JPH05190175A - Surface treatment of hydrogen storage alloy for alkaline secondary battery - Google Patents

Surface treatment of hydrogen storage alloy for alkaline secondary battery

Info

Publication number
JPH05190175A
JPH05190175A JP4006238A JP623892A JPH05190175A JP H05190175 A JPH05190175 A JP H05190175A JP 4006238 A JP4006238 A JP 4006238A JP 623892 A JP623892 A JP 623892A JP H05190175 A JPH05190175 A JP H05190175A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
surface treatment
alkaline secondary
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4006238A
Other languages
Japanese (ja)
Inventor
Seiji Kamiharashi
征治 上原子
Koji Yuasa
浩次 湯浅
Osamu Takahashi
収 高橋
Hideo Kaiya
英男 海谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4006238A priority Critical patent/JPH05190175A/en
Publication of JPH05190175A publication Critical patent/JPH05190175A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PURPOSE:To obtain the hydrogen storage alloy powder which possesses the superior electric charge/discharge characteristic and cycle life characteristic without reducing the productivity by resolviing the troubles of the initial activation and the reduction of electric conductivity which are caused by the precipitation of the excessive oxides to the surface of the alloy. CONSTITUTION:The hydrogen storage alloy powder and an electrode which possesses the superior alkali resistance, initial activation performance, and cycle life characteristic are obtained through the surface treatment method which is constituted of the first step in which a hydrogen storage alloy is prepared and pulverized, second step in which the pulverized hydrogen storage alloy is treated with the mixed aqueous solution of the hydroxides of alkali metals and oxoacid, and the third step in which the hydrogen storage alloy after the alkali treatment is washed by water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルカリ二次電池の負
極に用いられる水素吸蔵合金の表面処理法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface treatment method for a hydrogen storage alloy used for a negative electrode of an alkaline secondary battery.

【0002】[0002]

【従来の技術】近年、負極にカドミウムを用いるニッケ
ル−カドミウム二次電池に変わる新しいアルカリ二次電
池として、負極に水素吸蔵合金を用いたニッケル−水素
蓄電池の研究開発が盛んに行なわれている。
2. Description of the Related Art In recent years, as a new alkaline secondary battery replacing a nickel-cadmium secondary battery using cadmium as a negative electrode, a nickel-hydrogen storage battery using a hydrogen storage alloy as a negative electrode has been actively researched and developed.

【0003】このニッケル−水素蓄電池は負極に用いる
水素吸蔵合金の種類、組成を選択することにより長寿命
且つ高エネルギー密度化が可能である。
This nickel-hydrogen storage battery can have a long life and high energy density by selecting the type and composition of the hydrogen storage alloy used for the negative electrode.

【0004】ところが、上記水素吸蔵合金は合金の粉砕
工程や電極の製造工程において表面酸化を受けやすく、
表面に緻密な酸化被膜が生成される。
However, the above hydrogen storage alloy is susceptible to surface oxidation in the alloy crushing process and the electrode manufacturing process,
A dense oxide film is formed on the surface.

【0005】そして、このような緻密な酸化被膜が形成
された水素吸蔵合金粉体を電極として用いると、合金の
初期活性化が阻害されたり、電極の電気伝導性が低下し
て、急速充放電時の充放電効率が低下する問題がある。
When the hydrogen storage alloy powder having such a dense oxide film is used as an electrode, the initial activation of the alloy is hindered or the electric conductivity of the electrode is lowered, resulting in rapid charge / discharge. There is a problem that the charging / discharging efficiency at that time decreases.

【0006】また水素吸蔵合金はアルカリ電解液中で酸
化されやすく、しかも過充電時に正極から発生する酸素
ガスによって酸化が促進され、表面に水酸化物を生成す
るため負極である水素吸蔵電極の充電効率が低下し、密
閉電池中で水素ガスが多量に発生して電池内圧が上昇し
漏液や電池の内部抵抗の増大により、充放電サイクル寿
命を短いものにするという問題がある。
Further, the hydrogen storage alloy is easily oxidized in an alkaline electrolyte, and further, the oxidation is promoted by the oxygen gas generated from the positive electrode during overcharge, and hydroxide is generated on the surface, so that the hydrogen storage electrode as the negative electrode is charged. There is a problem that efficiency decreases, a large amount of hydrogen gas is generated in the sealed battery, the internal pressure of the battery rises, liquid leakage and the internal resistance of the battery increase, and the charge / discharge cycle life is shortened.

【0007】そこで、合金の粉砕工程や電極の製造工程
における酸化を抑制する方法として、(イ)上記の両工
程を不活性雰囲気下で行なう方法、また電池内における
耐酸化性および耐アルカリ性の向上を図る方法として、
(ロ)粉砕後の水素吸蔵合金をアルカリ水溶液で処理し
て、合金表面の溶解しやすい金属を予め除去しておく方
法(特開昭61−285658)がそれぞれ提案されて
いる。
Therefore, as a method for suppressing the oxidation in the alloy crushing step and the electrode manufacturing step, (a) a method of carrying out both of the above steps in an inert atmosphere, and improvement of oxidation resistance and alkali resistance in the battery As a method of
(B) A method has been proposed in which the hydrogen-absorbing alloy after pulverization is treated with an alkaline aqueous solution to remove the easily-dissolved metal on the alloy surface in advance (JP-A-61-285658).

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記
(イ)の方法では工程が煩雑化して生産性が低下するた
め、電池の製造コストが高騰する。また上記(ロ)の方
法ではアルカリ水溶液浸漬処理によって合金中の耐アル
カリ性の金属がリッチな表面層が形成されるが、一方ア
ルカリ水溶液に溶解するが水酸化物の溶解度が小さい組
成の水酸化物が必要以上に合金表面に残存するため、合
金の初期活性化や電極の電気伝導性を十分に向上させる
ことが出来ないという課題を有していた。
However, in the above method (a), the process is complicated and the productivity is lowered, so that the manufacturing cost of the battery is increased. Further, in the above method (b), a surface layer rich in alkali-resistant metal in the alloy is formed by immersion treatment in an alkaline aqueous solution, while a hydroxide having a composition that dissolves in an alkaline aqueous solution but has a low hydroxide solubility However, there is a problem in that the initial activation of the alloy and the electrical conductivity of the electrode cannot be sufficiently improved because they remain on the surface of the alloy more than necessary.

【0009】本発明はかかる現状に鑑みてなされたもの
であり、生産性を低下させることなく合金の初期活性化
や電極の電気伝導性の向上を十分に図るとともに、耐ア
ルカリ性を付与出来るアルカリ二次電池用水素吸蔵合金
の表面処理法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is possible to sufficiently improve the initial activation of the alloy and the electric conductivity of the electrode without lowering the productivity, and at the same time, to provide alkali resistance. An object of the present invention is to provide a surface treatment method for a hydrogen storage alloy for secondary batteries.

【0010】[0010]

【課題を解決するための手段】本発明は上記目的を達成
するために、水素吸蔵合金を作製した後、これを粉砕す
る第一ステップと、上記粉砕された水素吸蔵合金をアル
カリ金属の水酸化物とオキソ酸の混合水溶液で処理する
第二ステップと、上記処理後の水素吸蔵合金を水洗する
第三ステップとを有することを特徴とする。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention prepares a hydrogen storage alloy and then pulverizes the hydrogen storage alloy. It is characterized by having a second step of treating with a mixed aqueous solution of a substance and an oxo acid, and a third step of washing the hydrogen storage alloy after the above treatment with water.

【0011】また、本発明では、上記のアルカリ金属の
水酸化物が、水酸化カリウム、水酸化ナトリウムおよび
水酸化リチウムのうち少なくとも一種を含むことを特徴
とする。
The present invention is also characterized in that the alkali metal hydroxide contains at least one of potassium hydroxide, sodium hydroxide and lithium hydroxide.

【0012】さらに、上記のオキソ酸が、ヒドロキノ
ン、フロログルシンないしビクリン酸のように水酸基が
互いに離れた炭素に結合した構造を有するものを除いた
うちの少なくとも一種を含むことを特徴とする。
Further, the above-mentioned oxo acid is characterized by containing at least one of hydroquinone, phloroglucin and vitric acid, except for those having a structure in which hydroxyl groups are bonded to carbons separated from each other.

【0013】一方、上記のアルカリ金属の水酸化物の水
溶液濃度が、比重1.10〜1.50の範囲であること
を特徴とする。
On the other hand, the concentration of the aqueous solution of the alkali metal hydroxide is characterized by having a specific gravity of 1.10 to 1.50.

【0014】また、上記のオキソ酸の添加濃度が、0.
005〜50%の範囲であることを特徴とする。
Further, the addition concentration of the oxo acid is 0.
It is characterized by being in the range of 005 to 50%.

【0015】[0015]

【作用】水素吸蔵合金の一般的な方法として適用されて
いるアルカリ水溶液で処理すれば、水素吸蔵合金粉体の
成分の中でアルカリ水溶液に対する溶解度の大きい成分
が溶解し、溶解度の小さい成分は金属状態で残り、耐ア
ルカリ性に優れた表面状態を形成する。
[Function] When treated with an alkaline aqueous solution which is applied as a general method for hydrogen storage alloys, a component having a high solubility in an alkaline aqueous solution is dissolved in the components of the hydrogen storage alloy powder, and a component having a low solubility is a metal. It remains in the state and forms a surface state having excellent alkali resistance.

【0016】しかし、水酸化物として溶解度の小さい成
分を含む水素吸蔵合金の場合は水酸化物としてその多く
は合金粉体の表面に析出し、水素吸蔵合金粉体の導電性
および初期活性化に悪影響をおよぼすため適用出来な
い。
However, in the case of a hydrogen storage alloy containing a component having a low solubility as a hydroxide, most of it is deposited as a hydroxide on the surface of the alloy powder, which may lead to conductivity and initial activation of the hydrogen storage alloy powder. It cannot be applied because it has an adverse effect.

【0017】本発明のアルカリ金属の水酸化物とオキソ
酸の混合水溶液で処理すれば水酸化物の安定な成分もオ
キソ酸とキレート化合物を生成して溶解除去されるため
耐アルカリ性を損なうことなく導電性及び初期活性化に
優れた表面被膜を得ることが出来る。
When treated with a mixed aqueous solution of an alkali metal hydroxide and an oxo acid of the present invention, a stable component of a hydroxide is also dissolved and removed by forming an oxo acid and a chelate compound, so that alkali resistance is not impaired. A surface coating excellent in conductivity and initial activation can be obtained.

【0018】[0018]

【実施例】【Example】

(実施例1)先ず、市販のZr、Mn、V、Coおよび
Niを用い、元素比でZr:Mn:V:Co:Niが
1.0:0.6:0.2:0.1:1.2となるように
秤量して混合した。この混合物を真空高周波炉にて溶解
し、ZrMn0.6 0.2 Co0. 1 Ni1.2 で表される合
金を作製した。
(Example 1) First, commercially available Zr, Mn, V, Co and Ni were used, and Zr: Mn: V: Co: Ni was 1.0: 0.6: 0.2: 0.1: in terms of element ratio. Weighed and mixed to 1.2. The mixture was melted in a vacuum high-frequency furnace to produce an alloy represented by ZrMn 0.6 V 0.2 Co 0. 1 Ni 1.2.

【0019】次いで、この合金を機械的に100μm
(平均20μm)以下に粉砕した。この合金粉体1kgに
対して比重1.30のKOH水溶液11を添加し(液
温:80℃)中で撹拌(撹拌速度:300rpm )しなが
ら60分間処理する。
Then, this alloy was mechanically processed to 100 μm.
It was crushed to (average 20 μm) or less. A KOH aqueous solution 11 having a specific gravity of 1.30 is added to 1 kg of the alloy powder (liquid temperature: 80 ° C.) and treated for 60 minutes while stirring (stirring speed: 300 rpm).

【0020】しかる後、上記処理が施された合金粉体に
増粘剤としてカルボキシメチルセルロース(以下、CM
C)、結着剤としてスチレンブタジエンラバー(以下、
SBR)のエマルジョンおよび水を添加した後、これら
を混練してペーストを作製した。次に、このペーストを
パンチングメタル集電体の両面に塗着して水素吸蔵合金
負極(以下、水素極)を作製した後、この水素極と公知
の焼結式ニッケル正極(容量:1000mAh )とを不織
布から成るセパレータを介して巻取って電極体を作製し
た。次いで、この電極体を電池缶内に挿入した後、電池
缶内に電解液(30wt%のKOH水溶液)を注入する。
最後に安全弁付きの封口板で封口を行って密閉型ニッケ
ル−水素蓄電池を作製した。
Then, carboxymethyl cellulose (hereinafter referred to as CM) as a thickener is added to the alloy powder treated as described above.
C), styrene-butadiene rubber as a binder (hereinafter,
After adding the emulsion of SBR) and water, these were kneaded to prepare a paste. Next, this paste is applied to both sides of a punching metal current collector to prepare a hydrogen storage alloy negative electrode (hereinafter referred to as a hydrogen electrode), and the hydrogen electrode and a known sintered nickel positive electrode (capacity: 1000 mAh). Was wound up through a separator made of non-woven fabric to prepare an electrode body. Next, after inserting this electrode body into a battery can, an electrolytic solution (30 wt% KOH aqueous solution) is injected into the battery can.
Finally, a sealing plate with a safety valve was used for sealing to produce a sealed nickel-hydrogen storage battery.

