JPH079807B2 - Zinc electrode for alkaline storage battery - Google Patents

Zinc electrode for alkaline storage battery

Info

Publication number
JPH079807B2
JPH079807B2 JP61304406A JP30440686A JPH079807B2 JP H079807 B2 JPH079807 B2 JP H079807B2 JP 61304406 A JP61304406 A JP 61304406A JP 30440686 A JP30440686 A JP 30440686A JP H079807 B2 JPH079807 B2 JP H079807B2
Authority
JP
Japan
Prior art keywords
zinc
electrode
thallium
storage battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61304406A
Other languages
Japanese (ja)
Other versions
JPS63158750A (en
Inventor
光造 野上
健次 井上
修弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61304406A priority Critical patent/JPH079807B2/en
Publication of JPS63158750A publication Critical patent/JPS63158750A/en
Publication of JPH079807B2 publication Critical patent/JPH079807B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/244Zinc electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明はニッケル−亜鉛蓄電池や、銀−亜鉛蓄電池など
に用いられる活物質として亜鉛を使用するアルカリ蓄電
池用亜鉛極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a zinc electrode for an alkaline storage battery, which uses zinc as an active material used in a nickel-zinc storage battery, a silver-zinc storage battery or the like.

(ロ) 従来の技術 負極活物質として用いられる亜鉛は単位重量当りのエネ
ルギー密度が大きく、且安価であるという利点があり、
このような亜鉛極を有してなるアルカリ亜鉛蓄電池は高
エネルギー密度で作動電圧が高い等の特徴のある電池と
しての期待が大きい。
(B) Conventional technology Zinc used as a negative electrode active material has the advantages that it has a large energy density per unit weight and is inexpensive,
The alkaline zinc storage battery having such a zinc electrode is highly expected as a battery having features such as high energy density and high operating voltage.

ところが、この種のアルカリ亜鉛蓄電池では、放電時に
亜鉛がアルカリ電解液中に溶出して生じた亜鉛酸イオン
が充電時には亜鉛極表面に樹枝状に電析し生長するの
で、充放電の繰返しによりこの電析亜鉛がセパレータを
貫通し正極に接触して電池内内部短絡を引き起こした
り、あるいは亜鉛極表面が高密度化して電池放電容量が
低下する結果、電池のサイクル寿命が非常に短いという
欠点がある。
However, in this type of alkaline zinc storage battery, zinc acid ions generated by elution of zinc in the alkaline electrolyte during discharge are deposited on the surface of the zinc electrode in a dendritic manner during charging, and therefore, due to repeated charging and discharging, Electrodeposited zinc penetrates the separator and contacts the positive electrode to cause an internal short circuit in the battery, or the zinc electrode surface densifies and the battery discharge capacity decreases, resulting in a very short cycle life of the battery. .

この欠点に対処し、電池のサイクル特性を改善する従来
技術として例えば特開昭59−189562号公報にはタリウム
の酸化物または水酸化物と、インジウムの酸化物または
水酸化物を亜鉛活物質に対し総量1〜15重量%添加、含
有させるとサイクル特性の大幅な向上が得られることが
開示されている。しかしながら、これらを単に添加する
のみでは樹枝状亜鉛の生長を有効に阻止することができ
ず、その効果を十分に発揮することができない。これ
は、これらの添加物が還元されて、サイクル数が進行す
るに従い金属亜鉛表面を覆うものの、充放電サイクルの
初期においては、これら添加物が金属亜鉛表面を覆って
おらず、この時に樹枝状亜鉛生成の核となるような金属
亜鉛が一旦出現すると、サイクル数が進行するに従い前
記添加物があったとしても、樹枝状亜鉛生長が有効に阻
止できないためである。また、前記添加物が金属亜鉛表
面を覆うのは、充放電サイクルを数10回程度繰り返した
後であり、この時点では樹枝状亜鉛生成の核となるよう
な金属亜鉛がすでに出現している。更に樹枝状亜鉛の生
成は急速充電時及び過充電時に特に顕著となる。
As a conventional technique for dealing with this drawback and improving the cycle characteristics of the battery, for example, JP-A-59-189562 discloses that thallium oxide or hydroxide and indium oxide or hydroxide are used as zinc active materials. On the other hand, it is disclosed that the addition of a total amount of 1 to 15% by weight makes it possible to significantly improve the cycle characteristics. However, merely adding these cannot effectively prevent the growth of dendritic zinc, and the effect cannot be sufficiently exerted. This is because these additives are reduced and cover the metal zinc surface as the number of cycles progresses, but at the beginning of the charge / discharge cycle, these additives do not cover the metal zinc surface, and at this time the dendritic This is because once the metallic zinc that becomes the nucleus of zinc generation appears, the dendritic zinc growth cannot be effectively prevented even if the above additives are added as the number of cycles progresses. Further, the surface of the metallic zinc is covered with the additive only after the charge / discharge cycle is repeated several tens of times, and metallic zinc that has become a nucleus for the formation of dendritic zinc has already appeared at this point. Furthermore, the generation of dendritic zinc becomes particularly remarkable during rapid charging and overcharging.

(ハ) 発明が解決しようとする問題点 本発明は前記問題点に鑑みなされたものであって、亜鉛
極における充放電サイクル初期の金属亜鉛粒子からの樹
枝状亜鉛発生を抑制し、サイクル特性のすぐれたアルカ
リ蓄電池を提供しようとするものである。
(C) Problems to be Solved by the Invention The present invention has been made in view of the above problems, and suppresses generation of dendritic zinc from metal zinc particles at the initial stage of charge / discharge cycles in a zinc electrode, thereby improving cycle characteristics It is intended to provide an excellent alkaline storage battery.

(ニ) 問題点を解決するための手段 本発明は、酸化亜鉛と金属亜鉛とを主活物質とする亜鉛
極において、前記金属亜鉛をタリウムあるいは酸化タリ
ウムで覆ったことを特徴とするものである。
(D) Means for Solving the Problems The present invention is characterized in that, in a zinc electrode containing zinc oxide and metallic zinc as main active materials, the metallic zinc is covered with thallium or thallium oxide. .

(ホ) 作用 急速充電時あるいは過充電時の亜鉛極の電極電位は通常
の充電時よりも卑側にシフトし、亜鉛酸イオンが還元さ
れて金属亜鉛上に電着する反応がおこりやすくなる。す
なわち急速充電時あるいは過充電時の亜鉛極における電
極反応は、酸化亜鉛が還元される反応と、亜鉛酸イオン
が還元されて金属亜鉛上に電着する反応との競争反応と
なる。ところが金属亜鉛表面をタリウムあるいは酸化タ
リウムで覆っておくと電着反応の過電圧が増大し、酸化
亜鉛の還元だけが優先的におこるようになる。したがっ
てサイクル初期に急速充電や過充電を行っても、亜鉛極
からの樹枝状亜鉛生長を有効に阻止でき電池内内部短絡
を抑制しうる。
(E) Action The electrode potential of the zinc electrode during rapid charging or overcharging shifts to the base side as compared with during normal charging, and the zincate ion is reduced to facilitate the reaction of electrodeposition on metallic zinc. That is, the electrode reaction at the zinc electrode during rapid charging or overcharging is a competitive reaction between a reaction in which zinc oxide is reduced and a reaction in which zincate ions are reduced and electrodeposited on metallic zinc. However, if the surface of metallic zinc is covered with thallium or thallium oxide, the overvoltage of the electrodeposition reaction increases, and only reduction of zinc oxide occurs preferentially. Therefore, even if rapid charging or overcharging is performed at the beginning of the cycle, dendritic zinc growth from the zinc electrode can be effectively prevented, and internal short circuit in the battery can be suppressed.

(ヘ) 実施例 3規定の水酸化ナトリウム水溶液1に亜鉛粉末500gを
添加し、30分間浸漬した後ろ過し、500mlの純水で10回
水洗しした。この亜鉛粉末を2.0%の硝酸第1タリウム
水溶液500mlに投入し、撹拌し、ろ過後、水洗し、70℃
で乾燥させ、タリウムにより表面を覆われた金属亜鉛を
作成した。尚、この時のタリウム被膜の重量は金属亜鉛
に対して1重量%であった。次に、この金属亜鉛15重量
部と酸化亜鉛100重量部、及び水素過電圧を上げるため
の酸化水銀2重量部とを粉体混合した後、水とポリテト
ラフルオロエチレン(PTFE)を添加、混練し、ペースト
を得、集電体上に圧着して亜鉛極とした。この本発明亜
鉛極と焼結式ニッケル極とを組み合わせて、円筒密閉型
の公称容量700mAhの本発明に係るニッケル−亜鉛電池A
を10セル作成した。
(F) Example 3 500 g of zinc powder was added to 3N aqueous sodium hydroxide solution 1, immersed for 30 minutes, filtered, and washed with 500 ml of pure water 10 times. This zinc powder was added to 500 ml of 2.0% aqueous solution of thallium nitrate, stirred, filtered, washed with water, and heated to 70 ° C.
And dried to prepare metallic zinc whose surface was covered with thallium. The weight of the thallium coating at this time was 1% by weight with respect to metallic zinc. Next, 15 parts by weight of this metallic zinc, 100 parts by weight of zinc oxide, and 2 parts by weight of mercury oxide for increasing the hydrogen overvoltage are powder-mixed, and then water and polytetrafluoroethylene (PTFE) are added and kneaded. , A paste was obtained and pressure-bonded on a current collector to form a zinc electrode. By combining this zinc electrode of the present invention and a sintered nickel electrode, a nickel-zinc battery A of the present invention having a nominal capacity of 700 mAh in a cylindrical sealed type.
10 cells were created.

また比較用電池として、金属亜鉛表面をタリウム処理し
ていない金属亜鉛を用い酸化タリウムを2重量部添加し
た以外は、本発明亜鉛極と同様の亜鉛極を得、比較電池
Bを同様にして10セル作成した。
Further, as a comparative battery, a zinc electrode similar to the zinc electrode of the present invention was obtained except that 2 parts by weight of thallium oxide was used using metallic zinc whose surface was not treated with thallium. I made a cell.

次にこれらの電池を用い、充電を1cの電流で150%、放
電を1cの電流で100%行い、電池容量が500mAh(終止電
圧1.0V)以下になったところを電池寿命とするサイクル
条件にて、充放電サイクルテストを行った。この結果を
図に示す。
Next, using these batteries, charging is performed at a current of 1c for 150% and discharging is performed at a current of 1c for 100%, and when the battery capacity reaches 500 mAh (end voltage 1.0 V) or less, the cycle condition is defined as the battery life. Then, a charge / discharge cycle test was performed. The results are shown in the figure.

図の結果より、本発明電池Aが優れていることがわか
る。これは、樹枝状亜鉛発生の核となる金属亜鉛粒子表
面をタリウムにより覆っているので、サイクル数が進行
しても、樹枝状亜鉛の生長を有効に抑制していることに
基づくものである。
From the results shown in the figure, it is understood that the battery A of the present invention is excellent. This is based on the fact that the surface of the metallic zinc particles, which is the nucleus for the generation of dendritic zinc, is covered with thallium, so that the growth of dendritic zinc is effectively suppressed even if the number of cycles is increased.

尚、タリウム被膜の量としては金属亜鉛重量に対して0.
5〜2.0重量%とするのが好ましいことが実験によって確
認された。
The amount of thallium coating was 0.
It was confirmed by experiments that it is preferable to set the content to 5 to 2.0% by weight.

また実施例においては金属亜鉛粒子表面を金属タリウム
で覆うものを開示したが、酸化タリウムで覆っても同様
の効果がある。
Further, in the examples, the one in which the surface of the metallic zinc particles is covered with metallic thallium is disclosed, but the same effect can be obtained by covering with thallium oxide.

(ト) 発明の効果 本発明のアルカリ蓄電池用亜鉛極は、添加せる金属亜鉛
粒子の表面をタリウムあるい酸化タリウムで覆うことに
より効果的に樹枝状亜鉛生長を抑制しうるので、かかる
亜鉛極を用いたアルカリ蓄電池はサイクル特性において
きわめて優れたものであり、その工業的価値は大きい。
(G) Effect of the Invention The zinc electrode for alkaline storage batteries of the present invention can effectively suppress dendritic zinc growth by covering the surface of the metal zinc particles to be added with thallium or thallium oxide. The alkaline storage battery used is extremely excellent in cycle characteristics and has a great industrial value.

【図面の簡単な説明】[Brief description of drawings]

図は電池のサイクル特性比較図である。 A……本発明電池、B……比較電池。 The figure is a comparison diagram of battery cycle characteristics. A: battery of the present invention, B: comparative battery.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】酸化亜鉛と金属亜鉛とを主活物質として用
いるものにおいて、前記金属亜鉛をタリウムあるいは酸
化タリウムで覆ったことを特徴とするアルカリ蓄電池用
亜鉛極。
1. A zinc electrode for an alkaline storage battery, wherein zinc oxide and metallic zinc are used as main active materials, and the metallic zinc is covered with thallium or thallium oxide.
JP61304406A 1986-12-19 1986-12-19 Zinc electrode for alkaline storage battery Expired - Lifetime JPH079807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61304406A JPH079807B2 (en) 1986-12-19 1986-12-19 Zinc electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61304406A JPH079807B2 (en) 1986-12-19 1986-12-19 Zinc electrode for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS63158750A JPS63158750A (en) 1988-07-01
JPH079807B2 true JPH079807B2 (en) 1995-02-01

Family

ID=17932625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61304406A Expired - Lifetime JPH079807B2 (en) 1986-12-19 1986-12-19 Zinc electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH079807B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101431901B1 (en) * 2011-09-02 2014-08-26 닛산 지도우샤 가부시키가이샤 Alkaline secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224963A (en) * 1988-07-13 1990-01-26 Sanyo Electric Co Ltd Alkaline storage battery and its zinc electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101431901B1 (en) * 2011-09-02 2014-08-26 닛산 지도우샤 가부시키가이샤 Alkaline secondary battery

Also Published As

Publication number Publication date
JPS63158750A (en) 1988-07-01

Similar Documents

Publication Publication Date Title
JPH079806B2 (en) Zinc electrode for alkaline storage battery
JPH079807B2 (en) Zinc electrode for alkaline storage battery
JP2854082B2 (en) Alkaline zinc storage battery
JP2562669B2 (en) Alkaline storage battery
JPH01134862A (en) Alkaline zinc storage battery
JP2578633B2 (en) Zinc electrode for alkaline storage batteries
JPS60198066A (en) Alkaline storage battery
JPS5971265A (en) Alkali zinc lead storage battery
JP2762730B2 (en) Nickel-cadmium storage battery
JP2931316B2 (en) Manufacturing method of alkaline zinc storage battery
JPH05190175A (en) Surface treatment of hydrogen storage alloy for alkaline secondary battery
JPS63126164A (en) Alkali zinc storage battery
JP2846673B2 (en) Method for producing zinc electrode for alkaline storage battery
JPH0232750B2 (en)
JPS58137963A (en) Alkaline zinc storage battery
JPS58137964A (en) Alkaline zinc storage battery
JPS617566A (en) Manufacture of paste type cadmium negative electrode
JPH079804B2 (en) Zinc pole
JPH06124706A (en) Sealed nickel-zinc storage battery
JPH01117279A (en) Lead-acid battery
JPH0544142B2 (en)
JPH06223823A (en) Negative electrode plate for sealed type alkaline storage battery
JPH0719617B2 (en) Alkaline zinc storage battery
JPH071695B2 (en) Alkaline zinc storage battery
JPH0799692B2 (en) Zinc alloy for alkaline zinc secondary battery, method for producing the same, and alkaline zinc secondary battery using the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term