JPH05283071A - Activation of metal hydride storage battery - Google Patents

Activation of metal hydride storage battery

Info

Publication number
JPH05283071A
JPH05283071A JP4077526A JP7752692A JPH05283071A JP H05283071 A JPH05283071 A JP H05283071A JP 4077526 A JP4077526 A JP 4077526A JP 7752692 A JP7752692 A JP 7752692A JP H05283071 A JPH05283071 A JP H05283071A
Authority
JP
Japan
Prior art keywords
battery
charging
charge
negative electrode
reserve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4077526A
Other languages
Japanese (ja)
Inventor
Masaki Higuchi
正樹 樋口
Makoto Kanbayashi
誠 神林
Masayuki Terasaka
雅行 寺坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP4077526A priority Critical patent/JPH05283071A/en
Publication of JPH05283071A publication Critical patent/JPH05283071A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To restrict the decrease of charge reserve (increase of discharge reserve) at the time of charge. CONSTITUTION:In the activation of sealed alkaline battery provided with nickel hydroxide positive electrodes 1, at least, which include metal cobalt or cobalt compound, and a negative electrode 2 using hydrogen storage alloy, after assembling a battery, the battery is charged with the high current so that the nickel hydroxide is charged immediately, and after finishing the charge with the high current, the battery is charged with the current lower than this high current.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、負極に水素吸蔵合金電
極を用いた、金属水素化物蓄電池の活性化方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for activating a metal hydride storage battery using a hydrogen storage alloy electrode as a negative electrode.

【0002】[0002]

【従来の技術】一般に、通常の電池では、負極容量が、
正極容量より大きくなるように構成されており、これに
よって、充電リザーブ部分と放電リザーブ部分とを形成
するような構成になっている。ここで、上記充電リザー
ブとは、充電時に正極が満充電状態になった時点で、負
極に残存する未充電部分のことである。このように、充
電リザーブを存在させることによって、充電時に正極か
ら酸素ガスを優先的に発生させることができるので、負
極から水素ガスが発生するのを防止できる。また、電池
の充放電を繰り返していると、負極の劣化が生じるが、
このような充電不可能になった部分に代わり、充電リザ
ーブ部分が充電されるので、充電量の低下を防止できる
といった利点がある。
2. Description of the Related Art Generally, in a normal battery, the negative electrode capacity is
It is configured to be larger than the positive electrode capacity, thereby forming a charge reserve portion and a discharge reserve portion. Here, the charge reserve is an uncharged portion remaining in the negative electrode when the positive electrode is fully charged during charging. As described above, by providing the charge reserve, the oxygen gas can be preferentially generated from the positive electrode during charging, so that the hydrogen gas can be prevented from being generated from the negative electrode. Also, when the battery is repeatedly charged and discharged, the negative electrode deteriorates,
Since the charge reserve portion is charged in place of such a non-chargeable portion, there is an advantage that a decrease in charge amount can be prevented.

【0003】一方、上記放電リザーブとは、正極が完全
放電した時点において負極に残存する充電部分のことで
ある。例えばニッケル−カドミウム蓄電池のように、負
極の充放電効率があまり高くない場合、放電リザーブを
存在させることで、放電時に負極の容量によって電池容
量が制限されることが防止でき、電池容量を充分に取り
出すことができるという利点がある。
On the other hand, the above-mentioned discharge reserve is a charged portion which remains in the negative electrode when the positive electrode is completely discharged. For example, when the charge and discharge efficiency of the negative electrode is not so high as in a nickel-cadmium storage battery, the presence of the discharge reserve can prevent the battery capacity from being limited by the capacity of the negative electrode during discharging, and the battery capacity can be sufficiently increased. There is an advantage that it can be taken out.

【0004】尚、充電リザーブと放電リザーブとは、充
電リザーブが減少すれば放電リザーブは増加し、逆に充
電リザーブが増加すれば放電リザーブは減少するという
関係にある。
The charge reserve and the discharge reserve have a relation that the discharge reserve increases when the charge reserve decreases, and conversely the discharge reserve decreases when the charge reserve increases.

【0005】ニッケル−カドミウム蓄電池では、前述し
たように負極の充放電効率はあまり高くない。従って、
上記放電リザーブをあらかじめ確保するために、電池の
組み立て、密閉後、一回目の充電を低電流で行なう活性
化方法が提案されている(特開昭64−21864号公
報参照)。このような活性化方法であれば、充電の際
に、正極に添加されている金属コバルトやコバルト化合
物の酸化する電位が、正極の活物質である水酸化ニッケ
ルの酸化する電位より低いため、充電初期に金属コバル
トあるいはコバルト化合物が優先的に酸化され、水酸化
ニッケルの充電開始が遅れる。その間に、カドミウム電
極が充電され放電リザーブ用の金属カドミウムが形成さ
れる。また低電流での充電は、高電流で充電した場合よ
りも充電効率が優れており、活性化の効果が高い。
In the nickel-cadmium storage battery, as described above, the charge / discharge efficiency of the negative electrode is not very high. Therefore,
In order to secure the discharge reserve in advance, an activation method has been proposed in which the battery is assembled and sealed, and then the first charge is performed with a low current (see Japanese Patent Laid-Open No. 64-21864). With such an activation method, the charging potential of the metallic cobalt or cobalt compound added to the positive electrode is lower than the oxidizing potential of nickel hydroxide, which is the active material of the positive electrode, during charging. Initially, metallic cobalt or cobalt compound is preferentially oxidized, and the start of charging nickel hydroxide is delayed. In the meantime, the cadmium electrode is charged to form metal cadmium for the discharge reserve. In addition, charging with a low current has a higher charging efficiency than charging with a high current, and the activation effect is high.

【0006】ところで、近年、軽量且つ高容量で高エネ
ルギー密度であるアルカリ蓄電池として、上記したよう
なペースト式のカドミウム電極の代わりに、電気化学的
に水素を吸収および放出する水素吸蔵合金からなる負極
を用いた水素吸蔵合金蓄電池が注目されている。
By the way, in recent years, as an alkaline storage battery which is lightweight, has a high capacity, and has a high energy density, a negative electrode made of a hydrogen storage alloy that electrochemically absorbs and releases hydrogen instead of the above-mentioned paste type cadmium electrode. Attention has been paid to a hydrogen storage alloy storage battery using a battery.

【0007】[0007]

【発明が解決しようとする課題】ところが、上記水素吸
蔵合金蓄電池自体は、新しい電池であるため、その活性
化方法が確立していないのが現状である。そこで、たと
えば、上記ニッケル−カドミウム蓄電池に用いられる低
電流充電法により、この蓄電池を活性化するような方法
が考えられる。しかしながら、該方法では、以下のよう
な問題が生じる。
However, since the hydrogen storage alloy storage battery itself is a new battery, the method for activating the storage battery is not established at present. Therefore, for example, a method of activating the storage battery by the low-current charging method used for the nickel-cadmium storage battery can be considered. However, this method has the following problems.

【0008】即ち、水素吸蔵合金を用いた負極は放電効
率が高く、多くの充電リザーブを必要としない。しかも
放電リザーブが多く生成する活性化方法は充電リザーブ
が減少してしまうこととなり、サイクル寿命の低下を引
き起こすため好ましくない。本発明は、上記問題点に鑑
みて成されたものであり、充電時における充電リザーブ
の減少(放電リザーブの増加)を抑制することを目的と
する。
That is, the negative electrode using the hydrogen storage alloy has a high discharge efficiency and does not require much charge reserve. Moreover, the activation method in which a large amount of discharge reserve is generated is not preferable because the charge reserve is reduced and the cycle life is shortened. The present invention has been made in view of the above problems, and an object of the present invention is to suppress a decrease in the charge reserve (increase in the discharge reserve) during charging.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、少なくとも金属コバルト或いはコバルト化合物を含
む水酸化ニッケル正極板と水素吸蔵合金を使用した負極
板とを用いた密閉式アルカリ電池の活性化方法におい
て、電池を組み立てた後、直ちに、水酸化ニッケルが充
電されるような高電流で電池を充電する第一のステップ
と、上記高電流での充電終了後に、これより低い電流で
電池を充電する第二のステップと、を有することを特徴
とする。
In order to achieve the above object, activation of a sealed alkaline battery using a nickel hydroxide positive electrode plate containing at least metallic cobalt or a cobalt compound and a negative electrode plate using a hydrogen storage alloy. In the method, immediately after assembling the battery, the first step of charging the battery with a high current such that nickel hydroxide is charged, and after finishing the charging with the high current, charge the battery with a lower current. And a second step of performing.

【0010】[0010]

【作用】上記の構成の如く、初回の充電を高電流で行え
ば、電池電圧が直ちに水酸化ニッケルが酸化する電位ま
で上昇する。従って、上記低電流充電法のように、金属
コバルトやコバルト化合物の酸化が優先的に起こること
はなく、直ちに、水酸化ニッケルの充電が始まる。これ
により、負極の活物質だけが正極の活物質より先行して
充電されるのを抑制することができるので、充電リザー
ブの減少(放電リザーブの増加)が防止できる。
When the first charge is performed at a high current as in the above structure, the battery voltage immediately rises to a potential at which nickel hydroxide is oxidized. Therefore, unlike the above-mentioned low current charging method, oxidation of metallic cobalt or cobalt compound does not occur preferentially, and nickel hydroxide starts charging immediately. As a result, it is possible to prevent only the negative electrode active material from being charged prior to the positive electrode active material, and thus it is possible to prevent a decrease in the charge reserve (increase in the discharge reserve).

【0011】また、この後、充電電流を小さくして充電
しても、電池電圧は金属コバルトやコバルト化合物が酸
化する電池電圧とはならない。従って、金属コバルト等
は、水酸化ニッケルより優先的に充電されることはな
い。この結果、低電流で充電をおこなうことができ、最
初から低電流による充電を行った場合とほぼ同等な活性
化の効果が得られ、その結果としてほぼ同等な電池容量
を得ることができる。
After that, even if the charging current is reduced and the battery is charged, the battery voltage does not become the battery voltage at which the metallic cobalt or the cobalt compound is oxidized. Therefore, metallic cobalt or the like is not charged preferentially over nickel hydroxide. As a result, charging can be performed at a low current, and an activation effect that is almost the same as that when charging is performed at a low current from the beginning can be obtained, and as a result, almost the same battery capacity can be obtained.

【0012】加えて、最近の電池使用機器では、電池電
圧が一定の値より低くなった時点で放電を停止するよう
に設定されており、電池が完全放電または過放電される
ことはないようになっている。このような使用状態で
は、繰り返し充放電を繰り返した場合でも、金属コバル
トやコバルト化合物が酸化する電池電圧より高い電圧で
放電が終了し、放電時にはこの電池電圧から充電が始ま
るので、金属コバルトやコバルト化合物が優先的に酸化
されることがない。従って、上記と同様に充電リザーブ
の減少(放電リザーブの増加)が防止できる。
In addition, recent battery-using equipment is set to stop discharging when the battery voltage becomes lower than a certain value, so that the battery will not be completely discharged or over-discharged. Is becoming In such a state of use, even if repeated charge and discharge are repeated, the discharge ends at a voltage higher than the battery voltage at which the metal cobalt and cobalt compounds oxidize, and at the time of discharge, charging starts from this battery voltage. The compound is not preferentially oxidized. Therefore, similarly to the above, it is possible to prevent a decrease in the charge reserve (an increase in the discharge reserve).

【0013】[0013]

【実施例】【Example】

〔実施例〕図1は、本発明の一例に係る円筒密閉式ニッ
ケル−水素蓄電池の断面図であり、ペースト式ニッケル
正極1と水素吸蔵合金を有する負極2とこれら正負両極
1・2間に介挿されたセパレータ3とからなる電極群4
は、渦巻状に巻回されている。この電極群4は、負極端
子兼用の外装缶6内に配置されており、この外装缶6と
上記負極2とは負極用導電タブ5により接続されてい
る。上記外装缶6の上部開口部にはパッキング7を介し
て封口体8が装着されおり、この封口体8の内部にはコ
イルスプリング9が設けられている。このコイルスプリ
ング9は電池内部の内圧が異常上昇したときに矢印A方
向に押圧されて内部のガスが大気中に放出されるように
構成されている。また、上記封口体8と正極1とは正極
兼用電導タブ10にて接続されている。
[Embodiment] FIG. 1 is a cross-sectional view of a cylindrical sealed nickel-hydrogen storage battery according to an example of the present invention, in which a paste-type nickel positive electrode 1, a negative electrode 2 having a hydrogen storage alloy, and positive and negative electrodes 1 and 2 are interposed. Electrode group 4 consisting of inserted separator 3
Is wound in a spiral shape. The electrode group 4 is arranged in an outer can 6 that also serves as a negative electrode terminal, and the outer can 6 and the negative electrode 2 are connected by a negative electrode conductive tab 5. A sealing body 8 is attached to the upper opening of the outer can 6 via a packing 7, and a coil spring 9 is provided inside the sealing body 8. The coil spring 9 is configured to be pressed in the direction of arrow A when the internal pressure inside the battery is abnormally increased, and the gas inside is released into the atmosphere. Further, the sealing body 8 and the positive electrode 1 are connected by a conductive tab 10 also serving as a positive electrode.

【0014】ここで、上記構成の円筒密閉式ニッケル−
水素蓄電池を以下のようにして作製した。 正極の作製 水酸化ニッケル94部、金属コバルト3部、水酸化コバ
ルト3部からなる平均粒径15μmの活物質を糊料液と
混合して、ペーストを作製した。次に、このペーストを
活物質の保持基体としてのスポンジ状ニッケル(平均孔
径170μm)に充填した。
Here, the cylindrical hermetic nickel-containing type having the above-mentioned structure
A hydrogen storage battery was manufactured as follows. Preparation of Positive Electrode An active material consisting of 94 parts of nickel hydroxide, 3 parts of metallic cobalt, and 3 parts of cobalt hydroxide and having an average particle diameter of 15 μm was mixed with a paste solution to prepare a paste. Next, this paste was filled in sponge-like nickel (average pore size 170 μm) as a base for holding the active material.

【0015】次いで、充填後の保持基板を乾燥し、活物
質層を形成した後、フッ素樹脂ディスパージョンを活物
質層上に塗布し、更に乾燥、プレスを行った後、所定寸
法に切断することにより作製した。 負極の作製 水素吸蔵合金(MmNi5 系合金)を粉砕して微粉化し
たものを95部と結着剤としてのフッ素樹脂5部とを添
加し、均一に混合することにより、前記フッ素樹脂を繊
維化させた。次に、この繊維化物に水を加えてペースト
を作製し、このペーストをニッケルメッキを施したパン
チングメタル集電体の両面に圧着した後、所定寸法に切
断することにより作製した。
Next, the holding substrate after filling is dried to form an active material layer, a fluororesin dispersion is applied onto the active material layer, further dried and pressed, and then cut into a predetermined size. It was produced by. Manufacture of Negative Electrode Hydrogen absorbing alloy (MmNi 5 type alloy) was pulverized into fine powder, 95 parts and 5 parts of fluororesin as a binder were added, and the mixture was uniformly mixed to form a fiber of the fluororesin. Made into Next, water was added to this fibrous material to prepare a paste, and the paste was pressed onto both surfaces of a nickel-plated punching metal current collector, and then cut into a predetermined size.

【0016】しかる後、上記のように作製した正負極板
1・2を、耐アルカリ性を有するセパレータ3を介して
巻回して、渦巻状の電極群4を作製した後、この電極群
4を、外装缶6内に挿入した。この後、外装缶6内に電
界液を注入し、更に外装缶6を封口体8で封口して、公
称容量1200mAHの円筒密閉式ニッケル−水素蓄電
池を作製した。
After that, the positive and negative electrode plates 1 and 2 produced as described above are wound around a separator 3 having alkali resistance to produce a spiral electrode group 4, and then the electrode group 4 is It was inserted into the outer can 6. Then, the electrolytic solution was injected into the outer can 6, and the outer can 6 was sealed with the sealing body 8 to produce a cylindrical sealed nickel-hydrogen storage battery having a nominal capacity of 1200 mAH.

【0017】この後、上記のように作製した円筒密閉式
ニッケル−水素蓄電池を、電流1.0C(1200m
A)で10分間、0.25C(300mA)で6時間、
初期充電を行なった後、1.0Cで放電を行なって初期
活性化を完了した。上記のような条件で初期活性化を行
なった電池を、以下(a)電池と称する。 〔比較例〕実施例と同様にして作製された円筒密閉式ニ
ッケル−水素蓄電池の初期活性化の際に、0.25Cで
7時間という条件で初期充電を行う以外は、上記実施例
と同様にして初期活性化をおこなった。
After this, the cylindrical sealed nickel-hydrogen storage battery produced as described above was applied with a current of 1.0 C (1200 m).
A) for 10 minutes, 0.25C (300 mA) for 6 hours,
After initial charging, discharging was performed at 1.0 C to complete the initial activation. The battery that has been initially activated under the above conditions is hereinafter referred to as (a) battery. [Comparative Example] The same procedure as in the above Example except that the initial charging of the cylindrical sealed nickel-hydrogen storage battery produced in the same manner as in the Example was performed at 0.25 C for 7 hours. Initial activation was performed.

【0018】上記のような条件で、初期活性化を行った
電池を、以下(x)電池と称する。 〔実験〕本発明の(a)電池、および比較例の(x)電
池を用いて、放電特性と電池容量、負極板の容量、放電
リザーブ、充電リザーブを測定したので、その結果を表
1、および図2に示す。
The battery which has been initially activated under the above-mentioned conditions is hereinafter referred to as (x) battery. [Experiment] The discharge characteristics and the battery capacity, the capacity of the negative electrode plate, the discharge reserve, and the charge reserve were measured using the battery (a) of the present invention and the battery (x) of the comparative example. The results are shown in Table 1. And shown in FIG.

【0019】尚、表1中の値は、負極容量を100とし
た場合の負極容量に対するそれぞれの値を百分率で示し
たものである。先ず、図2から明らかなように、本発明
の(a)電池では、電池電圧が0.9V〜1.1V付近
に金属コバルト、コバルト化合物の酸化に起因する平坦
な部分が認められない。これにより、負極の充電に遅れ
ることなく、正極の充電も行なわれていることが確認で
きるので、負極の充電リザーブの減少を抑制することが
できる。
The values in Table 1 are expressed as percentages with respect to the negative electrode capacity when the negative electrode capacity is 100. First, as is clear from FIG. 2, in the battery (a) of the present invention, a flat portion due to the oxidation of metallic cobalt and a cobalt compound is not recognized around the battery voltage of 0.9 V to 1.1 V. As a result, it can be confirmed that the positive electrode is being charged without delaying the charging of the negative electrode, so that the reduction of the charge reserve of the negative electrode can be suppressed.

【0020】[0020]

【表1】 [Table 1]

【0021】また、表1から明らかなように、本発明の
(a)電池は比較例の(x)電池に比べて、放電リザー
ブが少なく、充電リザーブが多いことが確認された。こ
れにより、電池のサイクル寿命の低下を抑制することが
できると考えられる。また、これと同時に負極水素吸蔵
合金の充電効率の高い特性が十分に利用されていること
がわかる。
Further, as is clear from Table 1, it was confirmed that the battery (a) of the present invention has a smaller discharge reserve and a larger charge reserve than the battery (x) of the comparative example. It is considered that this makes it possible to suppress a decrease in the cycle life of the battery. At the same time, it can be seen that the characteristics of the negative electrode hydrogen storage alloy with high charging efficiency are fully utilized.

【0022】更に、電池容量については、低電流で充電
をおこなった場合とほぼ同様な値となっており、ここか
ら充電の初期に高電流で充電をおこなった場合でも、充
電効率が変わらないことが確認できる。
Further, the battery capacity has almost the same value as that when the charging is performed at a low current, and the charging efficiency does not change even when the charging is performed at a high current at the beginning of charging from here. Can be confirmed.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
水酸化ニッケルの充電が遅れることなく開始され、進行
するので、適正な放電リザーブ及び充電リザーブを設定
することが可能となり、放電効率のよい負極を有効に利
用することができるといった効果を奏する。
As described above, according to the present invention,
Since charging of nickel hydroxide is started and progressed without delay, it is possible to set an appropriate discharge reserve and charge reserve, and it is possible to effectively use the negative electrode having good discharge efficiency.

【0024】加えて、活性化当初は高電流で充電をする
ので、初期活性化の時間が短くなる。これらのことか
ら、作業性の向上を図りつつ電池性能を飛躍的に向上す
ることができるという優れた効果を奏する。
In addition, since charging is performed with a high current at the beginning of activation, the initial activation time is shortened. From these facts, there is an excellent effect that the battery performance can be dramatically improved while improving the workability.

【0025】[0025]

【簡単な図面の説明】[Simple Drawing Description]

【0026】[0026]

【図1】本発明に係る円筒密閉式ニッケル−水素蓄電池
の断面図である。
FIG. 1 is a cross-sectional view of a cylindrical sealed nickel-hydrogen storage battery according to the present invention.

【0027】[0027]

【図2】本発明の(a)電池、および比較例の(x)電
池の充電カーブを示すグラフである。
FIG. 2 is a graph showing charge curves of the battery (a) of the present invention and the battery (x) of a comparative example.

【0028】[0028]

【符号の説明】[Explanation of symbols]

1 正極 2 負極 1 positive electrode 2 negative electrode

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年11月16日[Submission date] November 16, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Name of item to be corrected] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0002[Name of item to be corrected] 0002

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0002】[0002]

【従来の技術】一般に、通常の電池では、負極容量が、
正極容量より大きくなるように構成されており、これに
よって、充電リザーブ部分と放電リザーブ部分とを形成
するような構成になっている。ここで、上記充電リザー
ブとは、充電時に正極が満充電状態になった時点で、負
極に残存する未充電部分のことである。このように、充
電リザーブを存在させることによって、充電時に正極か
ら酸素ガスを優先的に発生させ、負極から水素ガスが発
生するのを防止できる。また、電池の充放電を繰り返し
ていると、負極の劣化が生じるが、このような充電不可
能になった部分に代わり、充電リザーブ部分が充電され
るので、充電量の低下を防止できるといった利点があ
る。
2. Description of the Related Art Generally, in a normal battery, the negative electrode capacity is
It is configured to be larger than the positive electrode capacity, thereby forming a charge reserve portion and a discharge reserve portion. Here, the charge reserve is an uncharged portion remaining in the negative electrode when the positive electrode is fully charged during charging. As described above, by providing the charge reserve, it is possible to preferentially generate oxygen gas from the positive electrode and prevent generation of hydrogen gas from the negative electrode during charging. Also, when the battery is repeatedly charged and discharged, the negative electrode deteriorates, but since the charge reserve part is charged instead of such a part that cannot be charged, there is an advantage that the decrease in charge amount can be prevented. There is.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、少なくとも金属コバルト或いはコバルト化合物を含
む水酸化ニッケル正極板と水素吸蔵合金を使用した負極
板とを用いた密閉式アルカリ電池の活性化方法におい
て、電池を組み立てた後、水酸化ニッケルが直ちに充電
されるような高電流で電池を充電する第一のステップ
と、上記高電流での充電終了後に、これより低い電流で
電池を充電する第二のステップと、を有することを特徴
とする。
In order to achieve the above object, activation of a sealed alkaline battery using a nickel hydroxide positive electrode plate containing at least metallic cobalt or a cobalt compound and a negative electrode plate using a hydrogen storage alloy. In the method, after assembling the battery, the first step is to charge the battery at a high current such that nickel hydroxide is immediately charged, and after finishing the charging at the high current, charge the battery at a lower current. And a second step.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】また、この後、充電電流を小さくして充電
しても、電池電圧は金属コバルトやコバルト化合物が
先的に酸化する電池電圧とはならない。従って、金属コ
バルト等は、水酸化ニッケルより優先的に酸化させる
とはない。この結果、低電流で充電をおこなうことがで
き、最初から低電流による充電を行った場合とほぼ同等
な活性化の効果が得られ、その結果としてほぼ同等な電
池容量を得ることができる。
After that, even if the battery is charged with a smaller charging current, the battery voltage is superior to metallic cobalt and cobalt compounds.
The cell voltage does not oxidize first . Therefore, metallic cobalt or the like is not preferentially oxidized over nickel hydroxide. As a result, charging can be performed at a low current, and an activation effect that is almost the same as that when charging is performed at a low current from the beginning can be obtained, and as a result, almost the same battery capacity can be obtained.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】加えて、最近の電池使用機器では、電池電
圧が一定の値より低くなった時点で放電を停止するよう
に設定されており、電池が完全放電または過放電される
ことはないようになっている。このような使用状態で
は、繰り返し充放電を繰り返した場合でも、金属コバル
トやコバルト化合物が優先的に酸化する電池電圧より高
い電圧で放電が終了し、電時にはこの電池電圧から充
電が始まるので、金属コバルトやコバルト化合物が優先
的に酸化されることがない。従って、上記と同様に充電
リザーブの減少(放電リザーブの増加)が防止できる。
In addition, recent battery-using equipment is set to stop discharging when the battery voltage becomes lower than a certain value, so that the battery will not be completely discharged or over-discharged. Is becoming In such use, even when repeatedly charged and discharged repeatedly, metal cobalt or a cobalt compound discharge is completed at a higher than the battery voltage to oxidize preferentially voltage, during charging because the charge from the battery voltage begins, Metallic cobalt and cobalt compounds are not preferentially oxidized. Therefore, similarly to the above, it is possible to prevent a decrease in the charge reserve (an increase in the discharge reserve).

【手続補正6】[Procedure Amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】この後、上記のように作製した円筒密閉式
ニッケル−水素蓄電池を、電流1.0C(1200m
A)で1分間、0.25C(300mA)で6時間、
初期充電を行なった後、1.0Cで放電を行なって初期
活性化を完了した。上記のような条件で初期活性化を行
なった電池を、以下(a)電池と称する。 〔比較例〕実施例と同様にして作製された円筒密閉式ニ
ッケル−水素蓄電池の初期活性化の際に、0.25Cで
7時間という条件で初期充電を行う以外は、上記実施例
と同様にして初期活性化をおこなった。
After this, the cylindrical sealed nickel-hydrogen storage battery produced as described above was applied with a current of 1.0 C (1200 m).
A) for 15 minutes, 0.25C (300mA) for 6 hours,
After initial charging, discharging was performed at 1.0 C to complete the initial activation. The battery that has been initially activated under the above conditions is hereinafter referred to as (a) battery. [Comparative Example] The same procedure as in the above Example except that the initial charging of the cylindrical sealed nickel-hydrogen storage battery produced in the same manner as in the Example was performed at 0.25 C for 7 hours. Initial activation was performed.

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Name of item to be corrected] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】尚、表1中の値は、負極容量を100とし
た場合の負極容量に対するそれぞれの値を百分率で示し
たものである。先ず、図2から明らかなように、本発明
の(a)電池では、電池電圧が0.9V〜1.1V付近
に金属コバルト、コバルト化合物の酸化に起因する平坦
な部分が認められない。これにより、負極の充電に遅れ
ることなく、正極の水酸化ニッケルの充電も行なわれて
いることが確認できるので、負極の充電リザーブの減少
を抑制することができる。
The values in Table 1 are expressed as percentages with respect to the negative electrode capacity when the negative electrode capacity is 100. First, as is clear from FIG. 2, in the battery (a) of the present invention, a flat portion due to the oxidation of metallic cobalt and a cobalt compound is not recognized around the battery voltage of 0.9 V to 1.1 V. As a result, it can be confirmed that the nickel hydroxide of the positive electrode is being charged without delaying the charging of the negative electrode, so that the reduction of the charge reserve of the negative electrode can be suppressed.

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0021】また、表1から明らかなように、本発明の
(a)電池は比較例の(x)電池に比べて、放電リザー
ブが少なく、充電リザーブが多いことが確認された。こ
れにより、電池のサイクル寿命の低下を抑制することが
できると考えられる。また、これと同時に負極水素吸蔵
合金の電効率の高い特性が十分に利用されていること
がわかる。
Further, as is clear from Table 1, it was confirmed that the battery (a) of the present invention has a smaller discharge reserve and a larger charge reserve than the battery (x) of the comparative example. It is considered that this makes it possible to suppress a decrease in the cycle life of the battery. This also see that the high characteristics discharge collection efficiency of the negative electrode hydrogen absorbing alloy is fully utilized at the same time.

【手続補正9】[Procedure Amendment 9]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0022[Name of item to be corrected] 0022

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0022】更に、電池容量については、低電流で充電
をおこなった場合とほぼ同様な値となっており、ここか
ら充電の初期に高電流で充電をおこなった場合でも、
分な活性化を行なえることが確認できる。
Furthermore, for the battery capacity, and almost the same value as when subjected to charging with a low current, even when subjected to charging at a high current from here to the initial charge, charge and
It can be confirmed that sufficient activation can be performed .

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも金属コバルト或いはコバルト
化合物を含む水酸化ニッケル正極板と水素吸蔵合金を使
用した負極板とを用いた密閉式アルカリ電池の活性化方
法において、 電池を組み立てた後、直ちに、水酸化ニッケルが充電さ
れるような高電流で電池を充電する第一のステップと、 上記高電流での充電終了後に、これより低い電流で電池
を充電する第二のステップと、 を有することを特徴とする金属水素化物蓄電池の活性化
方法。
1. A method for activating a sealed alkaline battery using a nickel hydroxide positive electrode plate containing at least metallic cobalt or a cobalt compound and a negative electrode plate using a hydrogen storage alloy. It has a first step of charging the battery with a high current such that nickel oxide is charged, and a second step of charging the battery with a lower current after completion of the charging with the high current. And method for activating a metal hydride storage battery.
JP4077526A 1992-03-31 1992-03-31 Activation of metal hydride storage battery Pending JPH05283071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4077526A JPH05283071A (en) 1992-03-31 1992-03-31 Activation of metal hydride storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4077526A JPH05283071A (en) 1992-03-31 1992-03-31 Activation of metal hydride storage battery

Publications (1)

Publication Number Publication Date
JPH05283071A true JPH05283071A (en) 1993-10-29

Family

ID=13636422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4077526A Pending JPH05283071A (en) 1992-03-31 1992-03-31 Activation of metal hydride storage battery

Country Status (1)

Country Link
JP (1) JPH05283071A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000014820A1 (en) * 1998-09-04 2000-03-16 Moltech Power Systems, Inc. A METHOD OF FORMING CoOOH and NiOOH IN A NiMH ELECTROCHEMICAL CELL AND AN ELECTROCHEMICAL CELL FORMED THEREBY
JP2002117842A (en) * 2000-10-06 2002-04-19 Yuasa Corp Positive electrode active material for alkaline storage battery and its manufacturing method, positive electrode for alkaline storage battery and alkaline storage battery
JP2010108822A (en) * 2008-10-31 2010-05-13 Kawasaki Heavy Ind Ltd Alkaline storage battery, and discharge reserve reduction method of alkaline storage battery
WO2012004943A1 (en) * 2010-07-07 2012-01-12 パナソニック株式会社 Nickel hydride battery and manufacturing method for same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000014820A1 (en) * 1998-09-04 2000-03-16 Moltech Power Systems, Inc. A METHOD OF FORMING CoOOH and NiOOH IN A NiMH ELECTROCHEMICAL CELL AND AN ELECTROCHEMICAL CELL FORMED THEREBY
JP2002117842A (en) * 2000-10-06 2002-04-19 Yuasa Corp Positive electrode active material for alkaline storage battery and its manufacturing method, positive electrode for alkaline storage battery and alkaline storage battery
JP4556315B2 (en) * 2000-10-06 2010-10-06 株式会社Gsユアサ Alkaline storage battery
JP2010108822A (en) * 2008-10-31 2010-05-13 Kawasaki Heavy Ind Ltd Alkaline storage battery, and discharge reserve reduction method of alkaline storage battery
WO2012004943A1 (en) * 2010-07-07 2012-01-12 パナソニック株式会社 Nickel hydride battery and manufacturing method for same
JP5060667B2 (en) * 2010-07-07 2012-10-31 パナソニック株式会社 Nickel metal hydride storage battery and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP0284333B1 (en) Sealed type nickel-hydride battery and production process thereof
JP4868809B2 (en) Cylindrical alkaline storage battery
JPH05283071A (en) Activation of metal hydride storage battery
JP3478030B2 (en) Alkaline storage battery
JP2966627B2 (en) Metal hydride storage battery
JP2004281289A (en) Alkaline storage battery
JPH11307116A (en) Cadmium negative electrode for alkaline storage battery
JP2594149B2 (en) Manufacturing method of metal-hydrogen alkaline storage battery
JP3802703B2 (en) Nickel metal hydride battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JP3113345B2 (en) Hydrogen storage alloy electrode
JP2003257425A (en) Nickel hydrogen storage battery and manufacturing method thereof
JP3157237B2 (en) Metal-hydrogen alkaline storage battery
JP3143109B2 (en) Cylindrical sealed nickel storage battery
JP3071026B2 (en) Metal hydride storage battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP3071003B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2983577B2 (en) Manufacturing method of metal-hydrogen alkaline storage battery
JPH07107848B2 (en) Non-sintered positive electrode for alkaline storage battery
JP2989300B2 (en) Metal-hydrogen alkaline storage battery
JP3343413B2 (en) Alkaline secondary battery
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2733230B2 (en) Sealed nickel-hydrogen storage battery using hydrogen storage alloy
JPH0251874A (en) Alkaline zinc lead-acid battery
JPH01134862A (en) Alkaline zinc storage battery