JPH01134862A - Alkaline zinc storage battery - Google Patents

Alkaline zinc storage battery

Info

Publication number
JPH01134862A
JPH01134862A JP62292535A JP29253587A JPH01134862A JP H01134862 A JPH01134862 A JP H01134862A JP 62292535 A JP62292535 A JP 62292535A JP 29253587 A JP29253587 A JP 29253587A JP H01134862 A JPH01134862 A JP H01134862A
Authority
JP
Japan
Prior art keywords
zinc
battery
particle size
zinc oxide
additives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62292535A
Other languages
Japanese (ja)
Inventor
Yoshiki Fujiwara
藤原 孝樹
Yoshikazu Ishikura
石倉 良和
Sanehiro Furukawa
古川 修弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62292535A priority Critical patent/JPH01134862A/en
Publication of JPH01134862A publication Critical patent/JPH01134862A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/244Zinc electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent generation of dendrite and enhance the battery performance by restricting particle sizes of zinc oxide, metal zinc, additives, and conductive agent as components of a negative electrode under a certain level, and thereby suppressing active substance particles from becoming coarse. CONSTITUTION:An alkaline battery is formed from a neg. electrode 2 consisting of zinc oxide and metal zinc as main components, plus additives, conductive agent, etc., a pos. electrode 1 consisting of chargeable substance, a separator 3 interposed between these pos. and neg. electrodes, and an electrolyte. The particle sizes of zinc oxide in the neg. electrode shall be under 1mum while those of metal zinc be under 10mum, and the additives and conductive agent shall have particle sizes not exceeding the max. particle size of the zinc oxide and metal zinc. Because the particle sizes of the zinc oxide are less than 1mum, the surface area per unit weight is large, which enhances the charging/discharging efficiency of the battery. Restriction of the particle sizes of the metal zinc, additives, and conductive agent prevents production of coarse particles consisting of zinc active substance and additives, and generation of dendrite is suppressed.

Description

【発明の詳細な説明】 産業上■肌朋分■ 本発明は、ニッケルー亜鉛蓄電池、銀−亜鉛蓄電池等、
負極活物質として亜鉛を用いるアルカリ亜鉛蓄電池に関
するものである。
[Detailed Description of the Invention] Industrially ■ Personal Information ■ The present invention is applicable to nickel-zinc storage batteries, silver-zinc storage batteries, etc.
This invention relates to an alkaline zinc storage battery that uses zinc as a negative electrode active material.

従来傅肢歪 上記の如く負極活物質として亜鉛を用いた場合には、単
位重量あたりのエネルギー密度が高く、安価であり、か
つ無公害である等の利点を有するため、この種電池の実
用化が望まれている。
As mentioned above, when zinc is used as a negative electrode active material, it has advantages such as high energy density per unit weight, low cost, and non-pollution, so it is difficult to put this type of battery into practical use. is desired.

しかしながら、亜鉛極は可溶性電極であり放電時にアル
カリ電解液中に溶解して亜鉛酸イオンとなる。そして、
充電時にこの亜鉛酸イオンが亜鉛極表面に均一に電着せ
ず、デンドライト発生の核となることがある。したがっ
て、充放電を繰り返すにともない上記デンドライトが成
長してセパレータを貫通し、電池内部で短絡が生じ、こ
の結果、電池のサイクル寿命が短くなって、電池性能が
低下する。
However, the zinc electrode is a soluble electrode and dissolves into an alkaline electrolyte during discharge to become zincate ions. and,
During charging, these zincate ions are not uniformly deposited on the surface of the zinc electrode and may become the nucleus of dendrite formation. Therefore, as charging and discharging are repeated, the dendrites grow and penetrate the separator, causing a short circuit inside the battery, which shortens the cycle life of the battery and degrades battery performance.

そこで、上記サイクル寿命の改善のため、■電解液の量
を規制して亜鉛酸イオンの拡散を防止したり、■各種金
属の酸化物或いは水酸化物を添加して亜鉛のデンドライ
トの生長を抑制したり、■複数枚のセパレータを電池内
に設け、デンドライトが発生した場合であっても電池の
内部短絡を防止するようなものが提案されている。
Therefore, in order to improve the cycle life mentioned above, the amount of electrolyte solution is regulated to prevent the diffusion of zincate ions, and oxides or hydroxides of various metals are added to suppress the growth of zinc dendrites. It has been proposed that (2) a plurality of separators are provided inside the battery to prevent internal short circuits in the battery even if dendrites occur.

