JP2925764B2 - Manufacturing method of alkaline storage battery - Google Patents

Manufacturing method of alkaline storage battery

Info

Publication number
JP2925764B2
JP2925764B2 JP3043571A JP4357191A JP2925764B2 JP 2925764 B2 JP2925764 B2 JP 2925764B2 JP 3043571 A JP3043571 A JP 3043571A JP 4357191 A JP4357191 A JP 4357191A JP 2925764 B2 JP2925764 B2 JP 2925764B2
Authority
JP
Japan
Prior art keywords
cadmium
hydroxide
electrode
battery
potassium hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3043571A
Other languages
Japanese (ja)
Other versions
JPH04280067A (en
Inventor
成規 鉄谷
浩則 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP3043571A priority Critical patent/JP2925764B2/en
Publication of JPH04280067A publication Critical patent/JPH04280067A/en
Application granted granted Critical
Publication of JP2925764B2 publication Critical patent/JP2925764B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ペースト式カドミウム
電極を備えたアルカリ蓄電池の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an alkaline storage battery provided with a cadmium paste electrode.

【0002】[0002]

【従来の技術】従来、ニッケル−カドミウム蓄電池など
のアルカリ蓄電池に用いられるカドミウム極板として
は、製造が簡単で、コストの安いペースト式の如き非焼
結式カドミウム極板が広く普及している。この種のカド
ミウム負極は、たとえば酸化カドミウム粉末を主体とす
るカドミウム活物質粉末に、糊料液や極板強度をもたせ
るための補強繊維などを水などの適当な溶媒と共に混練
して活物質ペーストを作製し、このペーストを導電芯体
に塗着、乾燥した後、アルカリ水溶液中で充放電する化
成処理を施し、適当な寸法に切断すると行った一連の工
程により製造される。
2. Description of the Related Art Conventionally, as a cadmium electrode plate used for an alkaline storage battery such as a nickel-cadmium storage battery, a non-sintering type cadmium electrode plate such as a paste type which is easy to manufacture and inexpensive has been widely used. A cadmium negative electrode of this kind is prepared by kneading a cadmium active material powder mainly composed of cadmium oxide powder, for example, with an appropriate solvent such as water and a kneading solution or a reinforcing fiber for imparting electrode plate strength to form an active material paste. The paste is prepared, applied to a conductive core, dried, subjected to a chemical conversion treatment of charging and discharging in an alkaline aqueous solution, and cut into appropriate dimensions to produce a paste.

【0003】この製造方法におけるように化成処理を施
す場合には、化成処理時に前記酸化カドミウムがアルカ
リ水溶液に接触して水酸化カドミウムに変化し、これと
同時に活物質層が硬化するが、化成処理を施さない場合
には、活物質層は柔らかい状態である。このため、化成
を施さないで、特に加圧ローラなどを用いて電極を捲回
して渦巻電極体を構成する場合、電極が巻き始めに比べ
て巻き終わり側になる程、加圧の程度が徐々に増加され
ていくことに起因して、このような未水和のカドミウム
電極は、巻始め部分から巻終わり部分に向かって電極厚
みが減少して、これに伴い電極の多孔度も減少する。
When a chemical conversion treatment is performed as in this manufacturing method, the cadmium oxide is brought into contact with an alkaline aqueous solution during the chemical conversion treatment to change into cadmium hydroxide, and at the same time, the active material layer is hardened. When not performed, the active material layer is in a soft state. For this reason, when forming a spiral electrode body by winding an electrode using a pressure roller or the like without forming, in particular, the degree of pressure gradually increases as the electrode is closer to the end of winding than to the start of winding. As a result, the electrode thickness of such an unhydrated cadmium electrode decreases from the winding start portion to the winding end portion, and accordingly, the porosity of the electrode also decreases.

【0004】したがって、電極の長さ方向に均一な多孔
度を維持して、カドミウム電極を捲回して、渦巻電極体
を構成することは極めて困難である。
Accordingly, it is extremely difficult to form a spiral electrode body by winding a cadmium electrode while maintaining uniform porosity in the length direction of the electrode.

【0005】また一方、同じ厚みのカドミウム電極を用
いた場合、捲回後の未水和のカドミウム電極の平均多孔
度と、化成を行うことにより酸化カドミウムが基本的に
消失している化成済のカドミウム電極の平均多孔度を比
較すると、未水和のカドミウム電極の平均多孔度の方が
一般に小さくなる。このため、化成を行ったカドミウム
電極を用いた電池と同等量の電解液を、未水和のカドミ
ウム電極を用いた電池に保持させようとすると未水和の
カドミウム電極は平均多孔度が小さいため、電極におけ
る電解液の保液量が少なくなり、その分正、負極間に介
在する電解液量が多くなる。
On the other hand, when a cadmium electrode having the same thickness is used, the average porosity of the unhydrated cadmium electrode after winding and the chemical conversion in which cadmium oxide has basically disappeared by chemical conversion. Comparing the average porosity of cadmium electrodes, the average porosity of unhydrated cadmium electrodes is generally smaller. For this reason, when trying to hold the same amount of electrolyte solution as a battery using a cadmium electrode that has undergone chemical formation in a battery using an unhydrated cadmium electrode, the unhydrated cadmium electrode has a small average porosity. In addition, the amount of electrolyte retained in the electrode is reduced, and the amount of electrolyte interposed between the positive electrode and the negative electrode is increased accordingly.

【0006】ところが、充電時に正極で発生する酸素ガ
スを、負極であるカドミウム電極で吸収するよう構成す
るこの種の電池では、正、負極間に介在させる電解液量
において適する値があり、この値より多量の電解液量を
介在させると、酸素ガスが負極に到達しがたくなる。そ
してこれは、特に、充放電による電池組立直後の初期サ
イクル段階での、カドミウム電極の酸素ガス吸収能力を
低下させる。
However, in this type of battery in which oxygen gas generated at the positive electrode during charging is absorbed by the cadmium electrode as the negative electrode, there is a suitable value for the amount of electrolyte interposed between the positive and negative electrodes. When a larger amount of electrolyte is interposed, it becomes difficult for oxygen gas to reach the negative electrode. This reduces the ability of the cadmium electrode to absorb oxygen gas, especially at the initial cycle stage immediately after battery assembly by charging and discharging.

【0007】したがって、酸素ガス吸収能力を一定以上
の値に設定するには、電解液の注液量を制限せざるを得
ない。そして、充放電サイクルがある程度進行し、カド
ミウム電極内に放電されがたい、未放電の不活性な金属
カドミウムが増加し、蓄積され電極の平均多孔度が大き
くなり、電極における電解液の保液量が増加すると正、
負極間に介在する電解液量が減少して、電池の放電特性
が劣化する。これを防止するためには、前述した化成を
行わねばならないが、化成を行うには大きな設備が必要
となり、多大な工程増や製造コスト増となるため、未だ
十分と言える製造方法は開発されていない。
Therefore, in order to set the oxygen gas absorption capacity to a value equal to or higher than a certain value, it is necessary to limit the amount of electrolyte injected. Then, the charge / discharge cycle proceeds to some extent, the amount of inactive, undischarged metal cadmium that is difficult to discharge in the cadmium electrode increases, is accumulated and increases the average porosity of the electrode, and the amount of electrolyte retained in the electrode. Increases as
The amount of electrolyte interposed between the negative electrodes decreases, and the discharge characteristics of the battery deteriorate. In order to prevent this, the above-described chemical conversion must be performed.However, since large-scale equipment is required to perform the chemical conversion, and the number of processes and manufacturing costs increase, a manufacturing method that can be said to be still sufficient has been developed. Absent.

【0008】そこで、特公平2−139856号公報で
は、酸化カドミウムを主体とするペースト状活物質混練
物を導電芯体に塗着して、カドミウム極板を形成した
後、前記酸化カドミウムを水酸化ナトリウム水溶液中で
水和させ、しかる後に電池内に組み込むことを提案して
いる。ここで水和させる具体的な方法として、30℃〜
60℃の水酸化ナトリウム水溶液にカドミウム極板を浸
漬することが好ましいことを述べている。
In Japanese Patent Publication No. 2-139856, a paste of a kneaded active material mainly composed of cadmium oxide is applied to a conductive core to form a cadmium electrode plate, and then the cadmium oxide is hydroxylated. It has been proposed to hydrate in a sodium aqueous solution and then incorporate it into the battery. Here, as a specific method of hydration,
It states that it is preferable to immerse the cadmium electrode plate in a 60 ° C. aqueous sodium hydroxide solution.

【0009】しかしながら、上記のように、水酸化ナト
リウム水溶液で水和処理を行った電池を組立後放置した
場合、容量の劣化が著しいという問題があった。
However, as described above, when a battery that has been hydrated with an aqueous solution of sodium hydroxide is allowed to stand after assembly, there is a problem that the capacity is significantly deteriorated.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上述の如き
問題を解決し、組立後放置による電池の初期容量の劣化
を抑制すると共に、電池特性の優れたアルカリ蓄電池を
提供しようとするものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and aims to suppress the deterioration of the initial capacity of a battery due to being left after assembly and to provide an alkaline storage battery having excellent battery characteristics. is there.

【0011】[0011]

【課題を解決するための手段】本発明のアルカリ蓄電池
の製造方法は、酸化カドミウムを主体とし、該酸化カド
ミウムの水和防止剤を含有するペースト状活物質を導電
芯体に塗着してカドミウム極板を形成する第1工程と、
上記酸化カドミウムを水酸化カリウムと水酸化ナトリウ
ムのアルカリ水溶液により水和させて水酸化カドミウム
を形成させる第2工程と、上記水和されたカドミウム極
板を電池缶内に組み込む第3工程とからなることを特徴
とするものである。
According to the method of manufacturing an alkaline storage battery of the present invention, a cadmium oxide is mainly used, and a paste active material containing a hydration inhibitor of the cadmium oxide is applied to a conductive core to form a cadmium oxide. A first step of forming an electrode plate;
A second step of hydrating the cadmium oxide with an aqueous solution of potassium hydroxide and sodium hydroxide to form cadmium hydroxide; and a third step of incorporating the hydrated cadmium electrode plate into a battery can. It is characterized by the following.

【0012】ここで、前記アルカリ水溶液中の水酸化カ
リウムと水酸化ナトリウムに対する水酸化カリウムの混
合比がモル比で60%以上80%以下とすることが好ま
しい。
Here, it is preferable that the mixing ratio of potassium hydroxide to potassium hydroxide and sodium hydroxide in the aqueous alkali solution is 60% or more and 80% or less in molar ratio.

【0013】[0013]

【作用】極板作製時、水和処理を行う際、水和処理溶液
に水酸化ナトリウム水溶液を用いるとγ型主体の水酸化
カドミウムが得られ、電極特性が優れたものになること
は周知である。
[Function] It is well-known that cadmium hydroxide mainly composed of γ-type is obtained when an aqueous solution of sodium hydroxide is used as a hydration treatment solution when hydration treatment is performed at the time of producing an electrode plate, and the electrode characteristics are improved. is there.

【0014】しかし、組立後電池を放置しておくと、γ
型水酸化カドミウムが電解液の主成分である水酸化カリ
ウムにより、β型水酸化カドミウムに変化して、しだい
に粗大化する。この粗大化したβ型水酸化カドミウムが
生じると、充電受け入れ性が悪くなり、そのために電池
容量の劣化を起こすという問題が起きる。
However, if the battery is left after assembly, γ
The cadmium hydroxide changes into β-cadmium hydroxide by potassium hydroxide which is a main component of the electrolytic solution, and gradually becomes coarse. When this coarsened β-type cadmium hydroxide is generated, the charge acceptability is deteriorated, which causes a problem that the battery capacity is deteriorated.

【0015】そこで、本発明者等は前記水和処理時のア
ルカリ水溶液の種類を種々検討して、本発明に至ったも
のである。つまり、水和処理時のアルカリ水溶液に水酸
化ナトリウムと水酸化カリウムの混合アルカリ水溶液を
用いることにより、γ型とβ型の混在した水酸化カドミ
ウムが得られることを見出した。この水和時に生成した
β型水酸化カドミウムは、放置による粗大化がほとんど
ない。したがって、電池組立後、放置してもβ型水酸化
カドミウム生成による粗大化が少なく充電受け入れ性の
低下が小さいため放置後の初期容量の低下も少ない。
Therefore, the present inventors have studied various types of the alkaline aqueous solution at the time of the hydration treatment and arrived at the present invention. That is, it has been found that cadmium hydroxide in which γ-type and β-type are mixed can be obtained by using a mixed alkaline aqueous solution of sodium hydroxide and potassium hydroxide as the alkaline aqueous solution during the hydration treatment. Β-type cadmium hydroxide generated during this hydration hardly becomes coarse due to standing. Therefore, even after the battery is assembled, even if the battery is left, the coarsening due to the formation of β-type cadmium hydroxide is small, and the decrease in charge acceptability is small.

【0016】また、生成するγ型とβ型の水酸化カドミ
ウムの割合は水酸化ナトリウムと水酸化カリウムの混合
比によって変化するものである。
The ratio of γ-type and β-type cadmium hydroxide to be formed varies depending on the mixing ratio of sodium hydroxide and potassium hydroxide.

【0017】尚、この混合アルカリ水溶液中の水酸化カ
リウムと水酸化ナトリウムに対する水酸化カリウムの混
合比がモル比で60%以上80%以下の場合、組立後の
電池容量劣化を抑制でき、かつ電池特性にも優れたもの
になる。
When the molar ratio of potassium hydroxide to potassium hydroxide in the mixed aqueous alkali solution is not less than 60% and not more than 80%, deterioration of battery capacity after assembly can be suppressed, and It also has excellent characteristics.

【0018】[0018]

【実施例】カドミウム極板(ベース極板)の作製 主活物質として酸化カドミウム粉末900gと、予備充
電活物質としての金属カドミウム粉末200gと、結着
剤としてのメチルセルロース6gと、補強材として長さ
約1.5mm、太さ1〜2デニールの6−ナイロン繊維
10gと、前記酸化カドミウムの混練時における水和を
抑制する添加剤としての5%リン酸ナトリウム水溶液3
00ccとを添加、混練して、活物質ペーストを得る。
EXAMPLES Preparation of Cadmium Electrode (Base Electrode) 900 g of cadmium oxide powder as a main active material, 200 g of metal cadmium powder as a precharge active material, 6 g of methylcellulose as a binder, and a length as a reinforcing material 10 g of 6-nylon fiber having a thickness of about 1.5 mm and a thickness of 1 to 2 denier, and a 5% aqueous sodium phosphate solution 3 as an additive for suppressing hydration during kneading of the cadmium oxide 3
And then kneading to obtain an active material paste.

【0019】この活物質ペーストをニッケルメッキを施
したパンチングメタルよりなる導電芯体の両面に塗着し
て、乾燥を行い、所定寸法に切断してベース極板を得
る。
This active material paste is applied to both surfaces of a conductive core made of punched metal plated with nickel, dried, and cut to a predetermined size to obtain a base electrode plate.

【0020】このベース極板を用い、水和処理温度50
℃で種々の割合の水酸化カリウム水溶液と水酸化ナトリ
ウム水溶液の混合アルカリ水溶液(水酸化カリウムの混
合アルカリ水溶液に対する混合比:0,20,40,6
0,80,100%)a,b,c,d,e,fに浸漬す
ることにより、水和処理を行い、カドミウム電極a,
b,c,d,e,fを得た。
Using this base electrode, a hydration temperature of 50
Mixed aqueous solution of potassium hydroxide aqueous solution and sodium hydroxide aqueous solution at various ratios (mixing ratio of potassium hydroxide to mixed aqueous alkali solution: 0, 20, 40, 6).
(0,80,100%) by immersion in a, b, c, d, e, f, hydration treatment,
b, c, d, e, and f were obtained.

