JP2578633B2 - Zinc electrode for alkaline storage batteries - Google Patents
Zinc electrode for alkaline storage batteriesInfo
- Publication number
- JP2578633B2 JP2578633B2 JP63035658A JP3565888A JP2578633B2 JP 2578633 B2 JP2578633 B2 JP 2578633B2 JP 63035658 A JP63035658 A JP 63035658A JP 3565888 A JP3565888 A JP 3565888A JP 2578633 B2 JP2578633 B2 JP 2578633B2
- Authority
- JP
- Japan
- Prior art keywords
- zinc
- zinc electrode
- battery
- electrode
- indium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/42—Alloys based on zinc
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 (イ) 産業上の利用分野 本発明はニツケル−亜鉛蓄電池、銀−亜鉛蓄電池等に
用いられるアルカリ蓄電池用亜鉛極に関するものであ
る。The present invention relates to a zinc electrode for an alkaline storage battery used for a nickel-zinc storage battery, a silver-zinc storage battery and the like.
(ロ) 従来の技術 負極活物質としての亜鉛は単位重量あたりのエネルギ
ー密度が大きく、且つ安価である利点を有する反面、放
電時に亜鉛がアルカリ電解液に溶出して亜鉛酸イオンと
なり、充電時にこの亜鉛酸イオンが亜鉛極表面に樹枝状
或いは海綿状に電析する。そして充放電を繰り返すと、
電析亜鉛がセパレータを貫通して対極に到達し内部短絡
をひき起こすのでサイクル寿命が短かいという欠点があ
る。(B) Conventional technology Zinc as a negative electrode active material has a high energy density per unit weight and is inexpensive, but at the time of discharge, zinc is eluted into an alkaline electrolyte to form zincate ions. Zinc acid ions are deposited on the surface of the zinc electrode in a dendritic or spongy manner. And when charging and discharging are repeated,
Since the electrodeposited zinc penetrates through the separator and reaches the counter electrode to cause an internal short circuit, the cycle life is short.
かかる問題に対処するため、たとえば複数種のセパレ
ータを組合せると共に電解液量を規制する方法が提案さ
れている。この方法により電析亜鉛に基づく内部短絡に
よる劣化が緩和されるようになるが、電解液量を規制す
るため、亜鉛極中の電解液の偏在が起こり、反応面積が
減少して満足する放電容量及びサイクル寿命が得られ
ず、また充放電効率が低下するという欠点がある。そこ
で、特開昭58−165250号公報では、亜鉛極活物質中にカ
ーボンを含有することにより、亜鉛極の多孔度を増大さ
せて有効表面積の増大を図り、亜鉛極内の活物質をより
活性化すると共に導電性を向上させている。In order to cope with such a problem, for example, a method has been proposed in which a plurality of types of separators are combined and the amount of the electrolytic solution is regulated. By this method, deterioration due to internal short-circuiting due to electrodeposited zinc is mitigated. However, in order to regulate the amount of electrolyte, the electrolyte is unevenly distributed in the zinc electrode, the reaction area is reduced, and a satisfactory discharge capacity is obtained. In addition, there is a drawback that the cycle life cannot be obtained and the charge / discharge efficiency is reduced. Japanese Patent Application Laid-Open No. 58-165250 discloses that the zinc electrode active material contains carbon to increase the porosity of the zinc electrode, increase the effective surface area, and make the active material in the zinc electrode more active. And the conductivity is improved.
この亜鉛極中に単にカーボンを添加含有する方法で
は、充放電の繰り返しに従つて、亜鉛活物質の溶出が進
行するため、充放電に関与しないカーボンが亜鉛極表面
に露出する。この露出したカーボンは水素過電圧が小さ
いため、この状態で充電を行なうと亜鉛極表面上で水素
発生反応が進行し、亜鉛極活物質の充電不良となり電池
容量の低下をひき起こすという問題があつた。In the method in which carbon is simply added and contained in the zinc electrode, elution of the zinc active material proceeds with repetition of charge and discharge, so that carbon not involved in charge and discharge is exposed on the zinc electrode surface. Since the exposed carbon has a small hydrogen overvoltage, if it is charged in this state, a hydrogen generation reaction proceeds on the surface of the zinc electrode, and there is a problem that the charging of the zinc electrode active material becomes defective and the battery capacity is reduced. .
(ハ) 発明が解決しようとする課題 本発明は前記問題点に鑑みなされたものであつて、単
にカーボンを添加した場合の問題点を解決し、サイクル
特性に優れたアルカリ蓄電池用亜鉛極を提供することを
課題とする。(C) Problems to be Solved by the Invention The present invention has been made in view of the above-mentioned problems, and solves the problems when simply adding carbon, and provides a zinc electrode for an alkaline storage battery having excellent cycle characteristics. The task is to
(ニ) 課題を解決するための手段 本発明のアルカリ蓄電池用亜鉛極は、亜鉛活物質にイ
ンジウム、タリウム、ガリウム、ビスマス、スズ、鉛の
うち少なくとも1種の金属を還元析出させたカーボンが
添加されたことを特徴とするものである。(D) Means for Solving the Problems The zinc electrode for an alkaline storage battery according to the present invention is characterized in that carbon obtained by reducing and precipitating at least one metal of indium, thallium, gallium, bismuth, tin, and lead is added to a zinc active material. It is characterized by having been done.
(ホ) 作用 本発明者の検討によれば、インジウム、タリウム、ガ
リウム、ビスマス、スズ、鉛の1種以上の金属をカーボ
ンの表面に還元析出させると、カーボンの水素過電圧を
大きくすることが可能となると共に、この作用効果はサ
イクル数が進行しても持続することを見い出し、本発明
を完成するに至つたものである。(E) Function According to the study of the present inventors, it is possible to increase the hydrogen overvoltage of carbon by reducing and precipitating at least one metal of indium, thallium, gallium, bismuth, tin and lead on the surface of carbon. It has been found that this effect is maintained even when the number of cycles progresses, and the present invention has been completed.
これはインジウム、タリウム、ガリウム、ビスマス、
スズ、鉛等の金属はアルカリ電解液中で水素過電圧が大
きく、これらの金属をカーボン上に還元析出させると、
添加剤としてのカーボンの水素過電圧が大きくなること
に起因する。したがつてサイクル数が進行し、亜鉛極の
溶出が進行しても、カーボン上での水素発生反応を抑制
することが可能となる。一方、カーボン自身の添加効果
により、亜鉛活物質の充電反応が促進され、より長期に
亘つて電池容量の維持が可能となる。This is indium, thallium, gallium, bismuth,
Metals such as tin and lead have a large hydrogen overvoltage in alkaline electrolyte, and when these metals are reduced and deposited on carbon,
This is because the hydrogen overvoltage of carbon as an additive increases. Therefore, even if the number of cycles progresses and the elution of the zinc electrode progresses, the hydrogen generation reaction on carbon can be suppressed. On the other hand, the charging effect of the zinc active material is promoted by the effect of the addition of carbon itself, and the battery capacity can be maintained for a longer period.
(ヘ) 実施例 以下に、本発明の実施例と比較例との対比に言及し、
詳述する。(F) Examples Hereinafter, reference will be made to a comparison between examples of the present invention and comparative examples,
It will be described in detail.
〔実施例1〕 硫酸インジウムIn2(SO4)34.5g、濃硫酸(96%)10c
cおよび水160ccを混合し硫酸インジウムを加熱溶解す
る。次に水100ccおよび膨張黒鉛(日本黒鉛株式会社
製)10gを加える。さらにホルマリン(37%)30ccを添
加したのち、50%水酸化カリウム溶液約90ccを徐々に加
える。この溶液を15時間以上熟成した後、膨張黒鉛を濾
過し水洗・乾燥する。このようにして得られた膨張黒鉛
の表面にはインジウムが還元析出しており膨張黒鉛10重
量部に対してインジウム2重量部が担持されている。[Example 1] Indium sulfate In 2 (SO 4 ) 3 4.5 g, concentrated sulfuric acid (96%) 10c
c and 160 cc of water are mixed and indium sulfate is heated and dissolved. Next, 100 cc of water and 10 g of expanded graphite (manufactured by Nippon Graphite Co., Ltd.) are added. Further, after adding 30 cc of formalin (37%), about 90 cc of a 50% potassium hydroxide solution is gradually added. After aging this solution for at least 15 hours, the expanded graphite is filtered, washed with water and dried. Indium is reduced and precipitated on the surface of the expanded graphite thus obtained, and 2 parts by weight of indium is supported per 10 parts by weight of the expanded graphite.
次に亜鉛活物質としての酸化亜鉛45重量部、金属亜鉛
45重量部に添加剤としてのインジウム5重量部さらに前
記方法で作製したインジウムが還元析出している膨張黒
鉛2.5重量部を加え充分に混合したのちポリテトラフル
オロエチレンデイスパージヨン2、5重量部加え水で希
釈して混練しペースト状とする。次いでこのペーストを
圧延ローラで圧延し所定の厚みのカレンダーシートを作
製しこのカレンダーシートを集電体の両側に貼り合わせ
て圧着ローラで圧着して本発明の亜鉛極を得る。Next, 45 parts by weight of zinc oxide as zinc active material, metallic zinc
To 45 parts by weight, 5 parts by weight of indium as an additive, and 2.5 parts by weight of expanded graphite formed by reduction of indium prepared by the above-mentioned method were added and mixed well, and then 2 and 5 parts by weight of polytetrafluoroethylene dispergion were added. Dilute with water and knead to form a paste. Next, the paste is rolled with a rolling roller to produce a calender sheet having a predetermined thickness. The calender sheet is adhered to both sides of the current collector and pressure-bonded with a pressure roller to obtain a zinc electrode of the present invention.
この亜鉛極と公知の焼結式ニツケル極とを組み合わせ
て、第1図に示す単2サイズ(公称容量1500mAh)のニ
ツケル−亜鉛蓄電池を作製し、本発明電池Aとした。第
1図は本発明電池の縦断面図である。第1図中、1は本
発明の特徴である亜鉛極、2はニツケル極であつて、こ
れら亜鉛極1及びニツケル極2の間に多層セパレータ3
を介して渦巻状に巻回することによつて電極体が構成さ
れている。また電解液(KOH)は、亜鉛極1、ニツケル
極2及び多層セパレータ3に吸収保持されているため、
遊離の電解液は実質的に存在しない状態となつている。
尚4は負極端子兼用の電池罐、5はガス抜き機構を具備
した正極端子兼用封口体、6は絶縁パツキングである。By combining this zinc electrode and a known sintered nickel electrode, a nickel-zinc storage battery of a C2 size (nominal capacity 1500 mAh) shown in FIG. FIG. 1 is a longitudinal sectional view of the battery of the present invention. In FIG. 1, 1 is a zinc electrode which is a feature of the present invention, 2 is a nickel electrode, and a multilayer separator 3 is provided between the zinc electrode 1 and the nickel electrode 2.
The electrode body is formed by spirally winding through the electrodes. In addition, since the electrolytic solution (KOH) is absorbed and held in the zinc electrode 1, the nickel electrode 2, and the multilayer separator 3,
Free electrolyte is substantially absent.
Reference numeral 4 denotes a battery can that also serves as a negative electrode terminal, 5 denotes a sealing member that also serves as a positive electrode terminal equipped with a gas release mechanism, and 6 denotes an insulating packing.
〔実施例2〕 前記実施例1において、硫酸インジウム4.5gの代わり
に硫酸タリウムTl2SO42.5gを加えた以外は同一の条件で
亜鉛極を得、本発明電池Bを作製した。Example 2 A zinc electrode was obtained under the same conditions as in Example 1 except that 2.5 g of thallium sulfate Tl 2 SO 4 was added instead of 4.5 g of indium sulfate, to thereby prepare a battery B of the present invention.
〔実施例3〕 前記実施例1において、硫酸インジウム4.5gの代わり
に硫酸ガリウム(Ga2(SO4)3)6.0gを加えた比外は同
一の条件で亜鉛極を得、本発明電池Cを作製した。Example 3 A zinc electrode was obtained under the same conditions as in Example 1, except that 6.0 g of gallium sulfate (Ga 2 (SO 4 ) 3 ) was added instead of 4.5 g of indium sulfate. Was prepared.
〔実施例4〕 前記実施例1において、硫酸インジウム4.5gの代わり
に硫酸ビスマス(Bi2(SO4)3)3、4gを加えた以外は
同一の条件で亜鉛極を得、本発明電池Dを作製した。Example 4 A zinc electrode was obtained under the same conditions as in Example 1 except that bismuth sulfate (Bi 2 (SO 4 ) 3 ) 3 and 4 g were added instead of indium sulfate 4.5 g. Was prepared.
〔実施例5〕 前記実施例1において、硫酸インジウム4.5gの代わり
に硫酸スズ(SnSO4)3.6gを加えた以外は同一の条件で
亜鉛極を得、本発明電池Eを作製した。Example 5 A zinc electrode was obtained under the same conditions as in Example 1 except that 3.6 g of tin sulfate (SnSO 4 ) was added instead of 4.5 g of indium sulfate, to thereby prepare a battery E of the present invention.
〔実施例6〕 前記実施例1において、硫酸インジウム4.5gの代わり
に硫酸鉛(PbSO4)2.9gを加えた以外は同一の条件で亜
鉛極を得、本発明電池Fを作製した。Example 6 A zinc electrode was obtained under the same conditions as in Example 1 except that 2.9 g of lead sulfate (PbSO 4 ) was added instead of 4.5 g of indium sulfate, and a battery F of the present invention was produced.
〔実施例8〕 前記実施例1において、硫酸インジウム4.5gの代わり
に硫酸インジウム2.3gおよび硫酸タリウム1.3gを加え、
膨張黒鉛の表面にインジウムおよびタリウムを担持させ
た以外は同一の条件で亜鉛極を得、本発明電池Hを作製
した。Example 8 In Example 1, 2.3 g of indium sulfate and 1.3 g of thallium sulfate were added in place of 4.5 g of indium sulfate,
A zinc electrode was obtained under the same conditions except that indium and thallium were supported on the surface of the expanded graphite, and a battery H of the present invention was produced.
前記実施例1において、金属担持させない膨張黒鉛を
そのまま使用した以外は同一の条件で亜鉛極を得、比較
電池Iを作製した。In Comparative Example 1, a zinc electrode was obtained under the same conditions as in Example 1 except that expanded graphite not supporting metal was used as it was.
このように作製した本発明電池A〜H及び比較電池I
を用い、夫々360mAで5時間充電し、360mAで電池電圧が
1.0Vに達するまで放電するという条件で、充放電サイク
ルテストを行なつた。この結果を第2図に示す。第2図
は、電池のサイクル特性比較図である。第2図におい
て、電池容量は初期の電池容量を100とした時の値であ
る。Inventive batteries A to H and comparative battery I thus produced
Charge at 360mA for 5 hours each, and battery voltage at 360mA
A charge / discharge cycle test was performed under the condition that the battery was discharged until the voltage reached 1.0 V. The result is shown in FIG. FIG. 2 is a comparison diagram of cycle characteristics of a battery. In FIG. 2, the battery capacity is a value when the initial battery capacity is 100.
第2図より明らかなように、本発明電池A〜Hのサイ
クル特性が、比較電池Iよりも優れていることがわか
る。比較電池(I)が250サイクルで容量低下するのに
対して、本発明電池A〜Hでは350サイクル以上の寿命
が得られた。これは比較電池Iでは、サイクル数の進行
に伴なつて亜鉛極活物質の溶出が進行し、反応に関与し
ない膨張黒鉛が表面に露出した際、膨張黒鉛の水素過電
圧が小さいため充電時に膨張黒鉛の表面から水素が発生
し、亜鉛極活物質の充電不良を起こし電池容量の低下を
もたらす。2, the cycle characteristics of the batteries A to H of the present invention are superior to the comparative battery I. While the capacity of the comparative battery (I) decreased at 250 cycles, the batteries A to H of the present invention obtained a life of 350 cycles or more. This is because, in the comparative battery I, when the zinc electrode active material elutes with the progress of the cycle number and the expanded graphite that does not participate in the reaction is exposed on the surface, the expanded graphite has a small hydrogen overvoltage, so that the expanded graphite is charged during charging. Hydrogen is generated from the surface of the battery, causing poor charging of the zinc electrode active material, resulting in a decrease in battery capacity.
これに対して本発明電池A、B、C、D、E、F及び
Hでは、膨張黒鉛の表面に、夫々アルカリ中でそれ自身
水素過電圧の大きいインジウム、タリウム、ガリウム、
ビスマス、スズ、鉛およびインジウムとタリウムを還元
析出しているため、サイクル数の進行に伴つて亜鉛極活
物質の溶出が進行し膨張黒鉛が亜鉛極の表面に露出して
も、膨張黒鉛の表面からは水素発生反応が起こらず、亜
鉛極活物質の充電反応が進行する。従つて、本来のカー
ボン添加の作用効果である、活物質の導電性の向上と亜
鉛極の多孔性の向上を十分に発揮できると共に、インジ
ウム、タリウム、ガリウム、ビスマス、スズ、鉛及びイ
ンジウムとタリウムが添加剤として働き、電流分布の均
一化が計られるため、より長期にわたるサイクル寿命が
得られたものと考えられる。On the other hand, in the batteries A, B, C, D, E, F, and H of the present invention, indium, thallium, gallium, which have a large hydrogen overvoltage by themselves in alkali, respectively, on the surface of the expanded graphite.
Since bismuth, tin, lead and indium and thallium are reduced and precipitated, the elution of the zinc electrode active material progresses with the progress of the cycle number, and even if the expanded graphite is exposed on the surface of the zinc electrode, the surface of the expanded graphite is Does not cause a hydrogen generation reaction, and the charging reaction of the zinc electrode active material proceeds. Therefore, the improvement of the conductivity of the active material and the improvement of the porosity of the zinc electrode, which are the original effects of the addition of carbon, can be sufficiently exhibited. Is considered to act as an additive and to make the current distribution uniform, so that a longer cycle life was obtained.
上述したように、本発明の実施例において、カーボン
として膨張黒鉛を使用したが、この他に人造黒鉛、アセ
チレンブラツクおよびケツチンブラツクなども使用する
ことができるのは言うまでもない。As described above, in the embodiment of the present invention, expanded graphite is used as carbon, but it goes without saying that artificial graphite, acetylene black, ketchin black and the like can also be used.
(ト) 発明の効果 本発明のアルカリ亜鉛蓄電池用亜鉛極は、カーボンに
あらかじめインジウム、タリウム、カリウム、ビスマ
ス、スズ、鉛のうち少なくとも一種以上の金属を還元析
出したものを亜鉛活物質中に添加しているので、カーボ
ン表面からの水素発生反応を抑制すると共に亜鉛極活物
質の反応性をより長期にわたつて維持することができる
ので、かかる亜鉛極を用いた電池のサイクル特性が向上
するので、その工業的価値は極めて大きい。(G) Effect of the Invention The zinc electrode for an alkaline zinc storage battery of the present invention is obtained by adding, in a zinc active material, at least one metal of at least one of indium, thallium, potassium, bismuth, tin, and lead to carbon. Since the hydrogen generation reaction from the carbon surface can be suppressed and the reactivity of the zinc electrode active material can be maintained for a longer period of time, the cycle characteristics of a battery using such a zinc electrode are improved. , Its industrial value is extremely large.
第1図は本発明に係る電池の縦断面図、第2図は電池の
サイクル特性比較図である。 1……亜鉛極、2……ニツケル極、3……セパレータ、
4……電池罐、5……封口体、6……絶縁パツキング、 A、B、C、D、E、F、H……本発明電池、I……比
較電池。FIG. 1 is a longitudinal sectional view of a battery according to the present invention, and FIG. 2 is a comparison diagram of cycle characteristics of the battery. 1 ... zinc electrode, 2 ... nickel electrode, 3 ... separator,
4 ... battery can, 5 ... sealing body, 6 ... insulating packing, A, B, C, D, E, F, H ... battery of the present invention, I ... comparative battery.
Claims (1)
ガリウム、ビスマス、スズ、鉛のうち少なくとも1種の
金属を還元析出させたカーボンが添加されたことを特徴
とするアルカリ蓄電池用亜鉛極。(1) In a zinc active material, indium, thallium,
A zinc electrode for an alkaline storage battery, wherein carbon obtained by reducing and depositing at least one metal of gallium, bismuth, tin and lead is added.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63035658A JP2578633B2 (en) | 1988-02-18 | 1988-02-18 | Zinc electrode for alkaline storage batteries |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63035658A JP2578633B2 (en) | 1988-02-18 | 1988-02-18 | Zinc electrode for alkaline storage batteries |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01209664A JPH01209664A (en) | 1989-08-23 |
JP2578633B2 true JP2578633B2 (en) | 1997-02-05 |
Family
ID=12447972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63035658A Expired - Lifetime JP2578633B2 (en) | 1988-02-18 | 1988-02-18 | Zinc electrode for alkaline storage batteries |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2578633B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2462643B1 (en) | 2009-08-07 | 2019-02-20 | ZincFive Power, Inc. | Carbon fiber zinc negative electrode |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5519799A (en) * | 1978-07-25 | 1980-02-12 | Michelin & Cie | Zinc electrode |
-
1988
- 1988-02-18 JP JP63035658A patent/JP2578633B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5519799A (en) * | 1978-07-25 | 1980-02-12 | Michelin & Cie | Zinc electrode |
Also Published As
Publication number | Publication date |
---|---|
JPH01209664A (en) | 1989-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2578633B2 (en) | Zinc electrode for alkaline storage batteries | |
JP2987873B2 (en) | Alkaline storage battery | |
JP2854082B2 (en) | Alkaline zinc storage battery | |
JPH01134862A (en) | Alkaline zinc storage battery | |
JPH0234434B2 (en) | ||
JP2562669B2 (en) | Alkaline storage battery | |
JPS61233967A (en) | Manufacture of sealed nickel-hydrogen storage battery | |
JPH09199119A (en) | Alkaline storage battery | |
JPH079806B2 (en) | Zinc electrode for alkaline storage battery | |
JP2735887B2 (en) | Zinc active material for alkaline storage battery and method for producing the same | |
JPH073793B2 (en) | Alkaline zinc storage battery | |
JPS63126164A (en) | Alkali zinc storage battery | |
JP2614486B2 (en) | Alkaline zinc storage battery | |
JPH079807B2 (en) | Zinc electrode for alkaline storage battery | |
JP2931316B2 (en) | Manufacturing method of alkaline zinc storage battery | |
JP2762730B2 (en) | Nickel-cadmium storage battery | |
JP2558759B2 (en) | Manufacturing method of cadmium negative electrode for alkaline storage battery | |
JP2529308B2 (en) | Manufacturing method of cadmium negative electrode for alkaline storage battery | |
JP2589750B2 (en) | Nickel cadmium storage battery | |
JPS6148220B2 (en) | ||
JPS63124367A (en) | Alkaline zinc storage battery | |
JPH071695B2 (en) | Alkaline zinc storage battery | |
JPS62108467A (en) | Alkaline zinc storage battery | |
JPH0568073B2 (en) | ||
JPH10125350A (en) | Alkaline secondary battery |