JP2562669B2 - Alkaline storage battery - Google Patents

Alkaline storage battery

Info

Publication number
JP2562669B2
JP2562669B2 JP63180502A JP18050288A JP2562669B2 JP 2562669 B2 JP2562669 B2 JP 2562669B2 JP 63180502 A JP63180502 A JP 63180502A JP 18050288 A JP18050288 A JP 18050288A JP 2562669 B2 JP2562669 B2 JP 2562669B2
Authority
JP
Japan
Prior art keywords
zinc
active material
electrode
metallic
zinc oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63180502A
Other languages
Japanese (ja)
Other versions
JPH0230062A (en
Inventor
修弘 古川
幹朗 田所
光造 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP63180502A priority Critical patent/JP2562669B2/en
Publication of JPH0230062A publication Critical patent/JPH0230062A/en
Application granted granted Critical
Publication of JP2562669B2 publication Critical patent/JP2562669B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、ニッケル−亜鉛蓄電池、銀−亜鉛蓄電池な
どの負極として亜鉛活物質を用いる亜鉛極及びアルカリ
蓄電池に関するものである。
TECHNICAL FIELD The present invention relates to a zinc electrode and an alkaline storage battery using a zinc active material as a negative electrode of a nickel-zinc storage battery, a silver-zinc storage battery or the like.

(ロ) 従来の技術 負極の活物質として用いられる亜鉛は、単位重量当り
のエネルギー密度が大きく、安価であり、かつ無公害で
あるという特徴を有する事から、研究開発が行われてき
ているが、しかし、未だ実用化に至っていない。これ
は、亜鉛極が可溶性電極であることに起因している。す
なわち、放電時に亜鉛がアルカリ電解液中に亜鉛酸イオ
ンとして溶解し、次の充電時に、この亜鉛酸イオンが亜
鉛極表面上に電析するものであって、充放電サイクルを
繰り返すと溶解した亜鉛酸イオンの電析反応が不均一と
なり、活物質の形状変形が起こり、電極反応面積が減少
する。その結果、電池容量が低下する。活物質の形状変
形が進行しても、電池容量を維持させるためには、負極
活物質中に放電可能な物質として、金属亜鉛を含有させ
ておくので効果的である。これは、活物質として添加し
た金属亜鉛は、酸化亜鉛から充電された金属亜鉛と共に
放電できるため、充放電サイクル開始前に負極活物質中
に放電可能な物質として金属亜鉛を含有させておけば、
負極の放電容量は高いレベルに保持されることになるか
らである。また、金属亜鉛粉末は導電材としても作用す
るので、集電効果が増大して高率放電特性も改善され
る。
(B) Conventional technology Zinc used as an active material for a negative electrode has been researched and developed because it has a large energy density per unit weight, is inexpensive, and is non-polluting. However, it has not been put to practical use yet. This is because the zinc electrode is a soluble electrode. That is, zinc is dissolved as zincate ions in the alkaline electrolyte at the time of discharge, and at the time of the next charge, the zincate ions are electrodeposited on the surface of the zinc electrode. The acid ion electrodeposition reaction becomes non-uniform, the active material undergoes shape deformation, and the electrode reaction area decreases. As a result, the battery capacity decreases. In order to maintain the battery capacity even if the shape deformation of the active material progresses, it is effective to include metallic zinc as a dischargeable substance in the negative electrode active material. This is because metallic zinc added as an active material can be discharged together with metallic zinc charged from zinc oxide, so if metallic zinc is contained as a dischargeable substance in the negative electrode active material before the start of the charge / discharge cycle,
This is because the discharge capacity of the negative electrode will be maintained at a high level. Further, since the metallic zinc powder also acts as a conductive material, the current collecting effect is increased and the high rate discharge characteristic is also improved.

ところが、この出発物質の金属亜鉛は酸化亜鉛に比べ
て粒径が非常に大きいため、充電時に樹枝状亜鉛結晶生
長の核になりやすく、急速充電、あるいは高温下での充
電を行う場合には、内部短絡が生じ充放電サイクル特性
が劣化する。そこで、本発明者は、酸化亜鉛の表面を金
属亜鉛で被覆した亜鉛粉末を負極活物質として用いる
と、放電可能な物質としての金属亜鉛が保持される上
に、大きな粒径の金属亜鉛が存在しないので樹枝状亜鉛
生長に基づく内部短絡が生じにくく、充放電サイクル特
性の向上が得られることを見出した。
However, since the starting material metal zinc has a much larger particle size than zinc oxide, it tends to become the nucleus of dendritic zinc crystal growth during charging, and when performing rapid charging or charging at high temperature, Internal short circuit occurs and charge / discharge cycle characteristics deteriorate. Therefore, when the present inventor uses a zinc powder in which the surface of zinc oxide is coated with metallic zinc as a negative electrode active material, metallic zinc as a dischargeable substance is retained and metallic zinc with a large particle size is present. Therefore, it was found that internal short circuit due to the growth of dendritic zinc is unlikely to occur and the charge-discharge cycle characteristics can be improved.

しかし、酸化亜鉛粉末の表面が活性な金属亜鉛のみで
被覆されると、添加剤が十分に分布していないサイクル
初期に電極反応の分布が不均一になり易く、このため亜
鉛極の形状変形の抑制が十分になされないという問題が
あった。
However, if the surface of the zinc oxide powder is coated only with active metallic zinc, the distribution of the electrode reaction tends to be non-uniform at the beginning of the cycle when the additive is not sufficiently distributed, which causes the shape deformation of the zinc electrode. There was a problem that it was not sufficiently suppressed.

(ハ) 発明が解決しようとする課題 酸化亜鉛の表面を、放電可能な物質としての金属亜鉛
で被覆した亜鉛活物質粉末を用いれば、電池の容量低下
の防止や急速充電あるいは高温下での充電時の樹枝状亜
鉛結晶生長抑制の効果は認められるが、完全には防止で
きない。本発明はかかる問題点に鑑みてなされたもので
あって、亜鉛極における樹枝状亜鉛結晶生長を防止し、
サイクル特性に優れたアルカリ蓄電池を提供しようとす
るものである。
(C) Problems to be Solved by the Invention If a zinc active material powder in which the surface of zinc oxide is coated with metallic zinc as a dischargeable substance is used, the battery capacity can be prevented from decreasing and quick charging or charging at high temperature can be performed. Although the effect of suppressing the growth of dendritic zinc crystals is recognized, it cannot be completely prevented. The present invention has been made in view of such problems, preventing the growth of dendritic zinc crystals in the zinc electrode,
It is intended to provide an alkaline storage battery having excellent cycle characteristics.

(ニ) 課題を解決するための手段 本発明のアルカリ蓄電池用亜鉛極は、酸化亜鉛を金属
亜鉛で被覆したものであって、前記金属亜鉛の一部を少
なくともインジウム、タリウム、鉛、カドミウム、ビス
マス、ガリウムから選択された1種の元素で置換した亜
鉛活物質を主成分とするものである。
(D) Means for Solving the Problems The zinc electrode for an alkaline storage battery of the present invention is one in which zinc oxide is coated with metallic zinc, and a part of the metallic zinc is at least indium, thallium, lead, cadmium, bismuth. The main component is a zinc active material substituted with one kind of element selected from gallium.

また本発明のアルカリ蓄電池は、酸化亜鉛を金属亜鉛
で被覆すると共に、前記金属亜鉛の一部を少なくともイ
ンジウム、タリウム、鉛、カドミウム、ビスマス、ガリ
ウムから選択された1種の元素で置換した亜鉛活物質を
主成分とする亜鉛極と、正極と、アルカリ電解液とから
なるものである。
Further, the alkaline storage battery of the present invention is a zinc active material in which zinc oxide is coated with metallic zinc and at least a part of the metallic zinc is replaced with at least one element selected from indium, thallium, lead, cadmium, bismuth and gallium. It is composed of a zinc electrode containing a substance as a main component, a positive electrode, and an alkaline electrolyte.

(ホ) 作 用 通常、亜鉛極活物質の出発物質として用いる金属亜鉛
の粉末の粒径は、小さいものを用いたとしても酸化亜鉛
の粒径に比較すると約10倍程度大きい。このように、酸
化亜鉛粒子に比べて、大きな粒子を有する金属亜鉛粒子
は、充電時、酸化亜鉛から金属亜鉛に変化した粒子より
も、樹枝状亜鉛結晶生長の核になり易いという傾向があ
る。また、酸化亜鉛の表面を金属亜鉛で被覆する方法に
より、放電可能な物質を保持させた場合は、電池の容量
低下を抑制し、更に大きな粒径の金属亜鉛が存在しない
ので樹枝状亜鉛結晶が生長しにくくなる。しかしなが
ら、上記粉末はその形状が球状ではなく不均一であるう
えに、表面が活性な金属亜鉛のみであるため、添加剤が
十分に分布していないサイクル初期に電極反応の分布が
不均一になり易く、このため、樹枝状亜鉛結晶が生長す
る場合がある。
(E) Operation Usually, the particle size of zinc metal powder used as a starting material for a zinc active material is about 10 times larger than that of zinc oxide, even if it is small. As described above, the zinc metal particles having larger particles than the zinc oxide particles tend to become nuclei for dendritic zinc crystal growth more easily than the particles in which zinc oxide is changed to zinc metal during charging. When a material capable of discharging is retained by the method of coating the surface of zinc oxide with metallic zinc, the capacity reduction of the battery is suppressed, and since there is no metallic zinc having a larger particle size, dendritic zinc crystals are formed. It becomes difficult to grow. However, the above-mentioned powder has a non-spherical shape and is non-uniform, and since the surface is only active metal zinc, the distribution of the electrode reaction becomes non-uniform at the beginning of the cycle when the additive is not sufficiently distributed. It is easy, and as a result, dendritic zinc crystals may grow.

これに対し、本発明の如く酸化亜鉛の表面を金属亜鉛
で被覆し、更に水素過電圧が大きくかつ金属亜鉛よりも
酸化還元電位が貴な、少なくともインジウム、タリウ
ム、鉛、カドミウム、ビスマス、ガリウム等の金属より
選ばれる一種以上の添加元素で、金属亜鉛の一部を置換
すると、微視的にみた場合は、前記添加元素の作用によ
り亜鉛酸イオンの電析反応の過電圧は増大される。その
結果、活物質粒子表面への亜鉛酸イオンの電析は緩やか
に、かつ均一に生ぜしめることが可能となる。そのた
め、亜鉛活物質からの樹枝状亜鉛結晶の生長は有効に阻
止される。更に、巨視的にみた場合は、酸化亜鉛、放電
可能な物質としての金属亜鉛及び添加剤としての添加元
素が、完全に一体化できるため、亜鉛極中での添加剤の
分散性が向上し、充放電サイクルが進んでも添加剤とし
ての効果が有効に発揮され、電極全体の電流分布が均一
になり、活物質が有効に利用される。その結果、かかる
亜鉛極は急速充電あるいは高温下での充電を行っても、
サイクル特性の劣化が生ぜず、アルカリ蓄電池のサイク
ル特性を向上せしめることができる。
On the other hand, as in the present invention, the surface of zinc oxide is coated with metallic zinc, and at least indium, thallium, lead, cadmium, bismuth, gallium, etc., which have a larger hydrogen overvoltage and a redox potential more noble than that of metallic zinc. When a part of metallic zinc is replaced with one or more additive elements selected from metals, microscopically, the overvoltage of the zincate ion electrodeposition reaction is increased by the action of the additive elements. As a result, the zincate ion can be gently and uniformly deposited on the surface of the active material particles. Therefore, the growth of dendritic zinc crystals from the zinc active material is effectively prevented. Furthermore, when viewed macroscopically, zinc oxide, metallic zinc as a dischargeable substance, and an additive element as an additive can be completely integrated, so that the dispersibility of the additive in the zinc electrode is improved, Even if the charge / discharge cycle progresses, the effect as an additive is effectively exhibited, the current distribution in the entire electrode becomes uniform, and the active material is effectively used. As a result, even if such a zinc electrode is charged rapidly or at high temperature,
The cycle characteristics of the alkaline storage battery can be improved without deterioration of the cycle characteristics.

(ヘ) 実施例 先づ酸化亜鉛を、金属亜鉛で被覆した亜鉛粉末の作製
について述べる。
(F) Example First, preparation of zinc powder in which zinc oxide is coated with metallic zinc will be described.

平均粒径0.4μmの酸化亜鉛粉末を、3気圧の水素雰
囲気下で1100℃、3時間保持した。この処理によって酸
化亜鉛表面が、水素で還元され、表面が金属亜鉛で被覆
された表面を改質した亜鉛活物質粉末を得た。この表面
を改質した亜鉛活物質の平均粒径は、0.6μmであっ
た。
Zinc oxide powder having an average particle size of 0.4 μm was held in a hydrogen atmosphere at 3 atm at 1100 ° C. for 3 hours. By this treatment, the zinc oxide surface was reduced with hydrogen to obtain a zinc active material powder in which the surface coated with metallic zinc was modified. The surface-modified zinc active material had an average particle size of 0.6 μm.

この粉末を、アンモニア及び塩化アンモニウムの水溶
液に溶解させて、金属亜鉛と酸化亜鉛の比について定量
したところ、酸化亜鉛粉末の約20重量%が、金属亜鉛に
還元されているのが確認できた。
When this powder was dissolved in an aqueous solution of ammonia and ammonium chloride and the ratio of metallic zinc to zinc oxide was quantified, it was confirmed that about 20 wt% of the zinc oxide powder was reduced to metallic zinc.

この表面を改質した亜鉛活物質を、以下の実施例1、
実施例2、比較例2で用いた。
This surface-modified zinc active material was used in the following Example 1,
Used in Example 2 and Comparative Example 2.

〔実施例1〕 前記表面を改質した亜鉛活物質粉末を0.3mol/の塩
化インジウム水溶液に浸漬させ、30分間撹拌した後、0.
1mol/の水酸化カリウム水溶液を加え、その後十分に
水洗し、表面の金属亜鉛の一部をインジウムで置換した
本発明に係る一体化活物質を得た。尚、この時の置換し
たインジウムの重量は、表面を改質した亜鉛活物質重量
の約3重量%であった。
Example 1 The surface-modified zinc active material powder was immersed in a 0.3 mol / indium chloride aqueous solution and stirred for 30 minutes.
A 1 mol / potassium hydroxide aqueous solution was added, and then thoroughly washed with water to obtain an integrated active material according to the present invention in which a part of metallic zinc on the surface was replaced with indium. The weight of the substituted indium at this time was about 3% by weight of the weight of the zinc active material having the surface modified.

次に前記一体化活物質95重量%、フッ素樹脂5重量%
から成る混合粉末に水を加え、混練し、ペーストを得、
集電体上に圧着して亜鉛極とした。この様に作製した亜
鉛極公知の焼結式ニッケル極とを組み合わせて、公称容
量500mAhの円筒密閉型ニッケル−亜鉛蓄電池を得、本発
明電池Aとした。
Next, 95% by weight of the integrated active material and 5% by weight of fluororesin
To the mixed powder consisting of, kneading, to obtain a paste,
A zinc electrode was obtained by pressing on the current collector. By combining this with a known sintered nickel electrode of zinc electrode, a cylindrical sealed nickel-zinc battery with a nominal capacity of 500 mAh was obtained, which was designated as Battery A of the present invention.

〔実施例2〕 前記実施例1において用いた塩化インジウム水溶液の
代りに塩化タリウム水溶液を用い、表面の金属亜鉛の一
部をタリウムで置換した一体化活物質を作製し、その他
は実施例1と同様の方法で本発明電池Bを得た。
Example 2 An aqueous solution of thallium chloride was used in place of the aqueous solution of indium chloride used in Example 1 to prepare an integrated active material in which a part of the metallic zinc on the surface was replaced with thallium, and the others were the same as in Example 1. Battery B of the present invention was obtained in the same manner.