【0021】これらのカドミウム電極a,b,c,d,
e,fを用いて、公知の焼結式ニッケル正極と組合わ
せ、セパレータを介して捲回して渦巻電極体を構成し
た。この渦巻電極体を電池缶に挿入して、電解液として
水酸化カリウム水溶液を注液し、密閉して、それぞれ電
池A,B,C,D,E,Fを得た。
These cadmium electrodes a, b, c, d,
e and f were combined with a known sintered nickel positive electrode and wound through a separator to form a spiral electrode body. This spiral electrode body was inserted into a battery can, a potassium hydroxide aqueous solution was injected as an electrolytic solution, and sealed to obtain batteries A, B, C, D, E, and F, respectively.

【0022】(実験1)混合アルカリ水溶液a,d,f
で水和処理を行い、水和処理温度を変化させ、水和完了
時間との関係を図1に示す。水和完了時間は、水酸化カ
ドミウムが85%以上生成するまでの時間とする。水酸
化カドミウムが85%以上生成したかどうかを測定する
には、水和前後のカドミウム電極の重量変化を測定す
る。つまり、この重量変化量と、酸化カドミウムが全て
水酸化カドミウムに変化したときの理論重量変化量との
比率を85%以上とする。図1より、どの混合アルカリ
水溶液でも水和処理温度を30℃以上にすると、水和反
応の進行が速くなり、水和完了時間が短くなることが判
る。
(Experiment 1) Mixed alkaline aqueous solutions a, d, f
FIG. 1 shows the relationship between the hydration treatment and the hydration completion time by changing the hydration treatment temperature. The hydration completion time is a time required for producing cadmium hydroxide by 85% or more. To determine whether 85% or more of cadmium hydroxide is generated, change in weight of the cadmium electrode before and after hydration is measured. That is, the ratio between the weight change amount and the theoretical weight change amount when all the cadmium oxide is changed to cadmium hydroxide is set to 85% or more. From FIG. 1, it can be seen that when the hydration treatment temperature is 30 ° C. or higher for any of the mixed aqueous alkali solutions, the progress of the hydration reaction is accelerated and the hydration completion time is shortened.

【0023】(実験2)前記カドミウム電極a,b,
c,d,e,fを用い、水酸化カドミウムの結晶構造を
X線回折の強度比で調べた。図2に、この結果を示す。
図2の横軸は、混合アルカリ水溶液中の水酸化カリウム
の混合比(モル比)であり、縦軸は、γ型水酸化カドミ
ウムのβ型水酸化カドミウムに対するX線回折強度比、
即ち生成割合を示している。図2より、水酸化カリウム
の混合比を増していくに従って、β型水酸化カドミウム
の生成割合が増加していることが判る。
(Experiment 2) The cadmium electrodes a, b,
Using c, d, e, and f, the crystal structure of cadmium hydroxide was examined by X-ray diffraction intensity ratio. FIG. 2 shows this result.
The horizontal axis of FIG. 2 is the mixing ratio (molar ratio) of potassium hydroxide in the mixed alkaline aqueous solution, and the vertical axis is the X-ray diffraction intensity ratio of γ-cadmium hydroxide to β-cadmium hydroxide;
That is, it shows the generation ratio. From FIG. 2, it can be seen that the production ratio of β-type cadmium hydroxide increases as the mixing ratio of potassium hydroxide increases.

【0024】したがって、水酸化カリウムによって水和
時のβ型水酸化カドミウムの生成が助長されていること
が判る。
Therefore, it is understood that the formation of β-type cadmium hydroxide during hydration is promoted by potassium hydroxide.

【0025】(実験3)前記電池A,B,C,D,E,
Fを用い、電池組立後、1時間放置した後の初期容量
と、電池組立後、40℃の恒温槽に1週間放置した後の
初期容量の比較を行った。図3に、この結果を示す。図
3の縦軸は、電池組立1時間後の初期容量に対する40
℃の恒温槽に1週間放置後の初期容量の容量比を示した
ものである。図3より、水酸化カリウムの混合比(モル
比)が60%以上になると放置後の容量劣化が抑制でき
る。
(Experiment 3) The batteries A, B, C, D, E,
Using F, a comparison was made between the initial capacity after leaving the battery for one hour after assembling and the initial capacity after leaving the battery in a constant temperature bath at 40 ° C. for one week. FIG. 3 shows the result. The vertical axis in FIG. 3 represents 40% of the initial capacity one hour after battery assembly.
It shows the volume ratio of the initial capacity after one week standing in a constant temperature bath at ℃. As can be seen from FIG. 3, when the mixing ratio (molar ratio) of potassium hydroxide is 60% or more, capacity degradation after standing can be suppressed.

【0026】(実験4)前記電池A,B,C,D,E,
Fを用い、この電池を連続充電を行った時のガス発生量
を調べた。測定条件は、上記電池を0℃雰囲気下で0.
2Cの電流によって1週間連続充電するものである。図
4に、この結果を示す。図4より、水酸化カリウムの混
合比(モル比)が80%以下になると発生ガス量が抑制
できる。
(Experiment 4) The batteries A, B, C, D, E,
Using F, the amount of gas generated when the battery was continuously charged was examined. The measurement conditions were as follows.
The battery is charged continuously for one week by the current of 2C. FIG. 4 shows the result. As shown in FIG. 4, when the mixing ratio (molar ratio) of potassium hydroxide is 80% or less, the amount of generated gas can be suppressed.

【0027】以上実験1〜4の結果より、水和処理時の
混合アルカリ水溶液の水酸化カリウムの混合比(モル
比)が60%以上80%以下が好ましく、さらに、水和
処理時の温度は30℃以上が好ましい。
From the results of Experiments 1 to 4, the mixing ratio (molar ratio) of potassium hydroxide in the mixed alkaline aqueous solution during the hydration treatment is preferably 60% or more and 80% or less. 30 ° C. or higher is preferred.

【0028】[0028]

【発明の効果】本発明の製造方法によれば、水和処理時
のアルカリ溶液を水酸化カリウムと水酸化ナトリウムの
混合水溶液にすることによって、電池作製後の放置によ
るβ型水酸化カドミウムの生成を抑制でき、初期容量の
劣化を抑えることができるので電池特性の優れたアルカ
リ蓄電池を提供することができ、その工業的価値は極め
て大きい。
According to the production method of the present invention, the alkaline solution at the time of the hydration treatment is made into a mixed aqueous solution of potassium hydroxide and sodium hydroxide, so that the formation of β-type cadmium hydroxide by standing after the battery is produced. And the deterioration of the initial capacity can be suppressed, so that an alkaline storage battery with excellent battery characteristics can be provided, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】水和処理温度と水和完了時間の関係を示す図で
ある。
FIG. 1 is a diagram showing the relationship between hydration treatment temperature and hydration completion time.

【図2】混合アルカリ水溶液中の水酸化カリウムの混合
比(モル比)とX線回折強度比の関係を示す図である。
FIG. 2 is a view showing a relationship between a mixing ratio (molar ratio) of potassium hydroxide in a mixed alkaline aqueous solution and an X-ray diffraction intensity ratio.

【図3】混合アルカリ水溶液中の水酸化カリウムの混合
比(モル比)と電池組立後の初期容量比の関係を示す図
である。
FIG. 3 is a diagram showing a relationship between a mixing ratio (molar ratio) of potassium hydroxide in a mixed alkaline aqueous solution and an initial capacity ratio after battery assembly.