【0021】この様にして作製した電池を、以下(A)
電池と称する。 (実施例2) (実施例1)と同条件で作製した合金粉体1kgに対し
て、比重1.30のKOH水溶液を加える。これにさら
にリンゴ酸50gを添加し、液温80℃で撹拌(撹拌速
度:300rpm )しながら60分間処理する。
The battery thus produced is described below in (A)
It is called a battery. (Example 2) An aqueous KOH solution having a specific gravity of 1.30 is added to 1 kg of the alloy powder produced under the same conditions as in Example 1. Further, 50 g of malic acid was added thereto, and the mixture was treated at a liquid temperature of 80 ° C. for 60 minutes while stirring (stirring speed: 300 rpm).

【0022】この後、上澄み液を除去し、ついで温水で
十分洗浄し乾燥する。しかる後に(実施例2)と同様に
して電池を作製した。
After that, the supernatant liquid is removed, followed by thorough washing with warm water and drying. After that, a battery was produced in the same manner as in (Example 2).

【0023】このようにして作製した電池を、以下
(B)電池と称する。 (実験) (実施例1)の電池(A)および(実施例2)の電池
(B)を各々1.0Aの電流で充放電した。充電時間は
放電時間の150%とし、放電終止電圧は1.0Vとし
た。
The battery thus manufactured is hereinafter referred to as (B) battery. (Experiment) The battery (A) of (Example 1) and the battery (B) of (Example 2) were each charged and discharged at a current of 1.0 A. The charging time was 150% of the discharging time, and the final discharge voltage was 1.0V.

【0024】この充放電サイクル試験における電池の放
電容量の変動を図1に、放電電圧の測定結果の1例を図
2に示す。
FIG. 1 shows the fluctuation of the discharge capacity of the battery in this charge / discharge cycle test, and FIG. 2 shows an example of the measurement result of the discharge voltage.

【0025】また充放電1サイクル実施後の電池を用い
て、放電電流と容量比率の関係を調べた。充電条件は1
A−150%、放電終止電圧は1.0Vとした。
The relationship between the discharge current and the capacity ratio was examined using the battery after one cycle of charge / discharge. Charge condition is 1
A-150% and the final discharge voltage were 1.0V.

【0026】その結果を図3に示す。図1、図2および
図3の結果より、電池(A)に比べ電池(B)の放電容
量は初期から大きく、容量およびサイクル寿命も優れ、
且つ放電電圧が高く高率放電特性に優れた結果を示す。
The results are shown in FIG. From the results of FIGS. 1, 2 and 3, the discharge capacity of the battery (B) is larger than that of the battery (A) from the beginning, and the capacity and the cycle life are excellent.
In addition, the discharge voltage is high and the high rate discharge characteristics are excellent.

【0027】これはアルカリ金属の水酸化物とオキソ酸
の混合水溶液で処理することによって合金粉体表面にZ
rおよびMnなどの水酸化物の析出が抑制されることに
よって合金の導電性および初期活性特性が改善されたこ
とを示している。
This is treated with a mixed aqueous solution of an alkali metal hydroxide and an oxo acid to give Z on the surface of the alloy powder.
It shows that the conductivity and initial activation properties of the alloy were improved by suppressing the precipitation of hydroxides such as r and Mn.

【0028】これらの結果は乳酸、グルコースなどのオ
キソ酸でも同様な効果を示した。
These results showed similar effects with oxo acids such as lactic acid and glucose.

【0029】[0029]

【発明の効果】以上説明した様に本発明の方法では水素
吸蔵合金粉体をアルカリ金属の水酸化物とオキソ酸の混
合水溶液で処理しているので、水素吸蔵合金粉体の耐ア
ルカリ性が損なわれることがなく、表面に生成する水酸
化物の量が抑制される。
As described above, in the method of the present invention, the hydrogen storage alloy powder is treated with the mixed aqueous solution of the alkali metal hydroxide and the oxo acid, so that the alkali resistance of the hydrogen storage alloy powder is impaired. And the amount of hydroxide formed on the surface is suppressed.

【0030】したがって、このような粉体で電極を構成
すれば、初期活性化を十分に図ることが出来ると共に、
粒子間の接触抵抗が低減され且つ電極の電気伝導性が向
上するので、急速充放電効率を向上させることが出来
る。
Therefore, if the electrode is made of such powder, the initial activation can be sufficiently achieved, and
Since the contact resistance between particles is reduced and the electrical conductivity of the electrode is improved, the rapid charge / discharge efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の処理を施した水素吸蔵合金粉体を用い
た電池(B)とアルカリ処理を施した電池(A)とにお
ける、雰囲気温度40℃、充放電レイト1C−1Cおけ
るサイクル数と電池容量の関係を示すグラフである。
FIG. 1 is the number of cycles at an ambient temperature of 40 ° C. and a charge / discharge rate of 1C-1C in a battery (B) using a hydrogen storage alloy powder subjected to the treatment of the present invention and a battery (A) subjected to an alkali treatment. It is a graph which shows the relationship between a battery capacity.

【図2】本発明の処理を施した水素吸蔵合金粉体を用い
た電池(B)とアルカリ処理を施した電池(A)とにお
ける、雰囲気温度20℃、充放電レイト1C−1Cおけ
る放電電圧の1例を示したグラフである。
FIG. 2 is a discharge voltage at an ambient temperature of 20 ° C. and a charge / discharge rate of 1C-1C in a battery (B) using the hydrogen storage alloy powder treated according to the present invention and a battery (A) treated with an alkali. 2 is a graph showing an example of FIG.

【図3】本発明の処理を施した水素吸蔵合金粉体を用い
た電池(B)とアルカリ処理を施した電池(A)とにお
ける、雰囲気温度20℃における放電容量比率の1例を
示したグラフである。
FIG. 3 shows an example of a discharge capacity ratio at an ambient temperature of 20 ° C. in a battery (B) using a hydrogen storage alloy powder treated according to the present invention and a battery (A) treated with an alkali. It is a graph.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 海谷 英男 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideo Kaitani 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金を作製した後、これを粉砕
する第一ステップと、粉砕された水素吸蔵合金をアルカ
リ金属の水酸化物とオキソ酸の混合水溶液で処理する第
二ステップと、処理後の水素吸蔵合金を水洗する第三ス
テップとを有することを特徴とするアルカリ二次電池用
水素吸蔵合金の表面処理法。
1. A first step of producing a hydrogen storage alloy, pulverizing the hydrogen storage alloy, and a second step of treating the pulverized hydrogen storage alloy with a mixed aqueous solution of alkali metal hydroxide and oxo acid. And a third step of washing the hydrogen storage alloy afterwards with water, the surface treatment method of the hydrogen storage alloy for alkaline secondary batteries.
【請求項2】 アルカリ金属の水酸化物が水酸化カリウ
ム、水酸化ナトリウムおよび水酸化リチウムのうち少な
くとも一種を含むことを特徴とする請求項1に記載のア
ルカリ二次電池用水素吸蔵合金の表面処理法。
2. The surface of the hydrogen storage alloy for an alkaline secondary battery according to claim 1, wherein the alkali metal hydroxide contains at least one of potassium hydroxide, sodium hydroxide and lithium hydroxide. Processing method.
【請求項3】 オキソ酸がヒドロキノン、フロログルシ
ンないしビクリン酸のように水酸基が互いに離れた炭素
に結合した構造を有するものを除いたうちの少なくとも
一種を含むことを特徴とする請求項1または2に記載の
アルカリ二次電池用水素吸蔵合金の表面処理法。
3. The oxo acid comprises at least one of hydroquinone, phloroglucin and viric acid, except for those having a structure in which hydroxyl groups are bonded to carbons separated from each other. A method for treating a surface of a hydrogen storage alloy for an alkaline secondary battery as described above.
【請求項4】 アルカリ金属の水酸化物の水溶液濃度が
比重1.10〜1.50の範囲であることを特徴とする
請求項1ないし3のいずれかの項に記載のアルカリ二次
電池用水素吸蔵合金の表面処理法。
4. The alkaline secondary battery according to claim 1, wherein the concentration of the aqueous solution of the alkali metal hydroxide is in the range of specific gravity of 1.10 to 1.50. Surface treatment method for hydrogen storage alloy.
【請求項5】 オキソ酸の添加濃度が0.005〜50
%の範囲であることを特徴とする請求項1ないし4のい
ずれかの項に記載のアルカリ二次電池用水素吸蔵合金の
表面処理法。
5. The addition concentration of oxo acid is 0.005 to 50.
The surface treatment method for a hydrogen storage alloy for alkaline secondary batteries according to any one of claims 1 to 4, wherein the surface treatment method is in the range of%.
JP4006238A 1992-01-17 1992-01-17 Surface treatment of hydrogen storage alloy for alkaline secondary battery Pending JPH05190175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4006238A JPH05190175A (en) 1992-01-17 1992-01-17 Surface treatment of hydrogen storage alloy for alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4006238A JPH05190175A (en) 1992-01-17 1992-01-17 Surface treatment of hydrogen storage alloy for alkaline secondary battery

Publications (1)

Publication Number Publication Date
JPH05190175A true JPH05190175A (en) 1993-07-30

Family

ID=11632933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4006238A Pending JPH05190175A (en) 1992-01-17 1992-01-17 Surface treatment of hydrogen storage alloy for alkaline secondary battery

Country Status (1)

Country Link
JP (1) JPH05190175A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0845822A1 (en) * 1996-11-28 1998-06-03 SANYO ELECTRIC Co., Ltd. Hydrogen absorbing alloy electrode, method of fabricating hydrogen absorbing alloy electrode, and alkali battery
EP0872903A1 (en) * 1997-01-27 1998-10-21 Shin-Etsu Chemical Co., Ltd. Method for making hydrogen storage alloy powder and electrode comprising the alloy powder
CN102388155A (en) * 2009-02-09 2012-03-21 纳米X有限公司 Method for producing alkali and alkaline earth alloys and use of the alkali and alkaline earth alloys

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0845822A1 (en) * 1996-11-28 1998-06-03 SANYO ELECTRIC Co., Ltd. Hydrogen absorbing alloy electrode, method of fabricating hydrogen absorbing alloy electrode, and alkali battery
EP0872903A1 (en) * 1997-01-27 1998-10-21 Shin-Etsu Chemical Co., Ltd. Method for making hydrogen storage alloy powder and electrode comprising the alloy powder
US6277519B1 (en) 1997-01-27 2001-08-21 Shin-Etsu Chemical Co., Ltd. Method for making hydrogen storage alloy powder and electrode comprising the alloy powder
CN102388155A (en) * 2009-02-09 2012-03-21 纳米X有限公司 Method for producing alkali and alkaline earth alloys and use of the alkali and alkaline earth alloys

Similar Documents

Publication Publication Date Title
JP3661190B2 (en) Hydrogen storage electrode and manufacturing method thereof
JPH0773878A (en) Manufacture of metal hydride electrode
JP2000090920A (en) Alkaline storage battery, hydrogen storage alloy electrode and its manufacture
JP2982805B1 (en) Hydrogen storage alloy for battery, method for producing the same, and alkaline storage battery using the same
JP2925604B2 (en) Processing method of hydrogen storage alloy for alkaline secondary battery
JP2899849B2 (en) Surface treatment method of hydrogen storage alloy for alkaline secondary battery and alkaline secondary battery equipped with hydrogen storage alloy subjected to the surface treatment as electrode
JP4497828B2 (en) Nickel-hydrogen storage battery and battery pack
JPH0479474B2 (en)
JPH05190175A (en) Surface treatment of hydrogen storage alloy for alkaline secondary battery
JP3788484B2 (en) Nickel electrode for alkaline storage battery
JPH04212269A (en) Alkaline storage battery
JP2944152B2 (en) Method for manufacturing nickel-hydrogen storage battery
JPH05195007A (en) Surface treatment of hydrogen storage alloy for alkaline secondary battery and the same battery provided with the surface-treated alloy as electrode
JP3433008B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP3432870B2 (en) Method for producing metal hydride electrode
JP2823301B2 (en) Hydrogen storage alloy electrode
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP3520573B2 (en) Method for producing nickel-metal hydride battery
JP2925695B2 (en) Method for manufacturing metal hydride storage battery
JP2854109B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPS59872A (en) Manufacture of enclosed nickel-cadmium storage battery
JP3746086B2 (en) Method for manufacturing nickel-metal hydride battery
JPH0644490B2 (en) Metal-hydrogen alkaline storage battery manufacturing method
JPH01134862A (en) Alkaline zinc storage battery
JP3827023B2 (en) Hydrogen storage electrode and method for manufacturing the same