〔比較例1〕 本発明の一体化活物質中の酸化亜鉛と金属亜鉛とイン
ジウムのモル比とが同様になるように、酸化亜鉛と金属
亜鉛と水酸化インジウムとを粉末混合し、この混合物を
活物質とすることを除いた他は以下実施例1と同様の方
法で、比較電池Cを得た。
Comparative Example 1 Zinc oxide, metallic zinc, and indium hydroxide were powder mixed so that the molar ratio of zinc oxide, metallic zinc, and indium in the integrated active material of the present invention was the same, and this mixture was mixed. Comparative battery C was obtained in the same manner as in Example 1 except that the active material was used.

〔比較例2〕 本発明の一体化活物質中の酸化亜鉛と金属亜鉛とイン
ジウムのモル比とが同様になるように、前記表面を改質
した亜鉛活物質(酸化亜鉛を、金属亜鉛で被覆した亜鉛
粉末)と水酸化インジウムとを粉末混合し、この混合物
を活物質とすることを除いた他は以下実施例1と同様の
方法で比較電池Dを得た。
[Comparative Example 2] The surface-modified zinc active material (zinc oxide is coated with metallic zinc so that the molar ratio of zinc oxide, metallic zinc, and indium in the integrated active material of the present invention is the same. Comparative battery D was obtained in the same manner as in Example 1 below, except that the zinc powder) was mixed with indium hydroxide and the mixture was used as the active material.

このようにして得た本発明電池A,Bと比較電池C,Dを用
い、充電電流500mAで.15時間充電し、放電電流500mAで
終止電圧1.4V迄放電するという充放電サイクル試験を行
った。充放電サイクル試験は、電池の容量が350mAhにな
るまで繰り返し行った。
Using the batteries A and B of the present invention thus obtained and the comparative batteries C and D, a charging / discharging cycle test of charging for 15 hours at a charging current of 500 mA and discharging to a final voltage of 1.4 V at a discharging current of 500 mA was performed. . The charge / discharge cycle test was repeated until the battery capacity reached 350 mAh.

図に本発明亜鉛極を備えた電池A、Bと、比較例の亜
鉛極を備えた電池C、Dの充放電サイクル特性の比較を
示した。
The figure shows a comparison of the charge / discharge cycle characteristics of the batteries A and B having the zinc electrode of the present invention and the batteries C and D having the zinc electrode of the comparative example.

図から明らかなように、本発明電池A、Bでは初期不
良率は激減し、充放電サイクル特性が大幅に改善されて
いる。
As is clear from the figure, in the batteries A and B of the present invention, the initial failure rate is drastically reduced, and the charge / discharge cycle characteristics are greatly improved.

尚、本実施例では、金属亜鉛で被覆する方法として高
温水素雰囲気で酸化亜鉛粉末表面を還元する方法を用い
たが、他に無電解メッキにより酸化亜鉛粉末表面に金属
亜鉛を被覆させる方法でも同様の効果が得られる。ま
た、添加剤としての添加元素の置換の際に、塩化物水溶
液を用いたが、硝酸塩、硫酸塩水溶液でも同様の効果が
得られる。
In this example, a method of reducing the surface of the zinc oxide powder in a high temperature hydrogen atmosphere was used as the method of coating with the metallic zinc, but the method of coating the surface of the zinc oxide powder by electroless plating with metallic zinc is also the same. The effect of is obtained. Further, while the chloride aqueous solution was used when substituting the additive element as the additive, the same effect can be obtained with a nitrate or sulfate aqueous solution.

(ト) 発明の効果 本発明によれば、急速充電を行っても樹枝状亜鉛結晶
生長に基づく内部短絡による初期不良がほとんど無く、
サイクル長期に亘り容量低下の少ない亜鉛極が得られ
る。かかる亜鉛極を用いることにより、サイクル特性に
優れたアルカリ蓄電池が提供でき、この工業的価値は極
めて大きい。
(G) Effect of the Invention According to the present invention, there is almost no initial failure due to an internal short circuit based on the growth of dendritic zinc crystals even when performing rapid charging,
It is possible to obtain a zinc electrode with a small decrease in capacity over a long cycle. By using such a zinc electrode, an alkaline storage battery having excellent cycle characteristics can be provided and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

図は、本発明電池A、Bと、比較電池C、Dのサイクル
特性比較図である。 A、B……本発明電池、C、D……比較電池。
The figure is a comparison diagram of the cycle characteristics of the batteries A and B of the present invention and the comparative batteries C and D. A, B ... Inventive battery, C, D ... Comparative battery.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化亜鉛を金属亜鉛で被覆したものであっ
て、前記金属亜鉛の一部を少なくともインジウム、タリ
ウム、鉛、カドミウム、ビスマス、ガリウムから選択さ
れた1種の元素で置換した亜鉛活物質を主成分とするア
ルカリ蓄電池用亜鉛極。
1. A zinc activity obtained by coating zinc oxide with zinc metal, wherein a part of the zinc metal is replaced with at least one element selected from indium, thallium, lead, cadmium, bismuth and gallium. Zinc electrode for alkaline storage batteries whose main component is a substance.
【請求項2】酸化亜鉛を金属亜鉛で被覆すると共に、前
記金属亜鉛の一部を少なくともインジウム、タリウム、
鉛、カドミウム、ビスマス、ガリウムから選択された1
種の元素で置換した亜鉛活物質を主成分とする亜鉛極
と、正極と、アルカリ電解液とからなるアルカリ蓄電
池。
2. Zinc oxide is coated with metallic zinc, and a part of said metallic zinc is at least indium, thallium,
1 selected from lead, cadmium, bismuth and gallium
An alkaline storage battery comprising a zinc electrode having a zinc active material as a main component substituted with certain elements, a positive electrode, and an alkaline electrolyte.
JP63180502A 1988-07-20 1988-07-20 Alkaline storage battery Expired - Lifetime JP2562669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63180502A JP2562669B2 (en) 1988-07-20 1988-07-20 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63180502A JP2562669B2 (en) 1988-07-20 1988-07-20 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH0230062A JPH0230062A (en) 1990-01-31
JP2562669B2 true JP2562669B2 (en) 1996-12-11

Family

ID=16084363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63180502A Expired - Lifetime JP2562669B2 (en) 1988-07-20 1988-07-20 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2562669B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5812403B2 (en) * 2011-09-02 2015-11-11 日産自動車株式会社 Alkaline secondary battery

Also Published As

Publication number Publication date
JPH0230062A (en) 1990-01-31

Similar Documents

Publication Publication Date Title
JP2562669B2 (en) Alkaline storage battery
JP2846673B2 (en) Method for producing zinc electrode for alkaline storage battery
JP2735887B2 (en) Zinc active material for alkaline storage battery and method for producing the same
JPH09180717A (en) Nickel electrode for alkaline storage battery
JPH06260166A (en) Nickel electrode for alkaline storage battery
JPH10172562A (en) Cathode active material, manufacture thereof, and manufacture of cathode
JP2854082B2 (en) Alkaline zinc storage battery
JPH073793B2 (en) Alkaline zinc storage battery
JPH079806B2 (en) Zinc electrode for alkaline storage battery
JP2538303B2 (en) Zinc electrode for alkaline storage battery
JP2578633B2 (en) Zinc electrode for alkaline storage batteries
JP2614486B2 (en) Alkaline zinc storage battery
JP2931316B2 (en) Manufacturing method of alkaline zinc storage battery
JPH079807B2 (en) Zinc electrode for alkaline storage battery
JPS5942775A (en) Zinc electrode
JPH07114122B2 (en) Zinc electrode for alkaline storage battery
JP2589750B2 (en) Nickel cadmium storage battery
JP2518090B2 (en) Lead acid battery
JPS62108467A (en) Alkaline zinc storage battery
JPH0619985B2 (en) Cathode for alkaline storage battery
JPS6097551A (en) Zinc electrode for alkaline storage battery
JPH0711957B2 (en) Non-aqueous secondary battery
JPH0568073B2 (en)
JPH01200556A (en) Zinc pole for alkaline storage battery
JPH079804B2 (en) Zinc pole

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070919

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12

EXPY Cancellation because of completion of term