JPH11260359A - Alkaline storage battery - Google Patents

Alkaline storage battery

Info

Publication number
JPH11260359A
JPH11260359A JP10056369A JP5636998A JPH11260359A JP H11260359 A JPH11260359 A JP H11260359A JP 10056369 A JP10056369 A JP 10056369A JP 5636998 A JP5636998 A JP 5636998A JP H11260359 A JPH11260359 A JP H11260359A
Authority
JP
Japan
Prior art keywords
cobalt
storage battery
lithium
alkaline storage
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10056369A
Other languages
Japanese (ja)
Other versions
JP3543607B2 (en
Inventor
Masumi Katsumoto
真澄 勝本
Tokukatsu Akutsu
徳勝 阿久津
Takashi Yao
剛史 八尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP05636998A priority Critical patent/JP3543607B2/en
Publication of JPH11260359A publication Critical patent/JPH11260359A/en
Application granted granted Critical
Publication of JP3543607B2 publication Critical patent/JP3543607B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an alkaline storage battery with high charge accepting capability, even when it is left to standing after a deep discharge has been made, high capacity recovering capability in charging, high positive active material utilization factor almost similar to the initial discharge even in the discharge in the case in which it was left to stand after the deep discharge, and moreover good discharge characteristics even under low temperature atmosphere at 0 deg.C or lower by improving a positive electrode of the alkaline storage battery. SOLUTION: In an alkaline storage battery comprising a positive electrode 1 prepared by filling nickel hydroxide in a porous substrate as the active material, a negative electrode 2, a separator 3, and an alkaline electrolyte, the positive electrode 2 is made mainly of nickel hydroxide powder, and lithium cobalt composite oxide powder and divalent cobalt oxide powder and/or metallic cobalt powder are added to the nickel hydroxide powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル極を用い
たアルカリ蓄電池に関し、深い放電がなされたまま放置
した後での充電受入れ性を改良して充電後の容量回復性
を高めると共に、その後の放電時にも初期とほぼ同等な
正極活物質利用率が得られ、さらに充放電サイクルによ
る電池抵抗の増大を抑制し、長寿命なアルカリ蓄電池を
提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline storage battery using a nickel electrode. The present invention relates to an alkaline storage battery using a nickel electrode. It is intended to provide a long-life alkaline storage battery in which the same positive electrode active material utilization as in the initial stage can be obtained at the time of discharging, and the increase in battery resistance due to charge / discharge cycles is suppressed.

【0002】[0002]

【従来の技術】ニッケル−水素蓄電池、ニッケル−カド
ミウム蓄電池に代表されるアルカリ蓄電池に用いられる
非焼結式ニッケル極は、従来より用いられている焼結式
ニッケル極と比較して活物質充填密度が大きいニッケル
極が得られ、また製造工程が簡便であるという特長を持
つため、現在幅広く用いられている。
2. Description of the Related Art A non-sintered nickel electrode used for an alkaline storage battery typified by a nickel-hydrogen storage battery and a nickel-cadmium storage battery has a higher active material packing density than a conventionally used sintered nickel electrode. It is widely used at present because it has a feature that a nickel electrode having a large value is obtained and the manufacturing process is simple.

【0003】非焼結式ニッケル極の代表的なものとして
は、90%以上の多孔度を有するニッケルの発泡状もし
くは繊維状の不織布を基体に用い、これにニッケル水酸
化物を主成分とする活物質粉末を充填する方法が用いら
れている。しかし、このような非焼結式ニッケル極で
は、基体および極板としての導電性が低いために十分な
活物質利用率が得られない。したがって活物質の導電性
を高め、活物質利用率を向上させる必要があり、そのた
めに導電剤として水酸化コバルト粉末や酸化コバルト粉
末といった、2価のコバルト酸化物を導電剤として添加
する方法が特開昭62−237667号公報で提案され
ている。
As a typical non-sintered nickel electrode, a foamed or fibrous non-woven fabric of nickel having a porosity of 90% or more is used as a substrate, and a nickel hydroxide is used as a main component. A method of filling the active material powder is used. However, in such a non-sintered nickel electrode, a sufficient active material utilization rate cannot be obtained due to low conductivity of the base and the electrode plate. Therefore, it is necessary to increase the conductivity of the active material and improve the utilization rate of the active material. For this purpose, a method of adding a divalent cobalt oxide such as a cobalt hydroxide powder or a cobalt oxide powder as a conductive agent is a special method. It is proposed in Japanese Patent Laid-Open No. 62-237667.

【0004】このようにニッケル水酸化物と、水酸化コ
バルトや酸化コバルトなどの導電剤とを混合して充填し
たニッケル極は、アルカリ蓄電池に組み込まれると、コ
バルト化合物がアルカリ電解液中にコバルト酸イオンと
して溶解し、ニッケル水酸化物の表面に一様に分散し
て、その後、電池の初充電時に導電性の高いオキシ水酸
化コバルトに酸化され、活物質相互間及び活物質と多孔
性基体との間を繋ぐ導電性ネットワークを形成し、活物
質の利用率を向上させる効果を有する。
A nickel electrode filled with a mixture of nickel hydroxide and a conductive agent such as cobalt hydroxide or cobalt oxide, when incorporated in an alkaline storage battery, contains a cobalt compound in an alkaline electrolyte. It dissolves as ions and is uniformly dispersed on the surface of the nickel hydroxide, and then is oxidized to highly conductive cobalt oxyhydroxide at the time of initial charge of the battery. It has an effect of forming a conductive network connecting between the active materials and improving the utilization rate of the active material.

【0005】近年の電子携帯機器では、例えばノートパ
ソコンのように電源電池を使用する機会が増すにつれ
て、電源の切り忘れ等で電源電池が回路につながれた状
態のまま、長期間放置されたままになることが増加して
いる。このように電池を回路につないだ状態で長期間放
置したままにしておくと、電池は通常の使用電圧範囲
(0.8V以上)以下となるまで放電し、電池の容量が
なくなった後もさらにこの放電状態のまま長期間放置さ
れた状態、いわゆる深放電状態となる。
In recent electronic portable devices, as the use of a power supply battery, such as a notebook personal computer, increases, the power supply battery remains connected to a circuit for a long period of time due to forgetting to turn off the power supply. That is increasing. If the battery is left for a long time with the battery connected to the circuit, the battery is discharged until the voltage falls below the normal operating voltage range (0.8 V or more), and the battery is discharged even after the battery capacity is exhausted. A state in which the discharge state is left for a long time, that is, a so-called deep discharge state.

【0006】深放電状態となった電池は、正極の電位が
オキシ水酸化コバルトの還元電位(Hg/HgO電極電
位に対して約0V)以下となるため、導電性ネットワー
クを形成しているオキシ水酸化コバルトが還元、溶出し
てしまうという現象が発生する。このため、ひとたび深
放電状態となった電池は、活物質相互間及び活物質と多
孔性基体間に形成された導電性ネットワークが、部分的
あるいは大幅に破壊されるために、充電受入性が低下
し、その後に再度充電しても容量回復は十分でなく、つ
いで放電しても初期と同等の活物質利用率が得られなく
なるという課題を有していた。
In a deeply discharged battery, the potential of the positive electrode becomes lower than the reduction potential of cobalt oxyhydroxide (about 0 V with respect to the potential of the Hg / HgO electrode). A phenomenon occurs in which cobalt oxide is reduced and eluted. For this reason, once the battery is in a deep discharge state, the conductive network formed between the active materials and between the active material and the porous substrate is partially or significantly destroyed, and the charge acceptability decreases. However, there is a problem that even if the battery is recharged thereafter, the capacity recovery is not sufficient, and even if the battery is subsequently discharged, the same active material utilization as in the initial stage cannot be obtained.

【0007】そこで、本発明者らは特願平9−6766
9号において、従来より用いられている2価のコバルト
酸化物に代わる導電剤として、リチウムとコバルトの複
合酸化物粉末を用いることを提案した。リチウムとコバ
ルトの複合酸化物は、還元雰囲気に対して安定であるた
め深放電により、正極電位が負極相当の電位である−
0.9V(Hg/HgO電極電位に対して)程度にまで
低下しても分解、還元などが起こりにくく、深放電状態
後の回復充電が効果的に行え、その後の放電で初期と変
わらない高い活物質利用率を得ることができる。
Therefore, the present inventors have disclosed in Japanese Patent Application No. 9-6766.
No. 9 proposed using a composite oxide powder of lithium and cobalt as a conductive agent instead of the conventionally used divalent cobalt oxide. Since the composite oxide of lithium and cobalt is stable against a reducing atmosphere, the potential of the positive electrode is equivalent to that of the negative electrode by deep discharge.
Even if the voltage drops to about 0.9 V (relative to the Hg / HgO electrode potential), decomposition, reduction, and the like are unlikely to occur, and recovery charging after a deep discharge state can be performed effectively. Active material utilization can be obtained.

【0008】[0008]

【発明が解決しようとする課題】ニッケル−水素蓄電池
やニッケル−カドミウム蓄電池で代表されるアルカリ蓄
電池は、0℃以下の低温で放電させると、常温で放電さ
せた場合よりも放電容量が低下する。これは、アルカリ
蓄電池の負極として用いられているカドミウム電極や水
素吸蔵合金電極は、その反応性が低温では低下するため
である。
An alkaline storage battery represented by a nickel-hydrogen storage battery or a nickel-cadmium storage battery has a lower discharge capacity when discharged at a low temperature of 0 ° C. or less than when discharged at normal temperature. This is because the reactivity of a cadmium electrode or a hydrogen storage alloy electrode used as a negative electrode of an alkaline storage battery decreases at low temperatures.

【0009】このような低温での負極の放電容量の低下
を抑制するためには、負極に予備充電を施し、正極と比
較して充電電気量が過多の状態とした電池を構成するこ
とが有効となる。これにより、低温下で負極の放電能力
が低下した場合にも放電できる容量に余裕が生じるた
め、負極による容量の低下を抑制できる。
In order to suppress such a decrease in the discharge capacity of the negative electrode at a low temperature, it is effective to configure a battery in which the negative electrode is pre-charged and the amount of charge is excessive as compared with the positive electrode. Becomes Thereby, even if the discharge capacity of the negative electrode decreases at a low temperature, there is a margin in the capacity that can be discharged, so that a decrease in the capacity due to the negative electrode can be suppressed.

【0010】このような負極への予備充電は、正極中に
2価のコバルト酸化物あるいは金属コバルトを添加する
ことによって形成される。この正極中に添加された酸化
コバルトや水酸化コバルトなどの2価のコバルト酸化物
あるいは金属コバルトは、電池構成後の初充電時に3価
のオキシ水酸化コバルトに酸化される。このオキシ水酸
化コバルトは通常の電池の使用範囲(電池電圧0.8V
以上)の放電では還元されない。このため、正極におい
てコバルトの酸化に費やされる電気量だけ負極は正極よ
りも余分に充電され、この分の電気量が負極の正極に対
する予備充電となる。このような負極に対する予備充電
を放電リザーブと呼ぶ。
[0010] Such preliminary charging of the negative electrode is formed by adding divalent cobalt oxide or metallic cobalt to the positive electrode. The divalent cobalt oxide or metallic cobalt such as cobalt oxide or cobalt hydroxide added to the positive electrode is oxidized to trivalent cobalt oxyhydroxide at the time of the first charge after the construction of the battery. This cobalt oxyhydroxide is used in a normal battery range (battery voltage 0.8V).
It is not reduced by the above discharge. Therefore, the negative electrode is charged more than the positive electrode by the amount of electricity consumed for oxidizing cobalt in the positive electrode, and this amount of electricity becomes preliminary charge of the negative electrode to the positive electrode. Such precharging of the negative electrode is called a discharge reserve.

【0011】また、水酸化ニッケルのニッケルの価数は
2価であるが、充電するとニッケルの価数が2価から3
価以上になり、放電すると通常2.2価程度までにな
る。このため、水酸化ニッケルは、ニッケルの価数の
2.2価から2.0価に相当する分の電気量がコバルト
の添加に関係なく、負極に対する放電リザーブとなる。
The nickel valence of nickel hydroxide is divalent, but when charged, the valence of nickel changes from divalent to trivalent.
And when discharged, usually reaches about 2.2 valence. For this reason, nickel hydroxide has a discharge reserve for the negative electrode irrespective of the addition of cobalt, the amount of electricity corresponding to the valence of 2.2 to 2.0 of nickel.

【0012】さらに、通常アルカリ蓄電池では、充電時
の負極からの水素ガス発生を抑制するために負極容量は
正極容量の1.5〜2.0倍程度大きくする電池設計を
行っている。このような負極の過剰な容量分を充電リザ
ーブと呼ぶ。以上の充・放電リザーブのメカニズムの概
念図を図3に示す。
Further, in a normal alkaline storage battery, the battery capacity is designed to be 1.5 to 2.0 times as large as the positive electrode capacity in order to suppress the generation of hydrogen gas from the negative electrode during charging. Such excess capacity of the negative electrode is called a charge reserve. FIG. 3 shows a conceptual diagram of the above-described charge / discharge reserve mechanism.

【0013】リチウムとコバルトの複合酸化物は、上記
のような初充電時の非可逆的な酸化反応がなされないた
め、負極に対する予備充電がされない。したがって、リ
チウムとコバルトの複合酸化物のみを正極の導電剤とし
て用いた電池は、放電リザーブをほとんど持たなく、と
くに低温での放電特性が劣化するという課題があった。
Since the composite oxide of lithium and cobalt does not undergo the irreversible oxidation reaction at the time of the initial charge as described above, the precharge of the negative electrode is not performed. Therefore, a battery using only a composite oxide of lithium and cobalt as a conductive agent for the positive electrode has almost no discharge reserve, and has a problem that the discharge characteristics particularly at low temperatures deteriorate.

【0014】[0014]

【課題を解決するための手段】上記課題を解決するため
に本発明は、多孔性基体にニッケル水酸化物を活物質と
して充填した正極と、負極と、セパレータと、アルカリ
電解液とからなるアルカリ蓄電池において、正極は、ニ
ッケル水酸化物粉末を主体とし、これにリチウムとコバ
ルトの複合酸化物粉末と、2価のコバルト酸化物および
/または金属コバルトとを加えたものとした。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides an alkaline battery comprising a porous substrate filled with nickel hydroxide as an active material, a negative electrode, a separator, and an alkaline electrolyte. In the storage battery, the positive electrode was mainly made of nickel hydroxide powder, and added with a composite oxide powder of lithium and cobalt, and divalent cobalt oxide and / or metallic cobalt.

【0015】さらに、正極は、その表面の一部が少なく
ともリチウムとコバルトの複合酸化物で覆われたニッケ
ル水酸化物粉末を主体とし、これに2価のコバルトおよ
び/または金属コバルトを混合して用いると、リチウム
とコバルトの複合酸化物とニッケル水酸化物粉末との密
着性が高くなり、導電剤としての効果を十分に発揮させ
ることができる。
Further, the positive electrode mainly comprises a nickel hydroxide powder whose surface is partially covered with at least a composite oxide of lithium and cobalt, and mixed with divalent cobalt and / or metallic cobalt. When used, the adhesion between the composite oxide of lithium and cobalt and the nickel hydroxide powder is increased, and the effect as a conductive agent can be sufficiently exerted.

【0016】[0016]

【発明の実施の形態】請求項1記載の本発明は、多孔性
基体にニッケル水酸化物を活物質として充填した正極
と、負極と、セパレータと、アルカリ電解液とからなる
アルカリ蓄電池において、前記正極は、ニッケル水酸化
物粉末を主体とし、これにリチウムとコバルトの複合酸
化物粉末と、2価のコバルト酸化物および/または金属
コバルトとを混合しているアルカリ蓄電池としたもので
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention according to claim 1 is directed to an alkaline storage battery comprising a positive electrode filled with a nickel hydroxide as an active material in a porous substrate, a negative electrode, a separator, and an alkaline electrolyte. The positive electrode is an alkaline storage battery mainly composed of nickel hydroxide powder, and mixed with a composite oxide powder of lithium and cobalt, and divalent cobalt oxide and / or metallic cobalt.

【0017】これは、正極活物質の導電剤としてリチウ
ムとコバルトの複合酸化物を混合しているので、これを
組み込んだアルカリ蓄電池では、還元雰囲気下で安定な
リチウムとコバルトの複合酸化物が導電剤として働き、
深放電状態となっても、その後に回復充電を行うことに
より初期と同等の高い活物質利用率が得られる。それに
加えて、正極中には、2価のコバルト酸化物および/ま
たは金属コバルトを混合しているので、負極に対して予
備充電がなされるため、放電リザーブを得ることができ
る。その結果、低温においても、充分な放電特性を得る
ことができる。
In this case, since a composite oxide of lithium and cobalt is mixed as a conductive agent of the positive electrode active material, in an alkaline storage battery incorporating the same, a composite oxide of lithium and cobalt that is stable under a reducing atmosphere has a conductive property. Work as an agent,
Even in a deep discharge state, a high active material utilization rate equivalent to the initial state can be obtained by performing recovery charging thereafter. In addition, since divalent cobalt oxide and / or metallic cobalt are mixed in the positive electrode, the negative electrode is precharged, so that a discharge reserve can be obtained. As a result, sufficient discharge characteristics can be obtained even at a low temperature.

【0018】また、リチウムとコバルトの複合酸化物粉
末は、ナトリウムおよび/またはカリウムをコバルト量
に対して2〜30原子%含有していて、リチウムの量は
コバルトのそれに対して10〜90原子%であると、リ
チウムとコバルトの複合酸化物の粉末導電率をさらに向
上させることができ、1CmA以上の大きな電流で放電
する高率放電にも対応した優れたアルカリ蓄電池を提供
できる。
Further, the composite oxide powder of lithium and cobalt contains sodium and / or potassium in an amount of 2 to 30 atomic% based on the amount of cobalt, and the amount of lithium is 10 to 90 atomic% based on that of cobalt. In this case, the powder conductivity of the composite oxide of lithium and cobalt can be further improved, and an excellent alkaline storage battery that can cope with high-rate discharge at a large current of 1 CmA or more can be provided.

【0019】さらに、正極のニッケル水酸化物粉末は、
その表面の少なくとも一部が上記の導電剤であるリチウ
ムとコバルトの複合酸化物で覆っていると、リチウムと
コバルトの複合酸化物とニッケル水酸化物粉末との密着
性が高くなり、少量でも導電剤としての効果をより良好
に発揮させることができる。
Further, the nickel hydroxide powder of the positive electrode comprises:
If at least a part of the surface is covered with the above-mentioned lithium-cobalt composite oxide, which is a conductive agent, the adhesion between the lithium-cobalt composite oxide and the nickel hydroxide powder becomes high, so that even a small amount of the conductive material can be used. The effect as an agent can be exhibited more favorably.

【0020】さらにまた、正極中に加える2価のコバル
ト酸化物としては、酸化コバルトや水酸化コバルトが好
ましい。
Further, as the divalent cobalt oxide added to the positive electrode, cobalt oxide or cobalt hydroxide is preferable.

【0021】[0021]

【実施例】以下、本発明における詳細について実施例に
基づいて説明する。なお、本発明は下記実施例により何
ら限定されるものではなく、その要点を変更しない範囲
において、適宜変更して実施することが可能なものであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below based on embodiments. It should be noted that the present invention is not limited at all by the following examples, and can be implemented with appropriate changes within a range that does not change the gist of the present invention.

【0022】(実施例1)ナトリウムを含有したリチウ
ムとコバルトの複合酸化物を以下に示す方法により合成
した。
Example 1 A composite oxide of lithium and cobalt containing sodium was synthesized by the following method.

【0023】平均粒径0.3μm以下であるCo(O
H)2粒子100gに対して濃度45重量%の水酸化ナ
トリウム水溶液20ccを含浸させ、120℃雰囲気下
の大気中で1時間加熱酸化し、ナトリウム原子を層間に
取り込んだ高次に酸化されたコバルト酸化物を得た。
Co (O) having an average particle size of 0.3 μm or less
H) 100 g of 2 particles are impregnated with 20 cc of a 45% by weight aqueous solution of sodium hydroxide and heated and oxidized for 1 hour in an air atmosphere at 120 ° C., so that high-order oxidized cobalt containing sodium atoms between layers An oxide was obtained.

【0024】このコバルト酸化物粉末と濃度2.5mo
l/lの水酸化リチウム水溶液を重量比にて1:10の
割合で混合し、液温を80℃に保持しながら、2時間攪
拌処理し、十分に水洗、乾燥し、リチウムとコバルトの
複合酸化物粉末を作製した。このリチウムとコバルトの
複合酸化物粉末の平均粒径は0.3μm以下であった。
This cobalt oxide powder and a concentration of 2.5 mo
1 / l aqueous solution of lithium hydroxide was mixed at a weight ratio of 1:10, and the mixture was stirred for 2 hours while maintaining the liquid temperature at 80 ° C., sufficiently washed with water and dried to obtain a composite of lithium and cobalt. An oxide powder was produced. The average particle diameter of the composite oxide powder of lithium and cobalt was 0.3 μm or less.

【0025】この処理により得られたリチウムとコバル
トの複合酸化物の粉末中のリチウム、ナトリウム、コバ
ルト量をICP発光分析法で測定すると、リチウムはコ
バルトに対して40原子%、ナトリウムはコバルトに対
して15原子%含有していることが確認された。
When the amounts of lithium, sodium and cobalt in the powder of the composite oxide of lithium and cobalt obtained by this treatment were measured by ICP emission spectrometry, lithium was 40 atomic% with respect to cobalt, and sodium was with respect to cobalt. 15 atomic%.

【0026】活物質である平均粒径が20μmの水酸化
ニッケル粉末100重量部に対して上記のリチウムとコ
バルトの複合酸化物粉末を導電剤として10重量部、水
酸化コバルト粉末を5重量部加えて粉末混合し、これら
に分散媒として水を全ペーストにしめる量が25重量%
となるように加え、練合してペースト状活物質を作製し
た。これを多孔度95%のスポンジ状ニッケル多孔体へ
充填し、乾燥、加圧後、所定の寸法に切断して1600
mAhの理論電気容量を有する正極1を作製した。
10 parts by weight of the above-mentioned composite oxide powder of lithium and cobalt as a conductive agent and 5 parts by weight of cobalt hydroxide powder were added to 100 parts by weight of nickel hydroxide powder having an average particle diameter of 20 μm as an active material. 25% by weight of water to make a total paste with water as a dispersion medium.
And kneaded to produce a paste-like active material. This is filled in a sponge-like nickel porous body having a porosity of 95%, dried, pressurized, cut into a predetermined size, and 1600
A positive electrode 1 having a theoretical electric capacity of mAh was produced.

【0027】また、平均粒子径20μmの水素吸蔵合金
粉末を主体にペーストを調整してこれをパンチングメタ
ルからなる芯体に塗着し、所定の寸法に切断して、理論
電気容量2500mAhの負極2を作製した。
Further, a paste was prepared mainly with a hydrogen storage alloy powder having an average particle diameter of 20 μm, and the paste was applied to a core made of punched metal, cut into a predetermined size, and cut into a predetermined size to obtain a negative electrode 2 having a theoretical electric capacity of 2500 mAh. Was prepared.

【0028】上記で作製した正極1と、負極2とこの両
者の間にポリプロピレン不織布製セパレータ3を介して
渦巻き状に巻回して構成した極板群を、金属製電池ケー
ス4の内部に挿入し、アルカリ電解液を所定量注入した
後、ケース4の上部を正極端子を兼ねた封口板5で密閉
して、図1に示す4/5Aサイズのニッケル−水素蓄電
池Aを作製した。
The positive electrode 1 and the negative electrode 2 manufactured as described above, and an electrode group formed by spirally winding the two between the two via a polypropylene nonwoven fabric separator 3 are inserted into a metal battery case 4. After injecting a predetermined amount of an alkaline electrolyte, the upper portion of the case 4 was sealed with a sealing plate 5 also serving as a positive electrode terminal, thereby producing a 4 / 5A size nickel-hydrogen storage battery A shown in FIG.

【0029】(実施例2)ナトリウムを含有したリチウ
ムとコバルトの複合酸化物で被覆された水酸化ニッケル
粉末を以下に示す方法により合成した。
Example 2 A nickel hydroxide powder coated with a complex oxide of lithium and cobalt containing sodium was synthesized by the following method.

【0030】平均粒径20μmの水酸化ニッケル粉末を
水に懸濁させた溶液中に、反応中pHを9〜10に維持
するように比重1.30の硫酸コバルト水溶液と200
g/lの水酸化ナトリウム水溶液を添加して、水酸化ニ
ッケルを結晶核とし、この核の周囲に水酸化コバルトを
析出させた。処理に用いる硫酸コバルト水溶液の添加量
を調整することにより、水酸化ニッケル粉末の周囲に形
成される水酸化コバルトの被覆層の割合は、水酸化ニッ
ケル100重量部に対して7重量部となるようにした。
In a solution in which nickel hydroxide powder having an average particle diameter of 20 μm is suspended in water, an aqueous solution of cobalt sulfate having a specific gravity of 1.30 is added so as to maintain the pH at 9-10 during the reaction.
A sodium hydroxide aqueous solution of g / l was added to make nickel hydroxide a crystal nucleus, and cobalt hydroxide was deposited around the nucleus. By adjusting the addition amount of the aqueous solution of cobalt sulfate used for the treatment, the ratio of the coating layer of cobalt hydroxide formed around the nickel hydroxide powder is 7 parts by weight with respect to 100 parts by weight of nickel hydroxide. I made it.

【0031】この処理により得られた水酸化コバルトで
被覆された水酸化ニッケル粉末を、120℃雰囲気下の
大気中で1時間加熱し、水酸化コバルト被覆層をナトリ
ウムを層間に取り込んだ高次に酸化されたコバルト酸化
物に変化させた。
The nickel hydroxide powder coated with cobalt hydroxide obtained by this treatment is heated for one hour in the air under an atmosphere of 120 ° C. to form a cobalt hydroxide coating layer on a high-order metal having sodium taken in between layers. It was changed to oxidized cobalt oxide.

【0032】この処理粉末を、50g/lの水酸化リチ
ウムを溶解したアルカリ水溶液と、重量比にて1:5の
割合で混合し、液温を80℃に保持しながら2時間攪拌
処理を行うことにより、コバルト酸化物とリチウムを反
応させ、リチウムとコバルトの複合酸化物による被覆層
を薄く均一に形成させた。
This treated powder is mixed with an aqueous alkali solution in which 50 g / l of lithium hydroxide is dissolved at a weight ratio of 1: 5, and the mixture is stirred for 2 hours while maintaining the liquid temperature at 80 ° C. As a result, the cobalt oxide and the lithium were reacted, and a thin and uniform coating layer of the composite oxide of lithium and cobalt was formed.

【0033】これらに水酸化コバルト粉末を5重量部添
加し、分散媒として水を全ペーストに占める量が25重
量%となるように加え、練合してペースト状活物質を作
製し、これを多孔度95%のスポンジ状ニッケル多孔体
へ充填し、乾燥、加圧後、所定の寸法に切断して160
0mAhの理論電気容量を有する正極6を作製した。
To these, 5 parts by weight of cobalt hydroxide powder was added, and water was added as a dispersion medium so that the amount occupying 25% by weight of the total paste was kneaded to prepare a paste-like active material. Fill into a sponge-like nickel porous body having a porosity of 95%, dry, pressurize, cut to a predetermined size,
A positive electrode 6 having a theoretical electric capacity of 0 mAh was produced.

【0034】この正極6を用いた以外は、実施例1の電
池Aと同様な構成としてニッケル−水素蓄電池Bを作製
した。
A nickel-hydrogen storage battery B was manufactured in the same manner as the battery A of Example 1 except that the positive electrode 6 was used.

【0035】(比較例)比較例として、正極中に水酸化
コバルトを添加しないで、リチウムとコバルトの複合酸
化物のみを導電剤として添加した電池についても評価を
行った。
(Comparative Example) As a comparative example, a battery in which only a composite oxide of lithium and cobalt was added as a conductive agent without adding cobalt hydroxide to the positive electrode was also evaluated.

【0036】上記実施例1と同様の処理により合成した
ナトリウムを含有したリチウムとコバルトの複合酸化物
粉末10重量部を、水酸化ニッケル粉末100重量部に
添加し、実施例1と同様の処理により正極7を作製し
た。
10 parts by weight of a lithium-cobalt composite oxide powder containing sodium synthesized by the same treatment as in Example 1 was added to 100 parts by weight of nickel hydroxide powder, and the same treatment as in Example 1 was carried out. A positive electrode 7 was produced.

【0037】この正極7を用いた以外は、実施例1の電
池Aと同様な構成として比較例のニッケル−水素蓄電池
Cを作製した。
A nickel-hydrogen storage battery C of a comparative example was manufactured in the same manner as the battery A of the example 1 except that the positive electrode 7 was used.

【0038】実施例の電池A,Bおよび比較例の電池C
について、以下に示す条件でそれぞれ試験を行い、初期
及び深放電状態後の正極活物質の利用率を調べた。
Batteries A and B of Example and Battery C of Comparative Example
Were tested under the conditions shown below, and the utilization rates of the positive electrode active material in the initial stage and after the deep discharge state were examined.

【0039】まず、20℃雰囲気下にて、160mAの
電流(0.1CmA)で15時間充電し、1時間休止の
後、320mAの電流(0.2CmA)で1.0Vの端
子電圧に至るまで放電を行った。そのときの正極活物質
の理論容量に対する実放電容量を初期の活物質利用率と
して求めた。
First, in a 20 ° C. atmosphere, the battery is charged with a current of 160 mA (0.1 CmA) for 15 hours. After a pause of 1 hour, a terminal voltage of 1.0 V is reached at a current of 320 mA (0.2 CmA). Discharge was performed. The actual discharge capacity with respect to the theoretical capacity of the positive electrode active material at that time was obtained as an initial active material utilization rate.

【0040】次に実施例の電池A,B及び比較例の電池
Cに、それぞれ1Ωの抵抗をつないで放電したまま、6
5℃雰囲気下に14日間放置し、深放電状態とした。深
放電状態後のそれぞれの電池の活物質利用率を初期の活
物質利用率を求めた方法で算出し、すなわち深放電状態
後の回復充電を施した後の放電時の正極活物質の利用率
を算出し、その結果を(表1)に示す。
Next, the batteries A and B of the example and the battery C of the comparative example were each connected to a 1 Ω resistor and discharged, and then discharged for 6 hours.
It was left in an atmosphere of 5 ° C. for 14 days to form a deep discharge state. Calculate the active material utilization rate of each battery after the deep discharge state by the method of calculating the initial active material utilization rate, that is, the utilization rate of the positive electrode active material at the time of discharge after performing the recovery charge after the deep discharge state Is calculated, and the results are shown in (Table 1).

【0041】[0041]

【表1】 [Table 1]

【0042】(表1)に示すように、実施例の電池A,
Bは比較例の電池Cと同様に深放電状態後にも初期と変
わらず、高い活物質利用率が得られる。これは正極の導
電剤として添加しているリチウムとコバルトの複合酸化
物は、酸化還元反応に対する高い安定性を有し、電池が
深放電状態となっても分解や溶出反応による導電性ネッ
トワークの破壊が起こりにくいためである。
As shown in (Table 1), the batteries A,
B shows the same active state as the battery C of the comparative example even after the deep discharge state, and a high active material utilization rate is obtained. This is because the composite oxide of lithium and cobalt added as a conductive agent for the positive electrode has high stability against redox reactions, and even when the battery is in a deep discharge state, the conductive network is destroyed by decomposition and elution reactions. Is difficult to occur.

【0043】次に、実施例の電池A,B及び比較例の電
池Cについて、以下に示す条件でそれぞれ試験を行い、
低温下における放電特性を調べた。
Next, the batteries A and B of the example and the battery C of the comparative example were tested under the following conditions, respectively.
The discharge characteristics at low temperature were investigated.

【0044】まず、20℃雰囲気下にて、160mAの
電流(0.1CmA)で15時間充電し、1時間の放置
後、20℃雰囲気下で320mAの電流(0.2Cm
A)で1.0Vの端子電圧に至るまで放電を行った。こ
のときの放電容量を100%とした。
First, the battery was charged at a current of 160 mA (0.1 CmA) in a 20 ° C. atmosphere for 15 hours, and left for 1 hour.
In A), discharge was performed until a terminal voltage of 1.0 V was reached. The discharge capacity at this time was set to 100%.

【0045】次に、20℃雰囲気下にて、160mAの
電流で15時間充電し、0℃雰囲気下で3時間放置後、
0℃雰囲気下で320mAの電流で放電を行って、その
放電容量を求め、上記の20℃雰囲気下での放電容量と
の比を算出した。また、−10℃と−20℃の雰囲気下
で、それ以外は上記と同様な条件で放電試験を行い、そ
れぞれの20℃に対する容量比を算出した。その試験結
果を図2に示す。
Next, the battery was charged at a current of 160 mA for 15 hours in an atmosphere of 20 ° C., and left for 3 hours in an atmosphere of 0 ° C.
Discharge was performed at a current of 320 mA in an atmosphere of 0 ° C., the discharge capacity was determined, and the ratio to the discharge capacity in an atmosphere of 20 ° C. was calculated. In addition, a discharge test was performed in an atmosphere of −10 ° C. and −20 ° C., and under the same conditions as above, except for the above, to calculate the capacity ratio of each to 20 ° C. FIG. 2 shows the test results.

【0046】図2に示すように、実施例の電池A,B
は、比較例の電池Cに比較して低温下での放電特性が向
上していることがわかる。
As shown in FIG. 2, the batteries A and B of the embodiment
Indicates that the discharge characteristics at a low temperature are improved as compared with the battery C of the comparative example.

【0047】次に、電池A,B及びCについて、それぞ
れの正極の理論電気容量に対する負極の放電リザーブ量
を以下に示す方法で測定した。
Next, for the batteries A, B, and C, the discharge reserve of the negative electrode with respect to the theoretical electric capacity of each positive electrode was measured by the following method.

【0048】20℃雰囲気下において130mAの電流
で15時間充電した後、電池を分解し、負極を取り出し
て、電解液が過剰な状態とし、320mAの電流で0.
6(V)vs.Hg/HgOまで放電させる単極での放
電試験を行い、負極の放電容量を求め、次式より放電リ
ザーブ量を求めた。
After charging for 15 hours at a current of 130 mA in an atmosphere of 20 ° C., the battery was disassembled, the negative electrode was taken out, the electrolyte was made excessive, and the current was reduced to 0.3 at a current of 320 mA.
6 (V) vs. A discharge test was performed on a single electrode discharging to Hg / HgO, the discharge capacity of the negative electrode was determined, and the discharge reserve amount was determined by the following equation.

【0049】[0049]

【式1】放電リザーブ量(%)=(負極の放電容量/正
極の理論電気容量)−100 その結果を(表2)に示す。
[Formula 1] Discharge reserve (%) = (discharge capacity of negative electrode / theoretical electric capacity of positive electrode) -100 The result is shown in Table 2.

【0050】[0050]

【表2】 [Table 2]

【0051】(表2)に示すように、正極中に水酸化コ
バルトを加えた実施例の電池A,Bは、負極の正極に対
する放電リザーブ量が増加していることがわかる。
As shown in Table 2, it can be seen that in the batteries A and B of the examples in which cobalt hydroxide was added to the positive electrode, the discharge reserve of the negative electrode with respect to the positive electrode was increased.

【0052】図2に示したように電池A,Bでの低温特
性が電池Cよりも優れた結果となったのは、上記の放電
リザーブ量が電池A,Bの方が電池Cより大きくなった
ためである。
As shown in FIG. 2, the low temperature characteristics of the batteries A and B were better than that of the battery C because the discharge reserve amounts of the batteries A and B were larger than that of the battery C. It is because.

【0053】上記実施例1の正極1では、水酸化ニッケ
ル粉末100重量部に対してナトリウムを含有させたリ
チウムとコバルトの複合酸化物粉末を導電剤として10
重量部混合したが、この導電剤の量としては3〜15重
量%の範囲であれば、正極1とほぼ同様な効果が得られ
る。
In the positive electrode 1 of Example 1 described above, a composite oxide powder of lithium and cobalt containing sodium with respect to 100 parts by weight of nickel hydroxide powder was used as a conductive agent.
Although the parts by weight were mixed, as long as the amount of the conductive agent is in the range of 3 to 15% by weight, substantially the same effect as that of the positive electrode 1 can be obtained.

【0054】また、実施例1では、水酸化ニッケル粉末
と平均粒径が0.3μm以下のリチウムとコバルトの複
合酸化物とを用いて正極1を構成し、その正極1中での
リチウムとコバルトの複合酸化物粉末を均一に分散させ
た。しかし、水酸化ニッケル粉末と平均粒径が1μm以
下のリチウムとコバルトの複合酸化物粉末を用いて正極
を構成しても、正極1とほぼ同様に、正極中にリチウム
とコバルトの複合酸化物粉末を均一に分散させることが
できる。
Further, in Example 1, the positive electrode 1 was formed using nickel hydroxide powder and a composite oxide of lithium and cobalt having an average particle diameter of 0.3 μm or less, and lithium and cobalt in the positive electrode 1 were formed. Was dispersed uniformly. However, even when the positive electrode is composed of the nickel hydroxide powder and the composite oxide powder of lithium and cobalt having an average particle diameter of 1 μm or less, the composite oxide powder of lithium and cobalt Can be uniformly dispersed.

【0055】実施例2の正極6の100重量部の水酸化
ニッケル粉末は、ナトリウムを含有させたリチウムとコ
バルトの複合酸化物の7重量部で被覆されている。水酸
化ニッケル粉末を被覆する導電剤の量としては水酸化ニ
ッケル粉末100重量部に対して1〜10重量部の範囲
であれば、正極6とほぼ同様な効果が得られる。
The nickel hydroxide powder of 100 parts by weight of the positive electrode 6 of Example 2 is coated with 7 parts by weight of a composite oxide of lithium and cobalt containing sodium. If the amount of the conductive agent for coating the nickel hydroxide powder is in the range of 1 to 10 parts by weight with respect to 100 parts by weight of the nickel hydroxide powder, substantially the same effect as that of the positive electrode 6 can be obtained.

【0056】また、上記実施例の正極1,6では、導電
剤であるリチウムとコバルトの複合酸化物はナトリウム
をコバルト量に対して15原子%、リチウムを40原子
%含有させたが、この導電剤に含有させるナトリウムと
リチウムの量は、コバルト量に対して、ナトリウムが2
〜30原子%、リチウムが10〜90原子%の範囲であ
れば、上記の正極1,6とほぼ同様な効果が得られる。
In the positive electrodes 1 and 6 of the above embodiments, the composite oxide of lithium and cobalt as the conductive agent contained 15 atomic% of sodium and 40 atomic% of lithium with respect to the amount of cobalt. The amount of sodium and lithium contained in the agent is such that sodium is 2
When the content of lithium is in the range of 10 to 90 atomic% and the content of lithium is in the range of 10 to 90 atomic%, substantially the same effects as those of the positive electrodes 1 and 6 can be obtained.

【0057】また、正極1,6では、ナトリウムを含有
させたリチウムとコバルトの複合酸化物を導電剤として
用いたが、これと同じ考えに基づいて、カリウムの単独
か、あるいはナトリウムとカリウムの両方を含有させた
リチウムとコバルトの複合酸化物を導電剤として用いて
も、正極1,6とほぼ同様な効果が得られる。
In the positive electrodes 1 and 6, a composite oxide of lithium and cobalt containing sodium was used as the conductive agent. Based on the same idea, potassium alone or both sodium and potassium were used. The same effects as those of the positive electrodes 1 and 6 can be obtained by using a composite oxide of lithium and cobalt containing Si as the conductive agent.

【0058】また、正極1,6では水酸化ニッケル10
0重量部に対して水酸化コバルト粉末を5重量部添加し
ているが、2価のコバルト酸化物粉末または金属コバル
ト粉末、あるいはこれらの2価のコバルト酸化物粉末と
金属コバルト粉末との併用でも実施例と同様の効果が得
られる。その添加量としては、水酸化ニッケル100重
量部に対して1〜8重量部の範囲の添加であれば、実施
例と同様の効果が得られる。
In the positive electrodes 1 and 6, nickel hydroxide 10
Although 5 parts by weight of cobalt hydroxide powder is added to 0 parts by weight, divalent cobalt oxide powder or metallic cobalt powder, or a combination of these divalent cobalt oxide powder and metallic cobalt powder may be used. The same effect as that of the embodiment can be obtained. As long as the amount of addition is in the range of 1 to 8 parts by weight based on 100 parts by weight of nickel hydroxide, the same effect as in the example can be obtained.

【0059】さらに、上記実施例では正極活物質粉末と
して水酸化ニッケルを用いた場合について示したが、水
酸化ニッケルを主成分とし、コバルトや亜鉛を少量含有
する固溶体粉末においても、実施例とほぼ同様な効果が
得られる。また、水酸化ニッケルが一部オキシ水酸化ニ
ッケルに酸化されたニッケル水酸化物粉末を用いた場合
でもほぼ同様な効果が得られる。
Further, in the above embodiment, the case where nickel hydroxide was used as the positive electrode active material powder was shown. However, a solid solution powder containing nickel hydroxide as a main component and a small amount of cobalt or zinc is almost the same as the embodiment. Similar effects can be obtained. In addition, substantially the same effect can be obtained when nickel hydroxide powder in which nickel hydroxide is partially oxidized to nickel oxyhydroxide is used.

【0060】さらにまた、上記実施例では、電池として
正極にニッケル極、負極に水素吸蔵合金極を用いた場合
を示したが、本発明はアルカリ蓄電池のニッケル極に関
するものであり、負極にカドミウム極、鉄極、亜鉛極な
どを用いた電池にも適用できる。
Further, in the above embodiment, the case where a nickel electrode is used as a positive electrode and a hydrogen storage alloy electrode is used as a negative electrode as a battery, but the present invention relates to a nickel electrode of an alkaline storage battery, and a cadmium electrode is used as a negative electrode. It can also be applied to batteries using iron, zinc, and the like.

【0061】[0061]

【発明の効果】以上のように本発明では、多孔性基体に
ニッケル水酸化物を活物質として充填した正極と、負極
と、セパレータと、アルカリ電解液とからなるアルカリ
蓄電池の正極に、ニッケル水酸化物を主体とした粉末
に、リチウムとコバルトの複合酸化物粉末と、2価のコ
バルト酸化物粉末および/または金属コバルト粉末を加
えたので、電池の深放電後の容量回復特性が優れ、さら
に、低温での放電特性の優れたアルカリ蓄電池を提供す
ることができる。
As described above, according to the present invention, nickel hydroxide is used as a positive electrode of an alkaline storage battery comprising a porous substrate filled with nickel hydroxide as an active material, a negative electrode, a separator, and an alkaline electrolyte. Since lithium-cobalt composite oxide powder, divalent cobalt oxide powder and / or metallic cobalt powder are added to the oxide-based powder, the battery has excellent capacity recovery characteristics after deep discharge, and Thus, an alkaline storage battery having excellent low-temperature discharge characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例におけるニッケル−水素蓄電池
の半裁断面図
FIG. 1 is a half sectional view of a nickel-hydrogen storage battery according to an embodiment of the present invention.

【図2】本発明の実施例における電池の放電雰囲気温度
と放電容量比率との関係を示す図
FIG. 2 is a diagram showing a relationship between a discharge atmosphere temperature and a discharge capacity ratio of a battery in an example of the present invention.

【図3】アルカリ蓄電池の負極の充、放電リザーブのメ
カニズム概念図
FIG. 3 is a conceptual diagram of a charging and discharging reserve mechanism of a negative electrode of an alkaline storage battery.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 電池ケース 5 封口板 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Battery case 5 Sealing plate

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】多孔性基体にニッケル水酸化物を活物質と
して充填した正極と、負極と、セパレータと、アルカリ
電解液とからなるアルカリ蓄電池において、前記正極
は、ニッケル水酸化物粉末を主体とし、これにリチウム
とコバルトの複合酸化物粉末と、2価のコバルト酸化物
および/または金属コバルトとを混合しているアルカリ
蓄電池。
1. An alkaline storage battery comprising a positive electrode in which a porous substrate is filled with nickel hydroxide as an active material, a negative electrode, a separator, and an alkaline electrolyte, wherein the positive electrode mainly comprises nickel hydroxide powder. An alkaline storage battery comprising a mixture of lithium and cobalt composite oxide powder, divalent cobalt oxide and / or metallic cobalt.
【請求項2】リチウムとコバルトの複合酸化物粉末は、
ナトリウムおよび/またはカリウムを含有していて、そ
の量はコバルト量に対して2〜30原子%であり、リチ
ウムの量はコバルトのそれに対して10〜90原子%で
ある請求項1記載のアルカリ蓄電池。
2. The composite oxide powder of lithium and cobalt,
2. The alkaline storage battery according to claim 1, which contains sodium and / or potassium, the amount of which is 2 to 30 atomic% based on the amount of cobalt, and the amount of lithium is 10 to 90 atomic% based on that of cobalt. .
【請求項3】リチウムとコバルトの複合酸化物粉末の平
均粒径は1μm以下である請求項1記載のアルカリ蓄電
池。
3. The alkaline storage battery according to claim 1, wherein the composite oxide powder of lithium and cobalt has an average particle size of 1 μm or less.
【請求項4】リチウムとコバルトの複合酸化物粉末の混
合量は、ニッケル水酸化物粉末100重量部に対して3
〜15重量部である請求項1記載のアルカリ蓄電池。
4. The mixing amount of the composite oxide powder of lithium and cobalt is 3 parts per 100 parts by weight of nickel hydroxide powder.
The alkaline storage battery according to claim 1, wherein the amount is from 15 to 15 parts by weight.
【請求項5】2価のコバルト酸化物は、酸化コバルトま
たは水酸化コバルトである請求項1記載のアルカリ蓄電
池。
5. The alkaline storage battery according to claim 1, wherein the divalent cobalt oxide is cobalt oxide or cobalt hydroxide.
【請求項6】2価のコバルト酸化物および/または金属
コバルトの混合量は、ニッケル水酸化物粉末100量部
に対して1〜8重量部である請求項1記載のアルカリ蓄
電池。
6. The alkaline storage battery according to claim 1, wherein the mixed amount of the divalent cobalt oxide and / or metallic cobalt is 1 to 8 parts by weight based on 100 parts by weight of the nickel hydroxide powder.
【請求項7】多孔性基体にニッケル水酸化物粉末を活物
質として充填した正極と、負極と、セパレータと、アル
カリ電解液とからなるアルカリ蓄電池において、前記正
極は、表面の一部が少なくともリチウムとコバルトの複
合酸化物で覆われたニッケル水酸化物粉末を主体とし、
これに2価のコバルト酸化物および/または金属コバル
トを混合しているアルカリ蓄電池。
7. An alkaline storage battery comprising a positive electrode in which a porous substrate is filled with nickel hydroxide powder as an active material, a negative electrode, a separator, and an alkaline electrolyte, wherein the positive electrode has at least a part of a surface of lithium. Mainly composed of nickel hydroxide powder covered with a composite oxide of
An alkaline storage battery in which divalent cobalt oxide and / or metallic cobalt are mixed.
【請求項8】リチウムとコバルトの複合酸化物は、ナト
リウムおよび/またはカリウムを含有していて、その量
はコバルトの量に対して2〜30原子%であり、リチウ
ムの量がコバルトのそれに対して10〜90原子%であ
る請求項7記載のアルカリ蓄電池。
8. The composite oxide of lithium and cobalt contains sodium and / or potassium, the amount of which is 2 to 30 atomic% with respect to the amount of cobalt, and the amount of lithium is equal to that of cobalt. The alkaline storage battery according to claim 7, which is 10 to 90 atomic%.
【請求項9】リチウムとコバルトの複合酸化物の量は、
ニッケル水酸化物粉末100重量部に対して2〜10重
量部である請求項7記載のアルカリ蓄電池。
9. The amount of the composite oxide of lithium and cobalt is as follows:
The alkaline storage battery according to claim 7, wherein the amount is 2 to 10 parts by weight based on 100 parts by weight of the nickel hydroxide powder.
【請求項10】2価のコバルト酸化物は、酸化コバルト
または水酸化コバルトである請求項7記載のアルカリ蓄
電池。
10. The alkaline storage battery according to claim 7, wherein the divalent cobalt oxide is cobalt oxide or cobalt hydroxide.
【請求項11】2価のコバルト酸化物および/または金
属コバルトの混合量は、ニッケル水酸化物粉末100重
量部に対して1〜8重量部である請求項7記載のアルカ
リ蓄電池。
11. The alkaline storage battery according to claim 7, wherein the mixed amount of the divalent cobalt oxide and / or metallic cobalt is 1 to 8 parts by weight based on 100 parts by weight of the nickel hydroxide powder.
JP05636998A 1998-03-09 1998-03-09 Alkaline storage battery Expired - Lifetime JP3543607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05636998A JP3543607B2 (en) 1998-03-09 1998-03-09 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05636998A JP3543607B2 (en) 1998-03-09 1998-03-09 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH11260359A true JPH11260359A (en) 1999-09-24
JP3543607B2 JP3543607B2 (en) 2004-07-14

Family

ID=13025353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05636998A Expired - Lifetime JP3543607B2 (en) 1998-03-09 1998-03-09 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3543607B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6017655A (en) * 1998-08-18 2000-01-25 Ovonic Battery Company Nickel hydroxide positive electrode material exhibiting improved conductivity and engineered activation energy
JP2007066697A (en) * 2005-08-31 2007-03-15 Matsushita Electric Ind Co Ltd Manufacturing method of alkaline storage battery
WO2010023531A2 (en) 2008-08-29 2010-03-04 Saft Groupe S.A. Lithiated oxide for a positive electrode of an alkali battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6017655A (en) * 1998-08-18 2000-01-25 Ovonic Battery Company Nickel hydroxide positive electrode material exhibiting improved conductivity and engineered activation energy
WO2000011738A1 (en) * 1998-08-18 2000-03-02 Ovonic Battery Company, Inc. Nickel positive electrode having high-temperature capacity
JP2007066697A (en) * 2005-08-31 2007-03-15 Matsushita Electric Ind Co Ltd Manufacturing method of alkaline storage battery
WO2010023531A2 (en) 2008-08-29 2010-03-04 Saft Groupe S.A. Lithiated oxide for a positive electrode of an alkali battery
WO2010023531A3 (en) * 2008-08-29 2010-05-20 Saft Groupe S.A. Method for producing a lithiated oxide for a positive electrode of an alkaline battery
US8530091B2 (en) 2008-08-29 2013-09-10 Saft Lithiated oxide for a positive electrode of an alkaline accumulator

Also Published As

Publication number Publication date
JP3543607B2 (en) 2004-07-14

Similar Documents

Publication Publication Date Title
JP3191751B2 (en) Alkaline storage battery and surface treatment method for positive electrode active material thereof
JP3429741B2 (en) Paste positive electrode for alkaline storage batteries and nickel-metal hydride storage batteries
JP4496704B2 (en) Manufacturing method of nickel metal hydride battery
US5405714A (en) Method for activating an alkaline storage cell employing a non-sintered type nickel positive electrode
JP3617203B2 (en) Manufacturing method of nickel metal hydride secondary battery
JP4556315B2 (en) Alkaline storage battery
JP4159161B2 (en) Positive electrode active material for alkaline storage battery, method for producing the same, and method for producing positive electrode for alkaline storage battery using the positive electrode active material
JP2889669B2 (en) Non-sintered nickel positive electrode plate for alkaline storage batteries
JP4017302B2 (en) Alkaline storage battery and method for manufacturing the same
JP3543607B2 (en) Alkaline storage battery
JP3543601B2 (en) Alkaline storage battery
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JP3490825B2 (en) Nickel electrode for alkaline storage battery
JP4120762B2 (en) Nickel electrode and nickel metal hydride storage battery using the same
JPH10154508A (en) Alkaline storage battery, its nickel electrode, and its manufacture
JP2003077469A (en) Nickel electrode material, its manufacturing method, nickel electrode and alkaline battery
JP3229800B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP4357133B2 (en) Hydrogen storage alloy for electrode, hydrogen storage alloy electrode and alkaline storage battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPH103940A (en) Nickel-metal hydride storage battery and its manufacture
JP4479136B2 (en) Method for producing nickel electrode material
JPH09283130A (en) Manufacture of hydrogen storage alloy electrode
JPH09245827A (en) Manufacture of alkaline storage battery
JP2003031216A (en) Method of manufacturing nickel positive electrode and method of manufacuring alkaline storage battery
JPH10294109A (en) Nonsintered nickel pole for alkaline storage battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040329

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

EXPY Cancellation because of completion of term