しかしながら、上記■の構成では、電解液の量が少ない
ためイオン導電性が低下し、充放電特性等の電池性能が
低下する。また■の構成では、金属酸化物等が添加され
ているため■と同様にイオン導電性が低下する。更に、
■の構成では、電池内の電極体積が減少するため電池の
容量低下を招来する。
However, in the configuration (2) above, since the amount of electrolyte is small, the ionic conductivity decreases, and battery performance such as charge/discharge characteristics decreases. Furthermore, in the structure (2), since metal oxides and the like are added, the ionic conductivity decreases as in the case (2). Furthermore,
In configuration (2), the electrode volume within the battery decreases, resulting in a decrease in battery capacity.

ところで、上記アルカリ亜鉛蓄電池では、通常、活物質
として酸化亜鉛と金属亜鉛とが用いられている。これは
活物質として酸化亜鉛のみを用いたときには、導電性が
低くなって充電効率が低下するという問題がある一方、
活物質として金属亜鉛のみを用いたときには、導電性は
向上するものの充電時に充電リザーブがな(なって水素
ガスが発生したり、或いはアルカリ電解液中の亜鉛酸イ
オンが樹枝状のデンドライト亜鉛として析出し易くなる
という問題があるということを考慮したものである。こ
のようにアルカリ亜鉛蓄電池では活物質として酸化亜鉛
と金属亜鉛とが用いられていることを考慮して、例えば
、特開昭58−158867号公報、特開昭59−33
756号公報、或いは特開昭59−42775号公報等
に示すように、酸化亜鉛と金属亜鉛との粒径を規制し、
亜鉛極でのデンドライトの発生を抑制する方法が提案さ
れている。これは金属亜鉛の粒径を小さくすることで、
デンドライト発生の核となる粗大な粒径の亜鉛が生じる
のを抑制しようとするものである。
Incidentally, in the above-mentioned alkaline zinc storage battery, zinc oxide and metallic zinc are usually used as active materials. This is because when only zinc oxide is used as an active material, there is a problem that the conductivity becomes low and the charging efficiency decreases.
When only metallic zinc is used as the active material, conductivity improves, but there is no charge reserve during charging (hydrogen gas is generated, or zincate ions in the alkaline electrolyte precipitate as dendrite zinc). Considering that zinc oxide and metallic zinc are used as active materials in alkaline zinc storage batteries, for example, Publication No. 158867, JP-A-59-33
As shown in Publication No. 756 or Japanese Unexamined Patent Publication No. 59-42775, etc., the particle size of zinc oxide and metal zinc is regulated,
A method has been proposed to suppress the generation of dendrites at zinc electrodes. This is achieved by reducing the particle size of metallic zinc.
This is intended to suppress the formation of coarse zinc particles, which are the core of dendrite formation.

、■ <”しよ゛と るロ 占 しかしながら、通常の亜鉛極では、これら酸化亜鉛と金
属亜鉛とに加えて充放電サイクルに関与する添加剤、或
いは導電剤等が数%〜数10%程度添加されている。こ
のため、充放電を繰り返し行なえば、活物質粒子同士が
粗大化するだけでなく、活物質粒子と例えば添加剤粒子
とにより粒子の粗大化が生じる。だが、従来の亜鉛極で
は、酸化亜鉛及び金属亜鉛の粒径は規制されているもの
の、添加剤や導電剤等の粒径は規制されていなかったた
め、それら添加剤の粒径が活物質の粒径より大きい場合
には、活物質粒子の粗大化が添加剤粒子の粒径に依存す
ることとなり、活物質粒子の粗大化が早期に生じる。従
って、充電時に粗大粒子に電流が集中し、デンドライト
が発生し易くなる。この結果、電池内部で短絡を生じ、
電池の性能が著しく低下するという問題点を有していた
However, in ordinary zinc electrodes, in addition to these zinc oxide and metal zinc, additives involved in charge/discharge cycles, conductive agents, etc. are present at a rate of several percent to several tens of percent. Therefore, if charging and discharging are repeated, not only will the active material particles become coarser, but also the active material particles and, for example, additive particles will cause the particles to become coarser.However, conventional zinc electrodes Although the particle sizes of zinc oxide and metal zinc are regulated, the particle sizes of additives and conductive agents are not regulated, so if the particle size of these additives is larger than the particle size of the active material, The coarsening of the active material particles depends on the particle size of the additive particles, and the coarsening of the active material particles occurs early.Therefore, during charging, current concentrates on the coarse particles, making dendrites more likely to occur. This results in a short circuit inside the battery,
The problem was that the performance of the battery was significantly reduced.

又、必要最低限の電解液のみ備えた液制限系の電池では
、活物質より粒径の大きい導電剤があると、充電時にそ
の部位に電流が特に集中しやすくなり、デンドライトが
発生しやすくなるという問題点を有していた。
In addition, in liquid-limited batteries that are equipped with only the minimum necessary electrolyte, if there is a conductive agent whose particle size is larger than the active material, the current will be particularly likely to concentrate in that area during charging, making dendrites more likely to occur. There was a problem.

本発明はこのような問題点を鑑みてなされたものであっ
て、活物質粒子の粗大化を抑制することにより、デンド
ライトの発生を防止し、高性能のアルカリ亜鉛蓄電池の
提供を目的とするものである。
The present invention was made in view of these problems, and aims to provide a high-performance alkaline zinc storage battery that prevents dendrite formation by suppressing the coarsening of active material particles. It is.

。 占  ゛ るための 本発明の亜鉛極は、酸化亜鉛と金属亜鉛とを主成分とし
、これに添加剤、導電剤等が添加された負極と、充電可
能な物質から成る正極と、これら正負両極間に介挿され
たセパレータ杢、電解液とを有するアルカリ亜鉛蓄電池
において、前記負極における酸化亜鉛の粒径が1μm以
下で、且つ金属亜鉛の粒径が10μm以下であり、更に
添加剤と導電剤との粒径が前記酸化亜鉛及び金属亜鉛の
最大粒径以下であることを特徴としている。
. The zinc electrode of the present invention, which is mainly composed of zinc oxide and metal zinc, has a negative electrode to which additives, conductive agents, etc. are added, a positive electrode made of a rechargeable substance, and both positive and negative electrodes. In an alkaline zinc storage battery having a separator and an electrolyte interposed therebetween, the particle size of the zinc oxide in the negative electrode is 1 μm or less, the particle size of metal zinc is 10 μm or less, and further contains an additive and a conductive agent. It is characterized in that the particle size of the zinc oxide and metal zinc is equal to or smaller than the maximum particle size of the zinc oxide and metal zinc.

作−m−■ 上記構成によれば、酸化亜鉛の粒径は1μm以下である
ので、単位重量あたりの表面積が大きくなる。したがっ
て、導電体(導電剤、金属亜鉛)との接触面積が大きく
なり、電池の充放電効率を向上させることができる。
Production-m-■ According to the above structure, the particle size of zinc oxide is 1 μm or less, so the surface area per unit weight becomes large. Therefore, the contact area with the conductor (conductive agent, metal zinc) is increased, and the charging and discharging efficiency of the battery can be improved.

また、金属亜鉛の粒径は10μm以下であるので、充放
電を繰り返し行った場合であっても亜鉛粒子が粗大化す
るのを防止できる。したがって、充電時に亜鉛粒子に電
流が集中せず、亜鉛粒子がデンドライト発生の核となる
のを極めて抑制することができる。
Furthermore, since the particle size of metal zinc is 10 μm or less, it is possible to prevent the zinc particles from becoming coarse even when charging and discharging are repeated. Therefore, the current does not concentrate on the zinc particles during charging, and it is possible to extremely suppress the zinc particles from becoming the core of dendrite generation.

更に、添加剤及び導電剤の粒径は活物質の最大粒径以下
であるので、充放電を繰り返し行ない亜鉛が溶解、析出
した場合であっても、亜鉛活物質と添加剤とからなる粗
大粒子(亜鉛合金)が生成するのを防止しうる。したが
って、電極の一部にのみ電流が集中せず、デンドライト
の発生が抑制される。
Furthermore, since the particle size of the additive and conductive agent is less than the maximum particle size of the active material, even if zinc is dissolved and precipitated by repeated charging and discharging, coarse particles consisting of the zinc active material and additive will remain. (zinc alloy) can be prevented from forming. Therefore, the current is not concentrated only in a part of the electrode, and the generation of dendrites is suppressed.

実−」[−医 本発明の一実施例を、第1図乃至第3図に基づいて、以
下に説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3.

第1図は公称容量450mAhの単玉サイズのニッケル
ー亜鉛蓄電池の断面図であり、水酸化ニッケルを活物質
とする正極1と、亜鉛を活物質とする負極2と、これら
正負両極l・2間に介挿されたセパレータ3とから成る
電極群4は渦巻状に巻回されている。この電極群4は熱
収縮チューブ5に内包され、この熱収縮チューブ5を介
して上記負極2は負極端子兼用の外装罐6に接触するよ
うに配置されている。この外装罐6の上部開口にはパフ
キング7を介して封口体8が装着されており、この封口
体8の内部にはコイルスプリング9が設けられている。
Figure 1 is a cross-sectional view of a single-cell sized nickel-zinc storage battery with a nominal capacity of 450 mAh, showing a positive electrode 1 made of nickel hydroxide as an active material, a negative electrode 2 made of zinc as an active material, and the connections between these positive and negative electrodes 1 and 2. An electrode group 4 consisting of a separator 3 inserted therein is spirally wound. This electrode group 4 is enclosed in a heat-shrinkable tube 5, and the negative electrode 2 is arranged so as to be in contact with an exterior housing 6 which also serves as a negative electrode terminal via the heat-shrinkable tube 5. A sealing body 8 is attached to the upper opening of the exterior can 6 via a puff king 7, and a coil spring 9 is provided inside the sealing body 8.

このコイルスプリング9は電池内部の内圧が異常上昇し
たときに矢印A方向に押圧されて内部のガスが大気中に
開放されるように構成されている。また、上記封口体8
と前記正極1とは正極用導電タブ10にて接続されてお
り、前記外装罐6と負極2とは負極用導電タブ11にて
接続されている。
This coil spring 9 is configured so that when the internal pressure inside the battery rises abnormally, it is pressed in the direction of arrow A and the gas inside is released to the atmosphere. In addition, the sealing body 8
and the positive electrode 1 are connected by a conductive tab 10 for the positive electrode, and the exterior can 6 and the negative electrode 2 are connected by a conductive tab 11 for the negative electrode.

上記の構成において、負極2は以下のようにして作製さ
れる。
In the above configuration, the negative electrode 2 is manufactured as follows.

粒径が1μm以下の酸化亜鉛(50重量%)と、粒径が
10μm以下の金属亜鉛(35重量%)と、添加剤とし
て粒径が10μm以下で且つ上記両活物質より粒径が小
さな水酸化インジウム及び金属インジウム(それぞれ5
重量%)と、結着剤であるフッ素樹脂(5重量%)とか
ら成る混合粉末に水を加えて混練した後、ローラを用い
て活物質シートを作製する。次に、この活物質シートを
銅等から成る集電体上に付着させた後、これを加圧成形
する。しかる後、乾燥させて負極2を作製する。
Zinc oxide (50% by weight) with a particle size of 1 μm or less, metallic zinc (35% by weight) with a particle size of 10 μm or less, and water with a particle size of 10 μm or less and smaller than both of the above active materials as an additive. Indium oxide and metallic indium (5 each
After water is added to a mixed powder consisting of a fluororesin (5% by weight) and a fluororesin (5% by weight) as a binder and kneaded, an active material sheet is produced using a roller. Next, this active material sheet is adhered onto a current collector made of copper or the like, and then pressure molded. After that, it is dried to produce the negative electrode 2.

一方、前記正極1は、例えば焼結式ニッケル多孔板に水
酸化ニッケル活物質を化学含浸法により充填することに
より作製する。
On the other hand, the positive electrode 1 is produced, for example, by filling a sintered nickel porous plate with a nickel hydroxide active material by a chemical impregnation method.

以下、このようにして作製された電池を(A)電池と称
する。
Hereinafter, the battery produced in this manner will be referred to as the (A) battery.

、L」交」」」− 下記の表1に示す粒径の酸化亜鉛と金属亜鉛とを用いた
以外は、上記実施例と同様にして作製した。
, L"""--Produced in the same manner as in the above example except that zinc oxide and metal zinc having the particle sizes shown in Table 1 below were used.

以下、このようにして作製された電池をそれぞれ(B)
電池〜(I)電池と称する。
Below, each of the batteries produced in this way is shown as (B).
Battery ~ (I) Referred to as battery.

さて、本発明の(A)電池と、比較例の(B)電池〜(
1)電池のサイクル試験を行ったので、その結果を表2
に示す。尚、サイクル試験の条件は、1/4Cで5時間
充電を行った後、1/4Cで放電し、電池電圧が1.0
■に達した時点で放電を終了させる。そして、電池容量
が50%以下になつた時点でその電池の寿命とした。
Now, the (A) battery of the present invention and the (B) battery of the comparative example ~(
1) We conducted a battery cycle test, and the results are shown in Table 2.
Shown below. The conditions for the cycle test were to charge at 1/4C for 5 hours, then discharge at 1/4C, and the battery voltage was 1.0.
3. Terminating the discharge when it reaches (2). The life of the battery was determined when the battery capacity became 50% or less.

上記表2より明らかなように、本発明の(A)電池では
380サイクルの寿命を有するのに対して、比較例の(
B)電池〜(I)電池ではいずれも300サイクル以下
で寿命となっていることが認められる。即ち、本発明の
(A)電池は比較例の(B)電池〜(1)電池と比べ飛
躍的にサイクル特性が向上していることが伺え、る。
As is clear from Table 2 above, the battery (A) of the present invention has a lifespan of 380 cycles, whereas the battery (A) of the comparative example has a lifespan of 380 cycles.
It is recognized that all of B) Batteries to (I) Batteries reach the end of their lifespans after 300 cycles or less. That is, it can be seen that the cycle characteristics of the battery (A) of the present invention are dramatically improved compared to the batteries (B) to (1) of the comparative examples.

これは、以下に示す理由によるものと考えられる。This is considered to be due to the following reasons.

即ち、金属亜鉛の粒径が10μm以上の電池〔(D)電
池〜(1)電池〕の場合には、通常、両活物質粒子のう
ち金属亜鉛粒子のほうが粒径が大きいので、充放電を繰
り返し行なう際に活物質粒子の粗大化が金属亜鉛の粒径
に依存する。ところが、金属亜鉛の粒径は10μm以上
の場合には、粒径が10μm以下の場合と比べ活物質粒
子の粗大化の速度が著しく早くなる。このため、充電時
に粗大粒子に電流が集中し、デンドライトが発生し易く
なるため、電池の内部でショートが生じる。この結果、
サイクル特性が低下したものと考えられる。
In other words, in the case of batteries in which the particle size of metallic zinc is 10 μm or more [(D) battery to (1) battery], the particle size of the metallic zinc particles is usually larger among both active material particles, so charging and discharging are usually not carried out. The coarsening of the active material particles during repeated testing depends on the particle size of the metal zinc. However, when the particle size of metal zinc is 10 μm or more, the coarsening speed of the active material particles becomes significantly faster than when the particle size is 10 μm or less. For this reason, current concentrates on coarse particles during charging, making dendrites more likely to occur, resulting in a short circuit inside the battery. As a result,
It is thought that the cycle characteristics deteriorated.

一方、酸化亜鉛の粒径がlA1m以上の電池〔((B)
電池、(C)電池、(E)電池、(F)電池、(H)電
池、(1)電池〕の場合には、酸化亜鉛の単位重量あた
りの表面積が小さくなるため、酸化亜鉛と金属亜鉛との
接触面積が小さくなる。従って、酸化亜鉛の充放電効率
が小さくなって充電末期には亜鉛極が見かけ上横充電と
なるため、電解液中の亜鉛酸イオンが還元されてデンド
ライトが発生し、更にこれが成長する。この結果、電池
の内部でショートが生じ、サイクル特性が低下したと考
えられる。特に、(C)電池では金属亜鉛より酸化亜鉛
の方が粒径が太く、活物質粒子の粗大化が酸化亜鉛の粒
径に依存するため、サイクルの進行と共に酸化亜鉛が粗
大化し亜鉛極が劣化したと考えられる。
On the other hand, batteries with a particle size of zinc oxide of lA1m or more [((B)
battery, (C) battery, (E) battery, (F) battery, (H) battery, (1) battery], since the surface area per unit weight of zinc oxide is small, zinc oxide and metallic zinc contact area becomes smaller. Therefore, the charging and discharging efficiency of zinc oxide decreases and the zinc electrode appears to be horizontally charged at the end of charging, so that zincate ions in the electrolyte are reduced and dendrites are generated and further grow. As a result, it is thought that a short circuit occurred inside the battery and the cycle characteristics deteriorated. In particular, in the (C) battery, the particle size of zinc oxide is thicker than that of metal zinc, and the coarsening of the active material particles depends on the particle size of zinc oxide, so as the cycle progresses, the zinc oxide becomes coarser and the zinc electrode deteriorates. It is thought that he did.

此−較一例一1 表3に示す粒径の水酸化インジウムと金属インジウムと
をそれぞれ5重量%づつを添加剤として用いた以外は前
記実施例と同様にして電池を作製した。
Comparison Example 1 A battery was produced in the same manner as in the previous example except that 5% by weight of each of indium hydroxide and metallic indium having the particle sizes shown in Table 3 were used as additives.

以下、このようにして作製した電池を(J)電池〜(N
)電池と称する。
Hereinafter, the batteries produced in this way will be described as (J) battery ~ (N
) is called a battery.

〔以下余白〕[Margin below]

l−ユ 第2図及び第3図に、上記比較例の(J)電池〜・(N
)電池及び前記本発明の(A)電池のサイクル特性図を
示す。両図より比較例の(J)電池〜(N)電池では充
放電を350回繰り返す以前に電池容量が50%となる
のが認められるのに対して、本発明の(A)電池では充
放電を380回繰り返すまでは電池容量が50%となら
ないのが認められる。従って、本発明の(A)電池は比
較例の(J)電池〜(N)電池と比べて、サイクル特性
が格段に向上していることが伺える。
Figures 2 and 3 show the battery (J) of the above comparative example.
) battery and the cycle characteristic diagram of the battery (A) of the present invention. From both figures, it can be seen that the battery capacity of Comparative Examples Batteries (J) to Batteries (N) reaches 50% before charging and discharging is repeated 350 times, whereas the battery capacity of (A) of the present invention reaches 50% after charging and discharging. It is observed that the battery capacity does not reach 50% until the process is repeated 380 times. Therefore, it can be seen that the cycle characteristics of the battery (A) of the present invention are significantly improved compared to the batteries (J) to (N) of the comparative examples.

また、添加剤の粒径が大きくなるにしたがってサイクル
寿命が低下することも認められる。これは、添加剤自身
も充放電反応に関与するため、添加剤の粒径が活物質の
粒径より大きければ、充放電を繰り返すにともない活物
質と添加剤とからなる粗大粒子(亜鉛合金粒子)が生成
する。このように、粒径の大なる添加剤粒子によって粗
大粒子の生成が左右される。そして、粗大粒子には充電
時に電流が集中するため、デンドライトが生じ易くなり
、この結果、電池内部で短絡を生じてサイクル寿命が低
下したものと考えられる。
It is also observed that cycle life decreases as the particle size of the additive increases. This is because the additive itself is involved in the charge/discharge reaction, so if the particle size of the additive is larger than the particle size of the active material, as the charge/discharge is repeated, coarse particles (zinc alloy particles) consisting of the active material and additive will become larger. ) is generated. In this way, the generation of coarse particles is influenced by the additive particles having a large particle size. It is believed that because current concentrates on the coarse particles during charging, dendrites are likely to occur, resulting in a short circuit inside the battery and a reduction in cycle life.

一方、本発明の(A)電池では添加剤の粒径が金属亜鉛
の粒径より小さいので、亜鉛粒子の粗大化は金属亜鉛粒
子の粒径に支配される。そして、その亜鉛粒子の粒径は
10μm以下と非常に小さいので、充放電を数多く繰り
返さなければ亜鉛粒子が粗大化しない。従って、比較例
の(J)電池〜(N)電池と比べてサイクル寿命が飛躍
的に延びていると考えられる。
On the other hand, in the battery (A) of the present invention, since the particle size of the additive is smaller than the particle size of metal zinc, the coarsening of the zinc particles is controlled by the particle size of the metal zinc particles. Since the particle size of the zinc particles is very small, 10 μm or less, the zinc particles do not become coarse unless charging and discharging are repeated many times. Therefore, it is considered that the cycle life is dramatically extended compared to the comparative examples of batteries (J) to (N).

尚、本発明では添加剤として水酸化インジウムと金属イ
ンジウムとを用いたが、これらに限定されるものではな
く、亜鉛の水素過電圧を高めるもの、例えばタリウム、
亜鉛、錫、カリウムやその酸化物、水酸化物等であって
もよいことは勿論である。
In the present invention, indium hydroxide and metallic indium are used as additives, but the additives are not limited to these, and additives that increase the hydrogen overvoltage of zinc, such as thallium,
Of course, zinc, tin, potassium, their oxides, hydroxides, etc. may also be used.

また、導電剤としてはカーボンが好ましいが、酸化亜鉛
と金属亜鉛の組成比などによっては導電剤を添加しなく
てもよい場合もあり得る。
Furthermore, although carbon is preferable as the conductive agent, it may not be necessary to add the conductive agent depending on the composition ratio of zinc oxide and metal zinc.

主班夏訪来 以上説明したように本発明によれば、酸化亜鉛の粒径は
1μm以下であるので、単位重量あたりの表面積が大き
くなり、電池の充放電効率を向上させることができる。
Main Team Summer Visit As explained above, according to the present invention, since the particle size of zinc oxide is 1 μm or less, the surface area per unit weight is increased, and the charging/discharging efficiency of the battery can be improved.

したがって、電解液中の亜鉛酸イオンが還元されるのを
防止できる。
Therefore, zincate ions in the electrolyte can be prevented from being reduced.

また、金属亜鉛の粒径は10μm以下であるので、充放
電を繰り返し行った場合であっても亜鉛粒子が粗大化せ
ず、亜鉛粒子に電流が集中するのを抑制することが可能
となる。
Further, since the particle size of metal zinc is 10 μm or less, the zinc particles do not become coarse even when charging and discharging are repeated, and it is possible to suppress concentration of current on the zinc particles.

更に、添加剤及び導電剤の粒径は活物質の最大粒径以下
であるので、充放電を繰り返し行ない亜鉛が溶解、析出
した場合であっても、亜鉛活物質と添加剤とからなる粗
大粒子(亜鉛合金)が生成しない。したがって、電極の
一部にのみ電流が集中するのを防止することができる。
Furthermore, since the particle size of the additive and conductive agent is less than the maximum particle size of the active material, even if zinc is dissolved and precipitated by repeated charging and discharging, coarse particles consisting of the zinc active material and additive will remain. (zinc alloy) does not form. Therefore, it is possible to prevent current from concentrating only on a portion of the electrode.

これらのことから、従来と比べてデンドライトの発生を
著しく抑制することができるので、電池内部における短
絡を防止することができ、この結果、アルカリ亜鉛蓄電
池の性能を飛躍的に向上させることができるという効果
を奏しうる。
As a result, the generation of dendrites can be significantly suppressed compared to conventional methods, thereby preventing short circuits inside the battery, and as a result, the performance of alkaline zinc storage batteries can be dramatically improved. It can be effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のアルカリ亜鉛蓄電池の断面図、第2−
図及び第3図は添加剤粒径をかえたときの電池のサイク
ル特性図である。 特許出願人 : 三洋電機 株式会社 代理人 : 弁理士 中隔 用量 第1図 第2図 第3図 ティクlし歇(回)
Figure 1 is a sectional view of the alkaline zinc storage battery of the present invention, Figure 2-
3 and 3 are cycle characteristic diagrams of the battery when the additive particle size is changed. Patent applicant: Sanyo Electric Co., Ltd. Agent: Patent attorney Septum Dosage Figure 1 Figure 2 Figure 3 Tick interval (times)

Claims (1)

【特許請求の範囲】[Claims] (1)酸化亜鉛と金属亜鉛とを主成分とし、これに添加
剤、導電剤等が添加された負極と、充電可能な物質から
成る正極と、これら正負両極間に介挿されたセパレータ
と、電解液とを有するアルカリ亜鉛蓄電池において、 前記負極における酸化亜鉛の粒径が1μm以下で、且つ
金属亜鉛の粒径が10μm以下であり、更に添加剤と導
電剤との粒径が前記酸化亜鉛及び金属亜鉛の最大粒径以
下であることを特徴とするアルカリ亜鉛蓄電池。
(1) A negative electrode mainly composed of zinc oxide and metal zinc to which additives, conductive agents, etc. are added, a positive electrode made of a rechargeable substance, and a separator interposed between these positive and negative electrodes; In an alkaline zinc storage battery having an electrolytic solution, the particle size of the zinc oxide in the negative electrode is 1 μm or less, the particle size of the metallic zinc is 10 μm or less, and the particle size of the additive and the conductive agent are An alkaline zinc storage battery characterized by having a particle size smaller than the maximum particle size of metallic zinc.
JP62292535A 1987-11-19 1987-11-19 Alkaline zinc storage battery Pending JPH01134862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62292535A JPH01134862A (en) 1987-11-19 1987-11-19 Alkaline zinc storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62292535A JPH01134862A (en) 1987-11-19 1987-11-19 Alkaline zinc storage battery

Publications (1)

Publication Number Publication Date
JPH01134862A true JPH01134862A (en) 1989-05-26

Family

ID=17783050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62292535A Pending JPH01134862A (en) 1987-11-19 1987-11-19 Alkaline zinc storage battery

Country Status (1)

Country Link
JP (1) JPH01134862A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027767A1 (en) * 2011-08-23 2013-02-28 株式会社日本触媒 Negative electrode mixture or gel electrolyte, and battery using said negative electrode mixture or said gel electrolyte
US8586244B2 (en) * 2007-04-02 2013-11-19 Eveready Battery Co., Inc. Alkaline electrochemical cell having a negative electrode with solid zinc oxide and a surfactant
JP2014026951A (en) * 2011-08-23 2014-02-06 Nippon Shokubai Co Ltd Zinc negative electrode mixture, and battery arranged by use thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8586244B2 (en) * 2007-04-02 2013-11-19 Eveready Battery Co., Inc. Alkaline electrochemical cell having a negative electrode with solid zinc oxide and a surfactant
WO2013027767A1 (en) * 2011-08-23 2013-02-28 株式会社日本触媒 Negative electrode mixture or gel electrolyte, and battery using said negative electrode mixture or said gel electrolyte
JP2014026951A (en) * 2011-08-23 2014-02-06 Nippon Shokubai Co Ltd Zinc negative electrode mixture, and battery arranged by use thereof
CN103748710A (en) * 2011-08-23 2014-04-23 株式会社日本触媒 Negative electrode mixture or gel electrolyte, and battery using said negative electrode mixture or said gel electrolyte

Similar Documents

Publication Publication Date Title
JPH01134862A (en) Alkaline zinc storage battery
JP2966627B2 (en) Metal hydride storage battery
JP2854082B2 (en) Alkaline zinc storage battery
JP2858862B2 (en) Metal-hydrogen alkaline storage battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JPH0568828B2 (en)
JP3143109B2 (en) Cylindrical sealed nickel storage battery
JP3071026B2 (en) Metal hydride storage battery
JPH05283071A (en) Activation of metal hydride storage battery
JP2931316B2 (en) Manufacturing method of alkaline zinc storage battery
JP3054431B2 (en) Metal-hydrogen alkaline storage battery
JP2578633B2 (en) Zinc electrode for alkaline storage batteries
JPS63126164A (en) Alkali zinc storage battery
JP2989300B2 (en) Metal-hydrogen alkaline storage battery
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPH079807B2 (en) Zinc electrode for alkaline storage battery
JP2950895B2 (en) Metal-hydrogen alkaline storage battery
JPH079806B2 (en) Zinc electrode for alkaline storage battery
JP2925612B2 (en) Method for producing metal-hydrogen alkaline storage battery
JPS63124367A (en) Alkaline zinc storage battery
JPH05190175A (en) Surface treatment of hydrogen storage alloy for alkaline secondary battery
JP2966623B2 (en) Nickel-hydrogen battery
JPH05174867A (en) Metal-hydrogen alkaline storage battery
JPH071695B2 (en) Alkaline zinc storage battery
JPH073793B2 (en) Alkaline zinc storage battery