【図4】混合アルカリ水溶液中の水酸化カリウムの混合
比(モル比)と連続充電時の発生ガス量の関係を示す図
である。
FIG. 4 is a diagram showing the relationship between the mixing ratio (molar ratio) of potassium hydroxide in a mixed alkaline aqueous solution and the amount of gas generated during continuous charging.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01M 4/24 - 4/26 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 6 , DB name) H01M 4/24-4/26

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化カドミウムを主体とし、該酸化カド
ミウムの水和防止剤を含有するペースト状活物質を導電
芯体に塗着してカドミウム極板を形成する第1工程と、
上記酸化カドミウムを水酸化カリウムと水酸化ナトリウ
ムの混合アルカリ水溶液により水和させて水酸化カドミ
ウムを形成させる第2工程と、上記水和されたカドミウ
ム極板を電池缶内に組み込む第3工程とからなることを
特徴とするアルカリ蓄電池の製造方法。
1. A first step of forming a cadmium electrode plate by applying a paste-like active material mainly composed of cadmium oxide and containing a cadmium oxide hydration inhibitor to a conductive core,
A second step in which the cadmium oxide is hydrated with a mixed alkali aqueous solution of potassium hydroxide and sodium hydroxide to form cadmium hydroxide, and a third step in which the hydrated cadmium electrode plate is incorporated in a battery can. A method for producing an alkaline storage battery.
【請求項2】 前記混合アルカリ水溶液中の混合アルカ
リ水溶液に対する水酸化カリウムの混合比がモル比で6
0%以上80%以下であることを特徴とする請求項1記
載のアルカリ蓄電池の製造方法。
2. The mixing ratio of potassium hydroxide to the mixed aqueous alkali solution in the mixed aqueous alkali solution is 6 in molar ratio.
The method for producing an alkaline storage battery according to claim 1, wherein the content is 0% or more and 80% or less.
JP3043571A 1991-03-08 1991-03-08 Manufacturing method of alkaline storage battery Expired - Fee Related JP2925764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3043571A JP2925764B2 (en) 1991-03-08 1991-03-08 Manufacturing method of alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3043571A JP2925764B2 (en) 1991-03-08 1991-03-08 Manufacturing method of alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH04280067A JPH04280067A (en) 1992-10-06
JP2925764B2 true JP2925764B2 (en) 1999-07-28

Family

ID=12667438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3043571A Expired - Fee Related JP2925764B2 (en) 1991-03-08 1991-03-08 Manufacturing method of alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2925764B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080377A (en) * 2008-09-29 2010-04-08 Sanyo Electric Co Ltd Manufacturing method of alkaline storage battery cadmium negative electrode

Also Published As

Publication number Publication date
JPH04280067A (en) 1992-10-06

Similar Documents

Publication Publication Date Title
WO1989006865A1 (en) Alkaline secondary battery and process for its production
JPWO2002071527A1 (en) Manufacturing method of nickel metal hydride battery
JP2925764B2 (en) Manufacturing method of alkaline storage battery
US4880435A (en) Alkaline storage cell and manufacturing method therefor
JP2627325B2 (en) Manufacturing method of alkaline storage battery
JP2765028B2 (en) Sealed alkaline battery
JP2591988B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3284860B2 (en) Electrode for lead-acid battery and its manufacturing method
JPH0232750B2 (en)
JP2000348715A (en) Manufacture of lead-acid battery
JP2755690B2 (en) Method for producing cadmium negative electrode plate for alkaline storage battery
JP3498727B2 (en) Method for producing nickel hydroxide positive plate for alkaline battery, nickel hydroxide positive plate for alkaline battery, and alkaline battery
JP2797440B2 (en) Alkaline secondary battery
JP2577954B2 (en) Cadmium negative electrode plate and alkaline secondary battery
JP2730137B2 (en) Alkaline secondary battery and charging method thereof
JP3225608B2 (en) Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same
JPS617575A (en) Manufacture of sealed alkaline storage battery utilizing hydrogen absorption negative electrode
JP2994850B2 (en) Paste cadmium negative electrode for alkaline storage batteries
JP2591982B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3018879B2 (en) Chemical formation method of paste-type cadmium anode
JPS63126163A (en) Alkaline storage battery
JP2591986B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH0410181B2 (en)
JP2786889B2 (en) Method for producing cadmium negative electrode plate for alkaline storage battery
JP2966549B2 (en) Method for producing non-sintered cadmium negative electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees