を測定した。ここでは、参照電極としてHg/HgOを用い、20℃の温度環境下、放電電流を正極容量基準の0.2C、終止電圧を参照電極に対して−0.6Vにそれぞれ設定して放電した。結果を図4に示す。図4より、実施例6〜8の蓄電池は放電リザーブが15%以下に抑制されており、また、正極板の正極活物質において、水酸化ニッケル中のニッケルの酸化数が増加するに従い、負極板において放電リザーブが減少する傾向にあることがわかる。実施例6〜8および比較例2の各蓄電池は、総負極容量が同一(すなわち、放電リザーブと充電リザーブとの合計量が同一)であるため、実施例6〜8の蓄電池は、負極板において放電リザーブの減少分が充電リザーブの増加に充当され、その結果、負極板において過充電時の酸素ガス吸収性能が高まり内圧上昇が抑制されたものと考えられる。
【0070】
評価2
実施例6〜8および比較例3で得られた各ニッケル−水素蓄電池について、放電容量を調べた。ここでは、20℃の温度環境下、充電電流0.1Cで15時間充電し、1時間休止した後、放電電流0.2Cで終止電圧を1.0Vとして放電した。そして、この充放電サイクルを4サイクル繰返し、5サイクル目の放電容量を調べた。結果を図5に示す。図5から、実施例6〜8のニッケル−水素蓄電池は、比較例3のものに比べて負極容量が小さいにも拘わらず、比較例3のものに比べて放電容量が約20%高まっていることがわかる。
【0071】
実施例11〜13
比較例1の過程で得られた、コバルトおよび亜鉛がそれぞれ水酸化物換算で1重量%および5重量%固溶した高密度水酸化ニッケル粉末と同じものを用意した。そして、アンモニウムイオン供給体である硫酸アンモニウムと水酸化ナトリウムとを含む水溶液を調製し、この水溶液中に高密度水酸化ニッケル粉末を投入して水酸化ニッケル含有水溶液を得た。この水酸化ニッケル含有水溶液に対し、そのpHが8〜13に維持されるよう硫酸コバルトを含む水溶液と水酸化ナトリウムを含む水溶液とを激しく攪拌しながら投入して反応させた。これにより、表面に水酸化コバルトの被覆層が形成された水酸化ニッケル粒子からなる水酸化ニッケル系材料粉末を得た。この際、反応時間を適宜変更し、水酸化コバルトの被覆層量を表3に示すように設定した。
【0072】
【表3】
Figure 0004556315
【0073】
次に、温度を50℃に設定した14Nの水酸化ナトリウム水溶液を調製し、当該水溶液中に得られた水酸化ニッケル系材料粉末を投入して攪拌した。続いて、当該水溶液中に、水酸化ニッケル中のニッケルの酸化数が2.15になるようペルオキソ二硫酸カリウム(K228)を加え、2時間に渡って攪拌を継続した。攪拌終了後、水酸化ニッケル系材料粉末を水洗・乾燥し、表面がオキシ水酸化コバルトにより被覆された水酸化ニッケル粒子からなる目的とする正極活物質を得た。得られた正極活物質について、実施例1〜5の場合と同様にして水酸化ニッケル中のニッケルの酸化数を調べたところ、2.15であることが確認された。得られた正極活物質を用い、実施例6〜10および比較例2の場合と同様にして正極板を製造した。
【0074】
評価3
予め十分に活性化処理を施した、実施例6〜10および比較例2で用いたものと同様の負極板を用意した。この負極板と、実施例11〜13でそれぞれ得られた正極板および実施例8で用いた正極板(水酸化コバルトの被覆層量=6重量%)とをポリオレフィン系樹脂繊維を用いて形成された不織布からなるセパレータを挟んで積層し、この積層物に均圧を加えて液過剰の開放型試験用セルを構成した。
【0075】
この開放型試験用セルを、20℃の温度環境下において、充電電流0.1Cで15時間充電し、1時間休止した後、終止電圧が参照電極であるHg/HgOに対して0Vになるまで放電した。この充放電サイクルを4サイクル繰返し、5サイクル目に1C放電を実施したときの放電容量を調べた。結果を図6に示す。図6から、正極活物質の製造過程における水酸化コバルトの被覆層量を4重量%以上に設定した場合、好ましい放電容量を達成できることがわかる。
【0076】
実施例14〜17
実施例3に係る正極活物質の製造過程において、14Nの水酸化ナトリウム水溶液の温度を表4に示すように変更した点を除き、実施例3と同様にして正極活物質を得た。そして、この正極活物質を用い、実施例8と同様のニッケル−水素蓄電池を製造した。
【0077】
評価4
実施例14〜17で得られたニッケル−水素蓄電池について、20℃の温度環境下、充電電流1.0Cで1.5時間充電し、1時間休止した後、放電電流1.0Cで終止電圧を1.0Vとして放電する工程を繰返し、5サイクル目の放電容量を調べた。結果を表4に示す。なお、表4には、実施例8のニッケル−水素蓄電池について同様の放電容量を測定した場合の結果を併せて示しており、実施例14〜17の結果は、実施例8の放電容量を100とした場合の相対指数である。表4から、実施例14〜17の電池は、実施例8の電池の相対容量98以上を達成していることがわかり、その結果、14Nの水酸化ナトリウム水溶液の温度を60℃以上に設定した場合、特に80℃以上に設定した場合に放電容量の良好なニッケル−水素蓄電池が得られることがわかる。
【0078】
【表4】
Figure 0004556315
【0079】
次に、実施例14〜17および実施例8の各ニッケル−水素蓄電池について、20℃の温度環境下、充電電流0.1Cで15時間充電し、1時間休止した後、放電電流1.0Cと3.0Cで終止電圧を1.0Vとして放電し、高率放電容量を調べた。結果を図7に示す。図7から、14Nの水酸化ナトリウム水溶液の温度を80℃以上に設定した場合、高率放電容量の良いニッケル−水素蓄電池が得られることがわかる。
【0080】
さらに、実施例14〜17および実施例8の各ニッケル−水素蓄電池を、20℃の温度環境下、充電電流0.1Cで15時間充電し、1時間休止した後、放電電流0.2Cで終止電圧を1.0Vとして放電し、充電末期の状態に設定した。
その状態で、これらの電池に対し、60℃の環境下で定抵抗を3日間接続した。
その後、再度20℃の温度環境下において、これらの電池を充電電流0.1Cで15時間充電し、1時間休止した後、放電電流0.2Cで終止電圧を1.0Vとして放電し、定抵抗接続後の放電回復容量(過放電後の放電回復容量)を調べた。結果を図8に示す。図8に示す結果は、定抵抗接続前の放電容量を100とした場合の相対指数である。図8から、14Nの水酸化ナトリウム水溶液の温度を100℃以上に設定した場合、過放電後の放電回復容量の良いニッケル−水素蓄電池が得られることがわかる。
【0081】
実施例18
硝酸ニッケル、硝酸コバルトおよび硝酸亜鉛の混合水溶液に代えて硫酸ニッケルと硫酸アルミニウムとの混合水溶液を用い、また、反応時のpHを8〜10に維持した点を除いて比較例1の場合と同様に操作し、アルミニウムが水酸化物換算で17重量%固溶された水酸化ニッケル粉末を得た。粉末X線回折法によりこの粉末の結晶構造を調べた結果、この水酸化ニッケルは、格子定数がa=5.31Å、c=7.86Åのα型水酸化ニッケル(α−Ni(OH)2)であることを確認した。次に、得られた水酸化ニッケル粉末に対し、比較例1の場合と同じく特開昭62−234867号に記載された方法を適用し、表面に水酸化コバルトの被覆層が形成された水酸化ニッケル粒子からなる水酸化ニッケル系材料粉末を調製した。この水酸化ニッケル系材料粉末において、水酸化コバルトの被覆層の量は6重量%であった。
【0082】
次に、50℃に設定された14Nの水酸化ナトリウム水溶液を用意し、この水溶液中に得られた水酸化ニッケル系材料粉末を投入して攪拌した。続いて、当該水溶液中に、水酸化ニッケル中のニッケルの酸化数が2.15になるようペルオキソ二硫酸カリウム(K228)を加え、2時間に渡って攪拌を継続した。攪拌終了後、水酸化ニッケル系材料粉末を水洗・乾燥し、表面がオキシ水酸化コバルトにより被覆された水酸化ニッケル粒子からなる目的とする正極活物質を得た。
【0083】
評価5
実施例18で得られた正極活物質に対して増粘剤を溶解した水溶液を加えてペースト状にし、このペーストをニッケル多孔体基板に充填した後、プレスして厚さ調整し、正極板を得た。この正極板の電気化学容量は、実施例6〜10および比較例2の場合と同様にして算出し、正極活物質中のNi元素1g当り、456.47mAhに設定した。
【0084】
次に、予め十分に活性化処理を施した、実施例6〜10および比較例2で用いたものと同様の負極板を用意した。この負極板と上述の正極板とをポリオレフィン系樹脂繊維を用いて形成された不織布からなるセパレータを挟んで積層し、この積層物に均圧を加えて液過剰の開放型試験用セルを構成した。また、実施例8で用いた正極板(正極活物質における水酸化ニッケルがβ型水酸化ニッケルのもの)を用い、同様の開放型試験用セルを構成した。
【0085】
この開放型試験用セルを20℃の温度環境下において、充電電流0.1Cで15時間充電し、1時間休止した後、終止電圧が参照電極であるHg/HgOに対して0Vになるまで放電した。この充放電サイクルを4サイクル繰返した後の、5サイクル目の放電曲線を図9に示す。図9から、活物質にα型水酸化ニッケルを用いた実施例18の正極板を備えた試験用セルは、活物質にβ型水酸化ニッケルを用いた実施例8の正極板を備えた試験用セルに比べて放電容量が約22%向上し、さらに放電電位も50mV程度貴側にシフトしていることがわかる。このことから、水酸化ニッケルとしてα型のものを用いた場合は、より高出力のニッケル−水素蓄電池を達成可能なことがわかる。
【0086】
また、試験後に試験用セル内の電解液中に含まれるアルミニウム濃度を測定し、実施例18の正極活物質から電解液中へのアルミニウムの溶出を調べたところ、アルミニウムの溶出は殆ど認められなかった。これより、アルミニウムを固溶状態で含むα型水酸化ニッケルは、高濃度のアルカリ電解液中でもβ型水酸化ニッケルには形態変化せず、α型のまま安定に維持され得ることがわかる。
【0087】
【発明の効果】
本発明のアルカリ蓄電池は、正極において上述のような正極活物質を用いており、また、負極の放電リザーブと充電リザーブとの合計が負極容量の40%以下であるため、従来のものと同程度のサイズを維持しつつ負極側の実質的な充放電容量を増大させて高容量化を達成可能であり、また、内圧の上昇が生じにくく、従来のものに比べて寿命、特に充放電サイクル寿命が改善され得る。
【図面の簡単な説明】
【図1】本発明の実施の一形態に係るアルカリ蓄電池の切り欠き斜視図。
【図2】実施例の評価1で実施した放電容量の測定結果を示すグラフ。
【図3】実施例の評価1で実施した電池内圧の測定結果を示すグラフ。
【図4】実施例の評価1で実施した放電リザーブの測定結果を示すグラフ。
【図5】実施例の評価2で実施した放電容量の測定結果を示すグラフ。
【図6】実施例の評価3で実施した放電容量の測定結果を示すグラフ。
【図7】実施例の評価4で実施した高率放電容量の評価結果を示すグラフ。
【図8】実施例の評価4で実施した放電回復容量の評価結果を示すグラフ。
【図9】実施例の評価5で実施した放電容量の測定結果を示すグラフ。
【符号の説明】
1 アルカリ蓄電池
3 正極
4 負極
5 セパレータ[0001]
BACKGROUND OF THE INVENTION
  The present inventionAlkaline storage batteryAbout.
[0002]
[Prior art and its problems]
Nickel-hydrogen storage battery, which is one kind of alkaline storage battery, has a higher energy density than nickel-cadmium storage battery, which is one kind of alkaline storage battery, and does not contain harmful cadmium, so there is less risk of environmental pollution. It is widely used as a power source for portable small electronic devices such as mobile phones, small electric tools, and small personal computers, and the demand is dramatically increased with the spread of these small electronic devices. In addition, the above-described portable small electronic devices are greatly limited in the installation space of the power source due to the progress of miniaturization and weight reduction. On the other hand, the power consumption increases with the increase in functionality. Yes. For this reason, nickel-hydrogen storage batteries used in such small electronic devices are required to simultaneously achieve the contradictory problems of miniaturization and high capacity.
[0003]
Incidentally, nickel-hydrogen storage batteries generally have a positive electrode provided with a nickel hydroxide-based active material and a negative electrode provided with a hydrogen storage alloy. The nickel hydroxide-based active material used for the positive electrode usually contains a cobalt compound such as cobalt hydroxide in order to improve conductivity and improve the utilization rate. This cobalt compound is oxidized during initial charging and converted to cobalt oxyhydroxide, and this cobalt oxyhydroxide forms a conductive network in nickel hydroxide to increase the utilization rate of the positive electrode. However, the reaction in which cobalt oxyhydroxide is generated at the positive electrode during initial charging is an irreversible reaction, and once generated cobalt oxyhydroxide is not converted to the original cobalt compound at the time of discharge, It is necessary to provide an excessive capacity corresponding to the capacity when the compound is converted to cobalt oxyhydroxide during initial charging, in other words, a capacity (discharge reserve) that can be excessively discharged during discharge.
[0004]
Also, nickel-hydrogen storage batteries generate oxygen gas on the positive electrode side during overcharging. This oxygen gas causes an increase in internal pressure in a sealed storage battery, and as a result, it can cause a reduction in battery life due to liquid leakage. Therefore, in the nickel-hydrogen storage battery, in order to absorb and consume the oxygen gas generated at the positive electrode by the hydrogen storage alloy on the negative electrode side, an excessively chargeable capacity (charge reserve) is provided on the negative electrode side, and the charge reserve portion It is necessary to absorb the oxygen gas produced in step 1.
[0005]
From the above circumstances, the nickel-hydrogen storage battery is set such that the capacity of the negative electrode is set larger than the capacity of the positive electrode, and the charge / discharge capacity is regulated by the capacity of the positive electrode (positive electrode regulation method). .
[0006]
Therefore, the nickel-hydrogen storage battery can achieve high capacity by increasing the capacity of the positive electrode. However, when the capacity of the positive electrode is increased, the capacity of the negative electrode needs to be increased at the same time in consideration of the discharge reserve and the charge reserve. Therefore, downsizing becomes difficult.
[0007]
An object of the present invention is to realize a positive electrode active material for an alkaline storage battery that can achieve an increase in capacity while suppressing an increase in negative electrode capacity, and that does not easily increase the internal pressure of the battery.
[0008]
[Means for Solving the Problems]
  The alkaline storage battery according to the present invention comprises a core layer containing nickel hydroxide, and a surface layer containing a cobalt compound and covering the core layer,The oxidation number of nickel in nickel hydroxide is set to 2.04 to 2.40A positive electrode including a nickel hydroxide-based positive electrode active material; a negative electrode including a negative electrode active material; a separator disposed between the negative electrode and the positive electrode; and an alkaline electrolyte held in the separator. In the negative electrode, the total of the discharge reserve and the charge reserve is 40% or less of the negative electrode capacity.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Cathode active material for alkaline storage battery
The positive electrode active material for alkaline storage batteries of the present invention is used for manufacturing a positive electrode for alkaline storage batteries, and can be manufactured through the following steps.
First, a nickel hydroxide material is prepared. The nickel hydroxide material used here includes a core layer containing nickel hydroxide and a surface layer covering the core layer.
[0019]
The nickel hydroxide contained in the core layer is a variety of known materials that are used as positive electrode active materials for alkaline storage batteries, and is not particularly limited, but is usually α-type nickel hydroxide (α- Ni (OH)2) And β-type nickel hydroxide (β-Ni (OH)2) Is preferred. The core layer may be composed of only nickel hydroxide, but the nickel hydroxide crystal contains at least one element of cobalt, zinc, magnesium, cadmium, aluminum and manganese in a solid solution state. preferable.
[0020]
Here, when cobalt is contained in the nickel hydroxide crystal, the charge potential can be shifted to the base side in the positive electrode active material of the present invention, and the potential difference between the charge potential and the oxygen generation potential should be set large. Can do. As a result, the alkaline storage battery using this positive electrode active material can improve the charging efficiency under high temperature.
[0021]
Further, when the nickel hydroxide crystal contains at least one of zinc, magnesium and cadmium, in particular, at least one of zinc and cadmium, the nickel hydroxide-based activity at the time of charging, particularly at the end of charging. Generation | occurrence | production of (gamma) -NiOOH which causes the swelling of a substance can be suppressed effectively. For this reason, in the alkaline storage battery using this positive electrode active material, swelling of the positive electrode can be suppressed, and as a result, uneven distribution of the electrolyte on the positive electrode side can be mitigated and the charge / discharge cycle life can be improved.
[0022]
Furthermore, α-Ni (OH) as nickel hydroxide2When at least one of aluminum and manganese is contained in the crystal, α-Ni (OH) which is unstable in a high concentration alkaline electrolyte usually used in an alkaline storage battery2Can be stabilized (ie, α-Ni (OH)2Is β-Ni (OH)2As a result, α-Ni (OH) can be suppressed.2Since it becomes easy to use the oxidation-reduction reaction with γ-NiOOH, which is a higher-order oxide thereof, as a charge / discharge reaction, it is possible to increase the capacity of the positive electrode. That is, β-Ni (OH)2When β is used, the β-Ni (OH)2Whereas the reversible reaction (redox reaction) between and β-NiOOH is a one-electron reaction, α-Ni (OH)2Since the reversible reaction (oxidation-reduction reaction) between γ-NiOOH and the γ-NiOOH is a 1.5 electron reaction, a higher capacity of the positive electrode can be achieved. Α-Ni (OH)2When is used, since swelling of the positive electrode can be suppressed together, it becomes possible to improve the charge / discharge cycle life of the alkaline storage battery.
[0023]
On the other hand, a surface layer is arrange | positioned so that the surface of the above-mentioned core layer may be coat | covered, and the cobalt compound is included. Although the cobalt compound used here is usually cobalt monoxide or cobalt hydroxide, cobalt hydroxide is preferred in that it is easily oxidized in the oxidation treatment step described later and easily produces cobalt oxyhydroxide.
[0024]
The ratio of the surface layer in the above-mentioned nickel hydroxide-based material is usually preferably set to 4 to 10% by weight, and more preferably set to 4 to 8% by weight. When the proportion of the surface layer is less than 4% by weight, the conductivity of the positive electrode active material of the present invention is not sufficiently increased, and it may be difficult to increase the utilization rate. On the other hand, if it exceeds 10% by weight, the amount of nickel hydroxide is relatively reduced, which may cause a reduction in capacity.
[0025]
The nickel hydroxide-based material as described above can be manufactured, for example, as follows. First, an aqueous solution of nickel sulfate or nickel nitrate is prepared. Then, for example, ammonium sulfate is added to the aqueous solution as an ammonium ion supplier to generate ammine complex ions, and then the aqueous solution is vigorously stirred so that the pH is maintained at 8 to 12 with respect to the aqueous solution. A sodium hydroxide aqueous solution is added dropwise to precipitate nickel hydroxide particles. In addition, when manufacturing what contains the above elements in the solid solution state in the crystal | crystallization of nickel hydroxide, the salt (for example, zinc sulfate) of an element required in the aqueous solution of nickel sulfate or nickel nitrate is predetermined. Add in proportion. If it does in this way, the said element may be introduce | transduced in the solid solution state in the nickel hydroxide to precipitate. In addition, the manufacturing method of such nickel hydroxide particle | grains is well-known, for example, it describes in Unexamined-Japanese-Patent No. 2-30061.
[0026]
Incidentally, in the production process of nickel hydroxide particles as described above, when the pH of the aqueous solution while dropping the aqueous sodium hydroxide solution is maintained at 10 to 12, β-Ni (OH)2When the pH of the aqueous solution is maintained at 8 to 10, α-Ni (OH)2Particles are obtained.
[0027]
Next, the obtained nickel hydroxide particles are dried, and the nickel hydroxide particles are put into an aqueous solution adjusted to pH 8 to 13 using ammonium sulfate and sodium hydroxide to prepare an aqueous nickel hydroxide solution. And this nickel hydroxide aqueous solution is stirred, cobalt sulfate aqueous solution and sodium hydroxide aqueous solution are dripped so that pH may be maintained at 8-13 in that state, and pH is maintained in the range of about 8-13 after completion | finish of dripping. While maintaining the nickel hydroxide aqueous solution for about 10 minutes to 6 hours. Thereby, the target nickel hydroxide-type material provided with the above core layers and surface layers is obtained. A method for providing a coating layer of cobalt hydroxide on the surface of nickel hydroxide particles in this manner is known, and is described, for example, in JP-A No. 62-234867.
[0028]
The positive electrode active material of the present invention can be produced by oxidizing the nickel hydroxide-based material obtained as described above in an alkaline aqueous solution using an oxidizing agent.
Here, first, an alkaline aqueous solution is prepared, and a nickel hydroxide-based material is put into the alkaline aqueous solution. The alkaline aqueous solution that can be used here is not particularly limited, but usually contains at least one of potassium hydroxide and sodium hydroxide. When such an alkaline aqueous solution is used, an effect of suppressing the production of γ-NiOOH can be expected.
[0029]
Moreover, it is preferable that the temperature of the alkaline aqueous solution is set to 60 ° C. or higher.
When an alkaline aqueous solution set at such a temperature is used, a positive electrode active material having a large discharge capacity can be realized. In addition, when the temperature of aqueous alkali solution is set to 80 degreeC or more, the realization of a positive electrode active material with a further favorable high-rate discharge characteristic is possible. Further, when the temperature of the alkaline aqueous solution is set to 100 ° C. or higher, it is possible to realize a positive electrode active material having a good discharge recovery capacity after overdischarge. In addition, although the upper limit of the temperature of aqueous alkali solution is not specifically limited, Usually, it is preferable to set to below the boiling point under a normal pressure.
[0030]
Next, an oxidizing agent is added to the above-mentioned alkaline aqueous solution, and the nickel hydroxide-based material contained in the aqueous solution is oxidized. Thereby, the surface layer which comprises the said nickel hydroxide type material is oxidized, and the cobalt compound contained in the said surface layer is converted into highly conductive cobalt oxyhydroxide. This cobalt oxyhydroxide forms an effective conductive network with respect to nickel hydroxide on the core layer side, and can effectively increase the conductivity of nickel hydroxide and increase its utilization rate. The capacity of the active material can be increased.
[0031]
The oxidizing agent used here is not particularly limited and may be any of various known ones. However, it has a high oxidizing power and can efficiently oxidize nickel hydroxide-based materials. Potassium sulfate (K2S2O8), Sodium peroxodisulfate (Na2S2O8), Ammonium peroxodisulfate ((NHFour)2S2O8And at least one selected from the group consisting of sodium hypochlorite (NaClO).
[0032]
In such an oxidation treatment step, the amount of the above-described oxidizing agent added varies depending on the type of the oxidizing agent, and thus cannot be specified unconditionally. However, the above-mentioned nickel hydroxide-based material that is the subject of the oxidation treatment is used. It is preferable to set so that the oxidation number of nickel in nickel hydroxide contained in the core layer is 2.04 to 2.40. When this oxidation number is less than 2.04, it is difficult to reduce discharge reserve and increase charge reserve on the negative electrode side of the alkaline storage battery including the positive electrode using the positive electrode active material of the present invention. Sometimes it becomes difficult to absorb the oxygen gas generated on the positive electrode side by the charge reserve on the negative electrode side, and as a result, it may be difficult to suppress an increase in internal pressure of the storage battery. On the other hand, when the oxidation number exceeds 2.40, in an alkaline storage battery including a positive electrode using the positive electrode active material of the present invention, the battery capacity may become negative electrode regulation, and the discharge capacity may be reduced. , Cycle life may be shortened.
[0033]
The above oxidation number is a value measured by the ferrous sulfate method. Specifically, first, the amount of active oxygen contained in nickel hydroxide is determined. Here, 0.1 g of nickel hydroxide powder (sample powder) and 1 g of ferrous ammonium sulfate are weighed and added to a 20% by volume aqueous acetic acid solution set at 5 ° C. Then, after stirring for about 3 to 10 hours to completely dissolve the solution, the solution was titrated with a 1/10 N (0.02 mol / l) potassium permanganate solution, and activated according to the following formula (1). Calculate the amount of oxygen.
[0034]
[Expression 1]
Figure 0004556315
[0035]
In formula (1), XFe is a weighed amount of ferrous ammonium sulfate (g), V is a titration amount (ml) of a potassium permanganate solution, f is a factor of the potassium permanganate solution, and Xsp is a weighed sample powder. Amount (g).
[0036]
Next, the amount (% by weight) of nickel contained in the sample powder is quantitatively analyzed by a method such as ICP emission spectrometry or atomic absorption spectrometry, and the oxidation number of nickel in nickel hydroxide is calculated from the following equation (2). Is calculated.
[0037]
[Expression 2]
Figure 0004556315
[0038]
Positive electrode for alkaline storage battery
The positive electrode for alkaline storage batteries of the present invention is one in which the positive electrode active material according to the present invention is disposed on a current collector. The current collector used here is not particularly limited as long as it is normally used in a positive electrode for an alkaline storage battery. However, since the above-described positive electrode active material is easily packed and held, it is made of metal. It is preferable to use a porous body, a mesh body or a porous plate.
[0039]
As the metal porous body, a foam metal porous body is preferably used. A foam metal porous body is a sponge-like metal body, which can be produced by, for example, electroless plating a metal on a foamed resin such as urethane foam and then removing the foamed resin by heating. is there.
[0040]
Moreover, as a metal net-like body, it is preferable to use, for example, a net-like body in which metal fibers are entangled three-dimensionally, for example, a nonwoven fabric.
[0041]
Furthermore, examples of the metal porous plate include punching metal and expanded metal.
[0042]
The positive electrode of the present invention can be manufactured by disposing the above-described positive electrode active material according to the present invention on the above-described current collector plate. Here, first, a paste is prepared by adding water to the positive electrode active material described above. At this time, a thickener such as carboxymethylcellulose (CMC) or methylcellulose (MC) may be dissolved in water as necessary. If necessary, a binder such as polytetrafluoroethylene or styrene-butadiene rubber may be added. Next, the prepared paste is applied to the current collector and dried. In the case where the current collector is a metal porous body, net-like body or perforated plate as described above, it is preferable to pressurize after drying and to closely fill the current collector with the positive electrode active material.
[0043]
The above-mentioned positive electrode active material used in the positive electrode of the present invention is the above-mentioned nickel hydroxide-based material that has been previously oxidized using an oxidant in an alkaline solution, and is therefore incorporated in an alkaline storage battery and initially charged. The cobalt compound already contained in the surface layer has already been converted to highly conductive cobalt oxyhydroxide. Therefore, this positive electrode has a more effective conductive network than the conventional positive electrode, and has high conductivity and high utilization rate. In addition, as a result of the cobalt compound contained in the surface layer of the positive electrode active material being previously converted to cobalt oxyhydroxide, this positive electrode is unlikely to form a discharge reserve in the negative electrode during initial charging of an alkaline storage battery using the cobalt compound. . For this reason, the alkaline storage battery using this positive electrode can reduce the discharge reserve of the negative electrode and increase the substantial charge / discharge capacity on the negative electrode side as compared with the case of using the conventional positive electrode. Higher capacity can be achieved while suppressing increase in capacity.
[0044]
That is, since the positive electrode can increase the substantial charge / discharge capacity on the negative electrode side as described above, the amount of the negative electrode active material used can be reduced. For this reason, if this positive electrode is used, the alkaline storage battery can be miniaturized while maintaining the charge / discharge capacity. Or when maintaining the usage-amount of a negative electrode active material, since the reduced part of a discharge reserve can be used for the increase of a positive electrode active material, it can aim at high capacity | capacitance, maintaining the magnitude | size of an alkaline storage battery. .
[0045]
In addition, as a result of the positive electrode being able to reduce the discharge reserve of the negative electrode, the reduction can be applied to the charge reserve of the negative electrode. Therefore, the alkaline storage battery using this positive electrode can absorb the gas (oxygen gas, etc.) generated at the time of overcharge effectively by the charge reserve of the negative electrode, so that the internal pressure is less likely to be raised, resulting in a charge / discharge cycle. Lifespan can be improved.
[0046]
Alkaline storage battery
One embodiment of an alkaline storage battery according to the present invention is shown in FIG. In the figure, an alkaline storage battery 1 is a nickel-hydrogen storage battery, and mainly includes a case 2, a positive electrode 3, a negative electrode 4, a separator 5, and an electrolytic solution (not shown) disposed in the case 2.
[0047]
The case 2 is a substantially cylindrical container having an opening 2a in the upper part, and the bottom part thereof is set as a negative electrode terminal. The positive electrode 3, the negative electrode 4, and the separator 5 are all flexible strip-shaped members, and the positive electrode 3 and the negative electrode 4 are disposed in the case 2 in a state of being wound in a spiral shape with the separator 5 interposed therebetween. Yes. Further, the opening 2 a of the case 2 is sealed in a liquid-tight manner by the sealing plate 7 with the insulating gasket 6 sandwiched in a state where the electrolytic solution is injected into the case 2. The sealing plate 7 has a positive electrode terminal 8 on the upper surface. The positive terminal 8 is connected to the positive electrode 3 by a lead 9 that electrically connects the sealing plate 7 and the positive electrode 3.
[0048]
The positive electrode 3 used in such an alkaline storage battery 1 is the positive electrode for alkaline storage batteries according to the present invention described above. That is, comprising a core layer containing nickel hydroxide and a surface layer containing a cobalt compound and covering the core layer, and comprising an active material oxidized with an oxidizing agent in an alkaline aqueous solution, or A core layer containing nickel hydroxide and a surface layer containing cobalt oxyhydroxide and covering the core layer are provided, and the oxidation number of nickel in nickel hydroxide is set to 2.04 to 2.40. Is.
[0049]
The negative electrode 4 is used in various known nickel-hydrogen storage batteries and is not particularly limited. However, the negative electrode 4 is usually an active material containing a hydrogen storage alloy with respect to a flexible current collector. The substance is arranged.
[0050]
Furthermore, the separator 5 is for electrically insulating the positive electrode 3 and the negative electrode 4 and holding an electrolytic solution, and is used in various known nickel-hydrogen storage batteries, and is particularly limited. It is not a thing.
[0051]
Further, the electrolytic solution is various alkaline aqueous solutions used in known nickel-hydrogen storage batteries, and is not particularly limited. For example, at least one of potassium hydroxide, lithium hydroxide, sodium hydroxide and the like is dissolved. The aqueous solution.
[0052]
However, in the alkaline storage battery 1, it is preferable to use a potassium hydroxide aqueous solution or a solution obtained by adding one or both of lithium hydroxide and sodium hydroxide to an aqueous potassium hydroxide solution as an electrolyte. When such an electrolytic solution is used, since the production of γ-NiOOH is suppressed in the active material of the positive electrode 3, the charging efficiency of the alkaline storage battery 1 can be increased. Moreover, it is preferable that the usage-amount of such electrolyte solution is normally set to 1.0-1.3 ml per 1 Ah capacity | capacitance of the positive electrode 3. FIG. When this usage-amount is less than 1.0 ml, there exists a possibility that the charging / discharging cycle life of the alkaline storage battery 1 may become short. On the other hand, when the amount exceeds 1.3 ml, the gas absorption capacity of the negative electrode 4 decreases, so that it is difficult to suppress the increase in internal pressure of the alkaline storage battery 1.
[0053]
In such an alkaline storage battery 1, the above-described battery according to the present invention is used as the positive electrode 3. As a result, the discharge reserve in the negative electrode 4 can be 15% or less of the capacity of the negative electrode 4. Alternatively, the sum of the discharge reserve and the charge reserve in the negative electrode 4 can be 40% or less of the capacity of the negative electrode 4. Therefore, the alkaline storage battery 1 can achieve a high capacity because the substantial charge / discharge capacity on the negative electrode 4 side is increased as compared with the conventional battery. More specifically, since the alkaline storage battery 1 can increase the substantial charge / discharge capacity on the negative electrode 4 side, the capacity can be increased while maintaining the same size as the conventional alkaline storage battery. Or it can be configured more compact while maintaining the same capacity as the conventional one. Moreover, the alkaline storage battery 1 has a longer life, in particular, a charge / discharge cycle life, than the conventional nickel-hydrogen storage battery because the positive electrode 3 can exert the effects as described above.
[0054]
In this embodiment, the case where the positive electrode active material and the positive electrode according to the present invention are applied to a nickel-hydrogen storage battery has been described as an example. However, the positive electrode active material and the positive electrode according to the present invention are nickel-cadmium storage batteries. It can be similarly used in other alkaline storage batteries including the first one.
[0055]
【Example】
Comparative Example 1
Using a mixed aqueous solution of nickel nitrate, cobalt nitrate and zinc nitrate, and setting the pH during the reaction to 11 to 12, cobalt and zinc are converted into hydroxides according to the method described in JP-A No. 2-30061, respectively. High-density nickel hydroxide powders having a solid solution of 1% by weight and 5% by weight were obtained. As a result of examining the crystal structure of this powder by the powder X-ray diffraction method, it was confirmed that this nickel hydroxide was β-type nickel hydroxide having lattice constants of a = 4.64 = and c = 3.11Å. Next, a nickel hydroxide powder comprising nickel hydroxide particles having a coating layer of cobalt hydroxide formed on the surface is applied to the obtained nickel hydroxide powder by applying the method described in JP-A-62-234867. A system material powder (positive electrode active material) was prepared. In this nickel hydroxide-based material powder, the amount of the cobalt hydroxide coating layer was 6% by weight. In addition, regarding this positive electrode active material, when the oxidation number of nickel in nickel hydroxide was measured according to the ferrous sulfate method described above, it was 2.00.
[0056]
Examples 1-5
A 14N aqueous sodium hydroxide solution set at 50 ° C. was prepared, and the nickel hydroxide material powder obtained in Comparative Example 1 was added to the aqueous solution and stirred. Subsequently, potassium peroxodisulfate (K) was added to the aqueous solution so that the oxidation number of nickel in nickel hydroxide was 2.05, 2.10, 2.15, 2.20 and 2.40.2S2O8) Was added and stirring was continued for 2 hours. After completion of the stirring, the nickel hydroxide material powder was washed with water and dried to obtain a target positive electrode active material composed of nickel hydroxide particles whose surfaces were coated with cobalt oxyhydroxide.
[0057]
Table 1 shows the results of measuring the oxidation number of nickel in nickel hydroxide by the ferrous sulfate method for the obtained positive electrode active material. Table 1 also shows the results of Comparative Example 1.
[0058]
[Table 1]
Figure 0004556315
[0059]
Examples 6 to 10 and Comparative Example 2
An aqueous solution in which a thickener was dissolved was added to each of the positive electrode active materials obtained in Examples 1 to 5 and Comparative Example 1 to form a paste. After the paste was filled in a nickel porous substrate, the thickness was pressed to increase the thickness. The positive electrode plate was obtained by adjusting the thickness. The electrochemical capacity of this positive electrode plate is calculated based on the following formula assuming a one-electron reaction of Ni (II) → Ni (III), and is set to 456.47 mAh per gram of Ni element in the positive electrode active material. did.
[0060]
[Chemical 1]
Figure 0004556315
[0061]
On the other hand, a hydrogen storage alloy powder having a particle size of 75 μm or less, which is represented by the composition of MmNiAlCoMn (Mm is a misch metal and is a mixture of rare earth elements consisting of La, Ce, Pr and Nd), is prepared. A paste was prepared by adding an aqueous solution in which a thickener was dissolved to the alloy powder and polytetrafluoroethylene as a binder. This paste was applied to both sides of the punching metal and dried, and then pressed to adjust the thickness to obtain a negative electrode plate. In addition, the capacity | capacitance of this negative electrode plate was set to 1.6 times the capacity | capacitance of the above-mentioned positive electrode plate. In this negative electrode plate, the total of the discharge reserve and the charge reserve is 37.5% of the negative electrode capacity.
[0062]
The obtained positive electrode plate and negative electrode plate were spirally wound with a 0.12 mm thick separator made of a nonwoven fabric of polyolefin resin fibers interposed therebetween to produce an electrode group. Then, a cylindrical metal case having a side wall thickness of 0.18 mm is prepared, and an electrode group is accommodated in the metal case. Then, an electrolytic solution comprising a 7N potassium hydroxide aqueous solution and a 1N lithium hydroxide aqueous solution is prepared. 1.16 ml was injected per positive electrode capacity of 1 Ah. And the metal case was sealed using the metal cover body provided with the safety valve, and 6 types of AA size cylindrical nickel-hydrogen storage batteries with different positive electrode plates were obtained. The positive electrode active materials used in each nickel-hydrogen storage battery are as shown in Table 2.
[0063]
[Table 2]
Figure 0004556315
[0064]
Comparative Example 3
90 parts by weight of nickel hydroxide powder containing cobalt and zinc in a solid solution state and 10 parts by weight of cobalt monoxide were mixed to prepare a positive electrode active material. An aqueous solution in which a thickener was dissolved was added to the positive electrode active material to prepare a paste. After the paste was filled in a nickel porous substrate, the thickness was adjusted by pressing to obtain a positive electrode plate.
[0065]
The obtained positive electrode plate and the same negative electrode plate as used in Examples 6 to 10 and Comparative Example 2 having a capacity of 1.75 times that were used in Examples 6 to 10 and Comparative Example 2 The electrode group was manufactured by winding in the shape of a spiral with the same separator as that in between. A cylindrical metal case with a side wall thickness of 0.25 mm is prepared, and an electrode group is accommodated in the metal case. Then, an electrolytic solution composed of a 7N potassium hydroxide aqueous solution and a 1N lithium hydroxide aqueous solution is prepared. 1.52 ml was injected per 1 Ah of positive electrode capacity. And the metal case was sealed using the metal cover body provided with the safety valve, and the AA size cylindrical nickel-hydrogen storage battery was obtained.
[0066]
Evaluation 1
The nickel-hydrogen storage batteries obtained in Examples 6 to 10 and Comparative Example 2 were evaluated as follows.
(Discharge capacity)
Each storage battery was charged with a charging current of 0.1 C for 15 hours under a temperature environment of 20 ° C., rested for 1 hour, and then discharged with a discharging current of 0.2 C and a final voltage of 1.0 V. And after repeating this charging / discharging process 4 cycles, the discharge capacity of the 5th cycle was investigated.
The results are shown in FIG. From FIG. 2, it can be seen that each of the storage batteries of Examples 6 to 10 and Comparative Example 2 can achieve a good discharge capacity, but when the oxidation number of nickel in nickel hydroxide in the positive electrode active material exceeds 2.40. It can also be seen that the discharge capacity may be lowered.
[0067]
(Change in battery internal pressure)
About each nickel-hydrogen storage battery of Examples 6-8 and the comparative example 2, the change of the battery internal pressure at the time of charging / discharging cycle repetition was investigated. Here, a pressure sensor for measuring internal pressure is attached to each target nickel-hydrogen storage battery, charged at a charging current of 1.0 C for 1.5 hours under a temperature environment of 20 ° C., and rested for 1 hour. The process of discharging at a discharge current of 1.0 C and a final voltage of 1.0 V was repeated 10 cycles, and the internal pressure of the storage battery at the 10th cycle was examined. The results are shown in FIG. From FIG. 3, it can be seen that the storage batteries of Examples 6 to 8 are less likely to increase in internal pressure than the storage battery of Comparative Example 2. In particular, it can be seen that in the positive electrode active material used for the positive electrode plate, the increase in internal pressure is suppressed as the oxidation number of nickel in nickel hydroxide increases. In view of the operating pressure (1.5 MPa) of a safety valve normally used in a cylindrical nickel-hydrogen storage battery, in the positive electrode active material, the oxidation number of nickel in nickel hydroxide is preferably set to 2.04 or more. I understand that.
[0068]
(Measurement of discharge reserve)
For each of the nickel-hydrogen storage batteries of Examples 6 to 8 and Comparative Example 2 in which the change in the internal pressure of the battery was examined, the battery was allowed to stand for 1 hour after repeating the above 10 cycles of charge and discharge, and then the discharge current was 0.2 C and the end voltage was It discharged as 1.0V. And each storage battery was disassembled and the negative electrode plate was taken out.
[0069]
The same positive electrode plate as the positive electrode plate used in Comparative Example 2 was set to the end-of-charge state, and each positive electrode plate was laminated with a corresponding negative electrode plate taken out from the storage battery and a separator made of polyolefin resin interposed therebetween. Then, a uniform pressure was applied to this laminate to form an excess liquid open test cell, and the remaining capacity of the negative electrode was measured. Here, Hg / HgO was used as a reference electrode, and discharge was performed in a temperature environment of 20 ° C. with a discharge current set to 0.2 C based on the positive electrode capacity and a final voltage set to −0.6 V with respect to the reference electrode. The results are shown in FIG. As shown in FIG. 4, in the storage batteries of Examples 6 to 8, the discharge reserve was suppressed to 15% or less, and in the positive electrode active material of the positive electrode plate, as the oxidation number of nickel in nickel hydroxide increased, the negative electrode plate It can be seen that the discharge reserve tends to decrease. Since each storage battery of Examples 6-8 and Comparative Example 2 has the same total negative electrode capacity (that is, the total amount of the discharge reserve and the charge reserve is the same), the storage batteries of Examples 6-8 are It is considered that the decrease in the discharge reserve is allocated to the increase in the charge reserve, and as a result, the oxygen gas absorption performance at the time of overcharging is increased in the negative electrode plate, and the increase in internal pressure is suppressed.
[0070]
Evaluation 2
The discharge capacity of each nickel-hydrogen storage battery obtained in Examples 6 to 8 and Comparative Example 3 was examined. Here, under a temperature environment of 20 ° C., the battery was charged with a charging current of 0.1 C for 15 hours, paused for 1 hour, and then discharged with a discharging current of 0.2 C and a final voltage of 1.0 V. And this charging / discharging cycle was repeated 4 cycles and the discharge capacity of the 5th cycle was investigated. The results are shown in FIG. From FIG. 5, although the nickel-hydrogen storage batteries of Examples 6 to 8 have a negative electrode capacity smaller than that of Comparative Example 3, the discharge capacity is increased by about 20% compared to that of Comparative Example 3. I understand that.
[0071]
Examples 11-13
The same high-density nickel hydroxide powder obtained in the process of Comparative Example 1 in which cobalt and zinc were dissolved as 1 wt% and 5 wt% in terms of hydroxide, respectively, was prepared. An aqueous solution containing ammonium sulfate and sodium hydroxide as an ammonium ion supplier was prepared, and high-density nickel hydroxide powder was added to the aqueous solution to obtain an aqueous solution containing nickel hydroxide. An aqueous solution containing cobalt sulfate and an aqueous solution containing sodium hydroxide were added to the nickel hydroxide-containing aqueous solution with vigorous stirring so that the pH was maintained at 8-13. As a result, a nickel hydroxide-based material powder composed of nickel hydroxide particles having a cobalt hydroxide coating layer formed on the surface thereof was obtained. At this time, the reaction time was appropriately changed, and the coating layer amount of cobalt hydroxide was set as shown in Table 3.
[0072]
[Table 3]
Figure 0004556315
[0073]
Next, a 14N sodium hydroxide aqueous solution whose temperature was set to 50 ° C. was prepared, and the obtained nickel hydroxide-based material powder was put into the aqueous solution and stirred. Subsequently, potassium peroxodisulfate (K) was added to the aqueous solution so that the oxidation number of nickel in nickel hydroxide was 2.15.2S2O8) Was added and stirring was continued for 2 hours. After completion of the stirring, the nickel hydroxide material powder was washed with water and dried to obtain a target positive electrode active material composed of nickel hydroxide particles whose surfaces were coated with cobalt oxyhydroxide. About the obtained positive electrode active material, when the oxidation number of nickel in nickel hydroxide was investigated like Example 1-5, it was confirmed to be 2.15. Using the obtained positive electrode active material, positive electrode plates were produced in the same manner as in Examples 6 to 10 and Comparative Example 2.
[0074]
Evaluation 3
Negative electrode plates similar to those used in Examples 6 to 10 and Comparative Example 2 that were sufficiently activated in advance were prepared. This negative electrode plate and the positive electrode plate obtained in Examples 11 to 13 and the positive electrode plate used in Example 8 (coating layer amount of cobalt hydroxide = 6% by weight) were formed using polyolefin resin fibers. A laminate made of a non-woven fabric was sandwiched, and a uniform pressure was applied to the laminate to constitute an open test cell with excess liquid.
[0075]
This open-type test cell was charged at a charging current of 0.1 C for 15 hours under a temperature environment of 20 ° C., rested for 1 hour, and then until the end voltage became 0 V with respect to Hg / HgO as the reference electrode. Discharged. This charge / discharge cycle was repeated 4 times, and the discharge capacity when 1C discharge was carried out in the 5th cycle was examined. The results are shown in FIG. FIG. 6 shows that a preferable discharge capacity can be achieved when the amount of the cobalt hydroxide coating layer in the production process of the positive electrode active material is set to 4% by weight or more.
[0076]
Examples 14-17
A positive electrode active material was obtained in the same manner as in Example 3 except that the temperature of the 14N aqueous sodium hydroxide solution was changed as shown in Table 4 in the production process of the positive electrode active material according to Example 3. And the nickel-hydrogen storage battery similar to Example 8 was manufactured using this positive electrode active material.
[0077]
Evaluation 4
The nickel-hydrogen storage batteries obtained in Examples 14 to 17 were charged at a charging current of 1.0 C for 1.5 hours under a temperature environment of 20 ° C. and rested for 1 hour, and then the end voltage was discharged at a discharging current of 1.0 C. The process of discharging at 1.0 V was repeated, and the discharge capacity at the fifth cycle was examined. The results are shown in Table 4. Table 4 also shows the results when the same discharge capacity was measured for the nickel-hydrogen storage battery of Example 8, and the results of Examples 14 to 17 show the discharge capacity of Example 8 as 100. Is the relative index. Table 4 shows that the batteries of Examples 14 to 17 achieved a relative capacity of 98 or more of the battery of Example 8, and as a result, the temperature of the 14N sodium hydroxide aqueous solution was set to 60 ° C. or more. In particular, it can be seen that a nickel-hydrogen storage battery with good discharge capacity can be obtained particularly when the temperature is set to 80 ° C. or higher.
[0078]
[Table 4]
Figure 0004556315
[0079]
Next, for each of the nickel-hydrogen storage batteries of Examples 14 to 17 and Example 8, charging was performed at a charging current of 0.1 C for 15 hours under a temperature environment of 20 ° C., and after resting for 1 hour, the discharging current was 1.0 C. The battery was discharged at 3.0 C with a final voltage of 1.0 V, and the high rate discharge capacity was examined. The results are shown in FIG. From FIG. 7, it can be seen that when the temperature of the 14N aqueous sodium hydroxide solution is set to 80 ° C. or higher, a nickel-hydrogen storage battery having a high high rate discharge capacity can be obtained.
[0080]
Further, each of the nickel-hydrogen storage batteries of Examples 14 to 17 and Example 8 was charged at a charging current of 0.1 C for 15 hours in a temperature environment of 20 ° C., paused for 1 hour, and then terminated at a discharging current of 0.2 C. The voltage was discharged at 1.0 V and set to the state at the end of charging.
In this state, a constant resistance was connected to these batteries in an environment of 60 ° C. for 3 days.
Then, again under a temperature environment of 20 ° C., these batteries were charged with a charging current of 0.1 C for 15 hours, rested for 1 hour, then discharged with a discharging current of 0.2 C and a final voltage of 1.0 V, and constant resistance. The discharge recovery capacity after connection (discharge recovery capacity after overdischarge) was examined. The results are shown in FIG. The result shown in FIG. 8 is a relative index when the discharge capacity before the constant resistance connection is 100. FIG. 8 shows that when the temperature of the 14N aqueous sodium hydroxide solution is set to 100 ° C. or higher, a nickel-hydrogen storage battery having a good discharge recovery capacity after overdischarge can be obtained.
[0081]
Example 18
A mixed aqueous solution of nickel sulfate and aluminum sulfate was used in place of the mixed aqueous solution of nickel nitrate, cobalt nitrate and zinc nitrate, and the same as in Comparative Example 1 except that the pH during the reaction was maintained at 8-10. To obtain a nickel hydroxide powder in which aluminum was dissolved by 17% by weight in terms of hydroxide. As a result of examining the crystal structure of this powder by the powder X-ray diffraction method, this nickel hydroxide was found to be α-type nickel hydroxide (α-Ni (OH)) having lattice constants of a = 5.31Å and c = 7.86Å.2) Confirmed. Next, the method described in JP-A No. 62-234867 was applied to the obtained nickel hydroxide powder in the same manner as in Comparative Example 1, so that a cobalt hydroxide coating layer was formed on the surface. A nickel hydroxide-based material powder made of nickel particles was prepared. In this nickel hydroxide-based material powder, the amount of the cobalt hydroxide coating layer was 6% by weight.
[0082]
Next, a 14N sodium hydroxide aqueous solution set at 50 ° C. was prepared, and the obtained nickel hydroxide material powder was put into this aqueous solution and stirred. Subsequently, potassium peroxodisulfate (K) was added to the aqueous solution so that the oxidation number of nickel in nickel hydroxide was 2.15.2S2O8) Was added and stirring was continued for 2 hours. After completion of the stirring, the nickel hydroxide material powder was washed with water and dried to obtain a target positive electrode active material composed of nickel hydroxide particles whose surfaces were coated with cobalt oxyhydroxide.
[0083]
Evaluation 5
An aqueous solution in which a thickener was dissolved was added to the positive electrode active material obtained in Example 18, and the paste was filled into a nickel porous substrate, and then pressed to adjust the thickness, Obtained. The electrochemical capacity of this positive electrode plate was calculated in the same manner as in Examples 6 to 10 and Comparative Example 2, and was set to 456.47 mAh per 1 g of Ni element in the positive electrode active material.
[0084]
Next, negative electrode plates similar to those used in Examples 6 to 10 and Comparative Example 2 that were sufficiently activated in advance were prepared. This negative electrode plate and the positive electrode plate described above were laminated with a separator made of a nonwoven fabric formed using polyolefin resin fibers in between, and a uniform pressure was applied to this laminate to constitute an excess liquid open test cell. . Further, the same open type test cell was constructed using the positive electrode plate used in Example 8 (nickel hydroxide in the positive electrode active material was β-type nickel hydroxide).
[0085]
This open-type test cell was charged at a charging current of 0.1 C for 15 hours under a temperature environment of 20 ° C., rested for 1 hour, and then discharged until the end voltage was 0 V with respect to Hg / HgO as the reference electrode. did. FIG. 9 shows a discharge curve at the fifth cycle after the charge / discharge cycle is repeated four times. From FIG. 9, the test cell provided with the positive electrode plate of Example 18 using α-type nickel hydroxide as the active material was tested using the positive electrode plate of Example 8 using β-type nickel hydroxide as the active material. It can be seen that the discharge capacity is improved by about 22% compared to the production cell, and the discharge potential is also shifted to the noble side by about 50 mV. From this, it can be seen that when α type nickel hydroxide is used, a higher output nickel-hydrogen storage battery can be achieved.
[0086]
Moreover, when the aluminum concentration contained in the electrolyte solution in the test cell was measured after the test and the elution of aluminum from the positive electrode active material of Example 18 into the electrolyte solution was examined, almost no aluminum elution was observed. It was. From this, it can be seen that α-type nickel hydroxide containing aluminum in a solid solution state does not change to β-type nickel hydroxide even in a high-concentration alkaline electrolyte and can be stably maintained in α-type.
[0087]
【The invention's effect】
  Of the present inventionThe alkaline storage battery uses the positive electrode active material as described above in the positive electrode, and the total of the negative electrode discharge reserve and the charge reserve is 40% or less of the negative electrode capacity. It is possible to achieve a high capacity by increasing the substantial charge / discharge capacity on the negative electrode side while maintaining it, and it is difficult to increase the internal pressure, improving the life, especially the charge / discharge cycle life compared to the conventional one. obtain.
[Brief description of the drawings]
FIG. 1 is a cutaway perspective view of an alkaline storage battery according to an embodiment of the present invention.
FIG. 2 is a graph showing the measurement results of the discharge capacity implemented in Evaluation 1 of the examples.
FIG. 3 is a graph showing measurement results of battery internal pressure performed in evaluation 1 of the examples.
FIG. 4 is a graph showing a measurement result of discharge reserve performed in Evaluation 1 of the example.
FIG. 5 is a graph showing measurement results of discharge capacity implemented in Evaluation 2 of the example.
FIG. 6 is a graph showing the measurement results of the discharge capacity implemented in Evaluation 3 of the example.
FIG. 7 is a graph showing the evaluation result of the high rate discharge capacity carried out in evaluation 4 of the example.
FIG. 8 is a graph showing the evaluation results of the discharge recovery capacity performed in evaluation 4 of the example.
FIG. 9 is a graph showing the measurement results of the discharge capacity implemented in evaluation 5 of the example.
[Explanation of symbols]
1 Alkaline battery
3 Positive electrode
4 Negative electrode
5 Separator

Claims (1)

水酸化ニッケルを含む芯層と、コバルト化合物を含みかつ前記芯層を被覆する表面層とを備え、前記水酸化ニッケル中のニッケルの酸化数が2.04〜2.40に設定されている水酸化ニッケル系の正極活物質を備えた正極と、
負極活物質を備えた負極と、
前記負極と前記正極との間に配置されたセパレータと、
前記セパレータに保持されたアルカリ電解液とを備え、
前記負極は、放電リザーブと充電リザーブとの合計が負極容量の40%以下である、
アルカリ蓄電池。
Water having a core layer containing nickel hydroxide and a surface layer containing a cobalt compound and covering the core layer, wherein the oxidation number of nickel in the nickel hydroxide is set to 2.04 to 2.40 A positive electrode comprising a nickel oxide-based positive electrode active material;
A negative electrode with a negative electrode active material;
A separator disposed between the negative electrode and the positive electrode;
An alkaline electrolyte retained in the separator,
In the negative electrode, the total of the discharge reserve and the charge reserve is 40% or less of the negative electrode capacity.
Alkaline storage battery.
JP2000307130A 2000-10-06 2000-10-06 Alkaline storage battery Expired - Fee Related JP4556315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000307130A JP4556315B2 (en) 2000-10-06 2000-10-06 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000307130A JP4556315B2 (en) 2000-10-06 2000-10-06 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2002117842A JP2002117842A (en) 2002-04-19
JP4556315B2 true JP4556315B2 (en) 2010-10-06

Family

ID=18787690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000307130A Expired - Fee Related JP4556315B2 (en) 2000-10-06 2000-10-06 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP4556315B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121029A (en) * 2000-10-10 2002-04-23 Tanaka Chemical Corp Conductive cobalt coated nickel hydroxide and method for manufacturing the same
WO2003003498A1 (en) * 2001-06-29 2003-01-09 Ovonic Battery Company, Inc. Hydrogen storage battery; positive nickel electrode; positive electrode active material and methods for making
JP4617632B2 (en) * 2002-09-24 2011-01-26 株式会社Gsユアサ Method for producing alkaline storage battery
JP4678130B2 (en) * 2003-01-20 2011-04-27 株式会社Gsユアサ Sealed nickel metal hydride storage battery and its manufacturing method
JP4569068B2 (en) * 2003-02-25 2010-10-27 株式会社Gsユアサ Thickener for nickel electrode, nickel electrode and method for producing the same, and alkaline storage battery
JP5257823B2 (en) * 2004-08-26 2013-08-07 株式会社Gsユアサ Method for producing hydrogen storage electrode and method for producing nickel metal hydride battery
JP5119578B2 (en) * 2005-07-04 2013-01-16 株式会社Gsユアサ Nickel metal hydride battery and manufacturing method thereof
JP5119577B2 (en) * 2005-07-04 2013-01-16 株式会社Gsユアサ Nickel metal hydride battery
JP2016012442A (en) * 2014-06-27 2016-01-21 Fdk株式会社 Nickel-hydrogen secondary battery, and manufacturing method thereof
US9899676B2 (en) 2015-02-05 2018-02-20 Basf Corporation Nickel hydroxide positive electrode for alkaline rechargeable battery
JP6771471B2 (en) * 2015-02-05 2020-10-21 ビーエーエスエフ コーポレーション Nickel hydroxide positive electrode for alkaline batteries
US9935315B2 (en) 2015-02-05 2018-04-03 Basf Corporation Nickel hydroxide positive electrode for alkaline rechargeable battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283071A (en) * 1992-03-31 1993-10-29 Sanyo Electric Co Ltd Activation of metal hydride storage battery
JPH11144723A (en) * 1997-11-05 1999-05-28 Sanyo Electric Co Ltd Non-sintered nickel electrode for sealed alkaline storage battery
JP2000003707A (en) * 1998-06-16 2000-01-07 Matsushita Electric Ind Co Ltd Alkaline storage battery
JP2001185138A (en) * 1999-12-27 2001-07-06 Sanyo Electric Co Ltd Positive electrode active material for alkaline storage battery and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283071A (en) * 1992-03-31 1993-10-29 Sanyo Electric Co Ltd Activation of metal hydride storage battery
JPH11144723A (en) * 1997-11-05 1999-05-28 Sanyo Electric Co Ltd Non-sintered nickel electrode for sealed alkaline storage battery
JP2000003707A (en) * 1998-06-16 2000-01-07 Matsushita Electric Ind Co Ltd Alkaline storage battery
JP2001185138A (en) * 1999-12-27 2001-07-06 Sanyo Electric Co Ltd Positive electrode active material for alkaline storage battery and manufacturing method therefor

Also Published As

Publication number Publication date
JP2002117842A (en) 2002-04-19

Similar Documents

Publication Publication Date Title
JP2730121B2 (en) Alkaline secondary battery and manufacturing method thereof
EP1172869B1 (en) Method for producing a positive electrode active material for an alkaline storage battery
JP4710225B2 (en) Method for producing nickel electrode material
JP4496704B2 (en) Manufacturing method of nickel metal hydride battery
EP1137082B1 (en) Paste type positive electrode for alkaline storage battery, and nickel-metal hydride storage battery
JP4556315B2 (en) Alkaline storage battery
JP3931518B2 (en) Nickel-hydrogen secondary battery
JP4458725B2 (en) Alkaline storage battery
JP4474722B2 (en) Alkaline storage battery and positive electrode for alkaline storage battery used therefor
KR100404658B1 (en) Nickel-Metal Hydride Batteries and Manufacturing Method
JP3414200B2 (en) Alkaline storage battery
JP2003077469A (en) Nickel electrode material, its manufacturing method, nickel electrode and alkaline battery
JP4385522B2 (en) Negative electrode active material for nickel-hydrogen storage battery, negative electrode for nickel-hydrogen storage battery, and nickel-hydrogen storage battery
JP3744642B2 (en) Nickel-metal hydride storage battery and method for manufacturing the same
JP2989877B2 (en) Nickel hydride rechargeable battery
JP2003017046A (en) Nickel electrode active material for alkaline storage battery, nickel electrode for alkaline storage battery, and alkaline storage battery
JP4120762B2 (en) Nickel electrode and nickel metal hydride storage battery using the same
JP3229800B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3573885B2 (en) Method for producing nickel hydroxide active material for alkaline storage battery and alkaline storage battery
JP3458899B2 (en) Nickel hydroxide positive plate for alkaline battery and alkaline battery thereof
JP3498727B2 (en) Method for producing nickel hydroxide positive plate for alkaline battery, nickel hydroxide positive plate for alkaline battery, and alkaline battery
JPH11238507A (en) Alkaline storage battery
JPH11260359A (en) Alkaline storage battery
JP2003031216A (en) Method of manufacturing nickel positive electrode and method of manufacuring alkaline storage battery
JPH08241719A (en) Positive electrode for alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041029

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080220

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080229

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

R150 Certificate of patent or registration of utility model

Ref document number: 4556315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees