JPH0232750B2 - - Google Patents

Info

Publication number
JPH0232750B2
JPH0232750B2 JP58027360A JP2736083A JPH0232750B2 JP H0232750 B2 JPH0232750 B2 JP H0232750B2 JP 58027360 A JP58027360 A JP 58027360A JP 2736083 A JP2736083 A JP 2736083A JP H0232750 B2 JPH0232750 B2 JP H0232750B2
Authority
JP
Japan
Prior art keywords
charging
storage battery
nickel
current
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58027360A
Other languages
Japanese (ja)
Other versions
JPS59154779A (en
Inventor
Motohide Masui
Hideo Kaiya
Shingo Tsuda
Minoru Yamaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58027360A priority Critical patent/JPS59154779A/en
Publication of JPS59154779A publication Critical patent/JPS59154779A/en
Publication of JPH0232750B2 publication Critical patent/JPH0232750B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔従来技術と問題点〕 本発明は水酸化ニツケル正極活物質とし、これ
にコバルトとニツケルとを加えて結着剤で混練し
たペーストをスポンジ状の金属多孔体(発泡メタ
ル)よりなる基板に充填して形成した正極を有す
る密閉型ニツケルカドミウム蓄電池の充電方式に
関するものである。この種の蓄電池の初充電にお
いては処理能力を向上するために、充電電流およ
び放電電流を大にして充放電の時間を短縮してい
る。この急速充放電で注意しなければならないこ
とは、大電流充電によつてニツケル正極の発生す
る酸素の生成速度と、負極の金属カドミウムが分
解消費する酸素の吸入速度との差によつて生ずる
蓄電池内部の圧力の上昇である。そのために従来
の初充電は、充電効率が高く、酸素発生量の少な
い充電初期に大電流(2〜7CA)で蓄電池の内圧
があまり高くならない電気量まで充電し、引続い
て、小電流で充電して内圧の上昇を阻止しつつ、
可及的多くの電気量を短時間で充電し、放電によ
つてその容量をチエツクする方法が行なわれてい
た。 ところで発泡メタルの基板に利用率向上を目的
とする金属コバルトを混合した水酸化ニツケルの
ペーストを充填した正極板をもつ密閉型ニツケル
カドミウム蓄電池においては、高い活物質利用率
を得るためには、水酸化ニツケルとコバルトが固
溶体を形成する必要があると考えられる。ニツケ
ルカドミウム蓄電池の最初の充電においては、先
ずコバルトが酸化され、続いて水酸化ニツケルが
酸化されていく。このコバルト酸化時の充電を
0.5CA以下の小電流で行うと、先ず酸化次数の低
い不安定な酸化状態となり、水酸化ニツケルと固
溶体を形成できるが、0.5CAを超えるような大電
流で充電した場合、コバルトは直ちに安定な酸化
物を形成して水酸化ニツケルとの固溶体を形成し
ないと考えられる。その結果、ニツケル正極の極
板利用率が低下し、その後、標準充放電を繰返し
ても回復しないことが判明した。 〔発明の目的〕 本発明は、充電の第1段階を小電流で充電する
ことで発泡メタル正極の活物質利用率を低下させ
ることなく、続く第2段階の大電流充電で充電時
間の短縮化を行なうことを可能にした、密閉型ニ
ツケルカドミウム蓄電池の充電方式を提供するも
のである。 〔発明の構成〕 本発明はスポンジ状の金属多孔体よりなる基板
に水酸化ニツケル、コバルトおよびニツケルを結
着剤で混練したペーストを充填して正極とする密
閉型ニツケルカドミウム蓄電池において、その初
回の充電を、第1段階では小電流の充電電流で充
電し、続く第2段階では大電流の充電電流で充電
することを特徴とする密閉型ニツケルカドミウム
蓄電池の充電方式である。 なお、前記第1段階の小電流の充電電流は0.08
〜0.5CAで、その充電電気量は蓄電池の理論容量
の15〜50%である。初充電の電流値を0.5CA以上
にすると利用率が低下し、0.08CA以下では充電
効率が悪く、所定の充電量を確保するまでに時間
がかゝりすぎる。また、小電流による初期の充電
量を蓄電池の理論容量の15%以下にするとコバル
トの酸化が不十分であり、50%以上にすると充電
時間の短縮にはならない。この後の第2段階又は
第2、第3段階を1.0〜4.0CAの電流で蓄電池の
理論容量の50〜120%の充電量充電すれば、全体
としての充電時間を短縮できる。 〔実施例〕 粒径数μm〜150μmの水酸化ニツケル粉末100
に対して粒径3〜5μmの金属ニツケル粉末を20、
粒径3〜5μmの金属コバルト粉末を5重量比で
混合し、これに0.3熟量%のカルボキシメチルセ
ルローズ水溶液を加え、混練して作成したペース
トを発泡メタル基板に塗着した正極板と、ペース
ト式カドミウム負極をナイロン不織布のセパレー
タで隔離し、渦巻き状に巻回して単3型円筒ケー
スに収納し、15%水酸化カリウム水溶液1に水
酸化リチウムを20gの割合で溶解した電解液を注
入して密封した供試用の蓄電池につき、下記第1
表に示すような比較試験を行なつた。すなわち、
初期から大電流で急速充放電を行なう従来の方式
Aと、初期の第1段階を0.3CAのように小電流で
充電し、続く第2段階を4CA、第3段階を1CAの
大電流で充電し、小電流での充電量は理論容量の
20%、第2段階のそれは53%、第3段階のそれは
66%として初期の充放電を行なつた後、20℃で
0.1CA×16時間の充電を行ない、0.2CAで放電
し、活物質理論容量に対する0.2CA放電容量の
比、すなわち利用率を計算して比較した。結果は
下記第2表に示すとおりである。
[Prior art and problems] The present invention uses a nickel hydroxide cathode active material, adds cobalt and nickel to it, and kneads it with a binder, and then fills a substrate made of a sponge-like metal porous body (metal foam) with a paste. The present invention relates to a charging method for a sealed nickel-cadmium storage battery having a positive electrode formed by the above method. In the initial charging of this type of storage battery, in order to improve processing capacity, the charging current and discharging current are increased to shorten the charging and discharging time. What must be noted in this rapid charging/discharging is that the storage battery This is an increase in internal pressure. For this reason, conventional initial charging is performed by charging with a large current (2 to 7 CA) at the beginning of charging when charging efficiency is high and the amount of oxygen generated is low, until the internal pressure of the storage battery does not become too high, and then charging with a small current. while preventing the increase in internal pressure.
The method used was to charge as much electricity as possible in a short time and check the capacity by discharging. By the way, in a sealed nickel cadmium storage battery that has a positive electrode plate filled with a nickel hydroxide paste mixed with cobalt metal in a foamed metal substrate for the purpose of improving the utilization rate, in order to obtain a high active material utilization rate, it is necessary to It is believed that nickel oxide and cobalt need to form a solid solution. During the first charge of a nickel-cadmium storage battery, the cobalt is oxidized first, followed by the nickel hydroxide. Charging during this cobalt oxidation
When charged with a small current of 0.5 CA or less, cobalt first becomes an unstable oxidation state with a low oxidation order and can form a solid solution with nickel hydroxide, but when charged with a large current of more than 0.5 CA, cobalt immediately becomes stable. It is believed that it does not form an oxide and form a solid solution with nickel hydroxide. As a result, it was found that the plate utilization rate of the nickel positive electrode decreased and did not recover even after repeated standard charging and discharging. [Purpose of the Invention] The present invention is capable of shortening the charging time in the second stage of high current charging without reducing the active material utilization rate of the foamed metal positive electrode by charging with a small current in the first stage of charging. The present invention provides a charging method for a sealed nickel-cadmium storage battery that makes it possible to perform the following steps. [Structure of the Invention] The present invention relates to a sealed nickel-cadmium storage battery in which a substrate made of a sponge-like porous metal material is filled with a paste made by kneading nickel hydroxide, cobalt, and nickel with a binder to form a positive electrode. This is a charging method for a sealed nickel-cadmium storage battery characterized by charging with a small charging current in the first stage, and charging with a large charging current in the second stage. In addition, the charging current of the small current in the first stage is 0.08
~0.5CA, and the amount of electricity charged is 15-50% of the storage battery's theoretical capacity. If the initial charging current value is 0.5CA or more, the utilization rate will decrease, and if it is less than 0.08CA, the charging efficiency will be poor and it will take too much time to secure the predetermined amount of charge. Furthermore, if the initial charging amount with a small current is less than 15% of the storage battery's theoretical capacity, the oxidation of cobalt will be insufficient, and if it is more than 50%, the charging time will not be shortened. If the subsequent second stage or second and third stages are performed with a current of 1.0 to 4.0 CA to a charge amount of 50 to 120% of the theoretical capacity of the storage battery, the overall charging time can be shortened. [Example] Nickel hydroxide powder with a particle size of several μm to 150 μm 100
20 pieces of nickel powder with a particle size of 3 to 5 μm,
Cobalt metal powder with a particle size of 3 to 5 μm is mixed at a weight ratio of 5, an aqueous solution of carboxymethyl cellulose with a weight of 0.3% is added to this, and the paste is kneaded to create a positive electrode plate, which is coated on a foamed metal substrate. The formula cadmium negative electrode was isolated with a nylon nonwoven separator, wound spirally, and housed in an AA-sized cylindrical case, and an electrolytic solution containing 20 g of lithium hydroxide dissolved in 1 part of a 15% potassium hydroxide aqueous solution was injected. For test storage batteries sealed with
A comparative test was conducted as shown in the table. That is,
Conventional method A performs rapid charging and discharging with a large current from the beginning, and the first stage is charged with a small current such as 0.3 CA, the second stage is charged with a large current of 4 CA, and the third stage is charged with a large current of 1 CA. However, the amount of charge at a small current is equal to the theoretical capacity.
20%, that of the second stage is 53%, that of the third stage
After initial charging and discharging at 66%, at 20℃
Charging was performed for 0.1 CA x 16 hours, and discharge was performed at 0.2 CA, and the ratio of the 0.2 CA discharge capacity to the theoretical active material capacity, that is, the utilization rate, was calculated and compared. The results are shown in Table 2 below.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

上記2表に示すように本発明の急速充電方式B
は従来の充電方式Aよりも標準放電サイクルにお
ける電池利用率がすぐれているので発明の目的を
達成する効果を有する。
As shown in Table 2 above, quick charging method B of the present invention
Since this method has a better battery utilization rate in a standard discharge cycle than the conventional charging method A, it has the effect of achieving the object of the invention.

Claims (1)

【特許請求の範囲】[Claims] 1 スポンジ状の金属多孔体よりなる基板に水酸
化ニツケル、コバルトおよびニツケルを結着剤で
混練したペーストを充填して正極とする密閉型ニ
ツケルカドミウム蓄電池の充電方式において、そ
の初回の充電を、第1段階では前記コバルトが酸
化して水酸化ニツケルとの間で固溶体を形成しう
る0.08〜0.5CAの電流で前記蓄電池の理論容量の
15〜50%充電し、続く第2段階では1.0〜4.0CA
の電流で前記蓄電池の理論容量の50〜120%充電
することを特徴とする密閉型ニツケルカドミウム
蓄電池の充電方式。
1 In a charging method for a sealed nickel-cadmium storage battery in which a substrate made of a sponge-like porous metal material is filled with a paste made by kneading nickel hydroxide, cobalt, and nickel with a binder and used as a positive electrode, the first charge is In the first stage, the theoretical capacity of the storage battery is increased at a current of 0.08 to 0.5 CA at which the cobalt is oxidized and forms a solid solution with nickel hydroxide.
15~50% charge, followed by 1.0~4.0CA in the second stage
A charging method for a sealed nickel-cadmium storage battery, characterized in that the storage battery is charged to 50 to 120% of its theoretical capacity with a current of .
JP58027360A 1983-02-21 1983-02-21 Charging method of enclosed type nickel-cadmium storage battery Granted JPS59154779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58027360A JPS59154779A (en) 1983-02-21 1983-02-21 Charging method of enclosed type nickel-cadmium storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58027360A JPS59154779A (en) 1983-02-21 1983-02-21 Charging method of enclosed type nickel-cadmium storage battery

Publications (2)

Publication Number Publication Date
JPS59154779A JPS59154779A (en) 1984-09-03
JPH0232750B2 true JPH0232750B2 (en) 1990-07-23

Family

ID=12218882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58027360A Granted JPS59154779A (en) 1983-02-21 1983-02-21 Charging method of enclosed type nickel-cadmium storage battery

Country Status (1)

Country Link
JP (1) JPS59154779A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656762B2 (en) * 1986-03-12 1994-07-27 日本電池株式会社 Nickel positive electrode plate for alkaline storage battery
DE3854727T2 (en) * 1987-03-25 1996-05-30 Matsushita Electric Ind Co Ltd Gas-tight nickel hydride battery and method of manufacture.
JP6864536B2 (en) 2017-04-25 2021-04-28 株式会社東芝 Rechargeable battery system, charging method, program, and vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52150526A (en) * 1976-06-10 1977-12-14 Matsushita Electric Ind Co Ltd Nickel electrode
JPS54102539A (en) * 1978-01-27 1979-08-13 Matsushita Electric Ind Co Ltd Nickel electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52150526A (en) * 1976-06-10 1977-12-14 Matsushita Electric Ind Co Ltd Nickel electrode
JPS54102539A (en) * 1978-01-27 1979-08-13 Matsushita Electric Ind Co Ltd Nickel electrode

Also Published As

Publication number Publication date
JPS59154779A (en) 1984-09-03

Similar Documents

Publication Publication Date Title
JPH07122271A (en) Manufacture of nickel hydroxide for nickel pole, manufacture of nickel pole using the nickel hydroxide and alkaline secondary battery incorporating the nickel pole
JPH0232750B2 (en)
JPS5983347A (en) Sealed nickel-cadmium storage battery
JPS58198856A (en) Manufacture of negative cadmium plate for alkaline storage battery
JP2610565B2 (en) Manufacturing method of sealed alkaline storage battery using paste-type nickel positive electrode
JP3550838B2 (en) Alkaline storage battery
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JPS59872A (en) Manufacture of enclosed nickel-cadmium storage battery
JP2530281B2 (en) Alkaline storage battery
JP2925764B2 (en) Manufacturing method of alkaline storage battery
JPH079806B2 (en) Zinc electrode for alkaline storage battery
JPS5933758A (en) Sealed nickel cadmium battery
JPH0724216B2 (en) Non-sintered cadmium cathode for alkaline storage batteries
JP3018879B2 (en) Chemical formation method of paste-type cadmium anode
JPH02262244A (en) Sealed alkaline battery
JP2001338677A (en) Method of manufacturing alkalistorage battery
JPH05314983A (en) Manufacture of alkaline storage battery
JPH028419B2 (en)
JPH079807B2 (en) Zinc electrode for alkaline storage battery
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JPH03744B2 (en)
JPS58137963A (en) Alkaline zinc storage battery
JPH0359959A (en) Manufacture of nickel-zinc battery
JPS63310565A (en) Manufacture of paste type cadmium negative electrode
JPH0645002A (en) Sealed alkaline storage battery