JPH0568073B2 - - Google Patents

Info

Publication number
JPH0568073B2
JPH0568073B2 JP59039925A JP3992584A JPH0568073B2 JP H0568073 B2 JPH0568073 B2 JP H0568073B2 JP 59039925 A JP59039925 A JP 59039925A JP 3992584 A JP3992584 A JP 3992584A JP H0568073 B2 JPH0568073 B2 JP H0568073B2
Authority
JP
Japan
Prior art keywords
zinc
indium
electrode
battery
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59039925A
Other languages
Japanese (ja)
Other versions
JPS60185372A (en
Inventor
Sanehiro Furukawa
Shuzo Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59039925A priority Critical patent/JPS60185372A/en
Publication of JPS60185372A publication Critical patent/JPS60185372A/en
Publication of JPH0568073B2 publication Critical patent/JPH0568073B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/26Selection of materials as electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は負極としての亜鉛極と、正極としての
ニツケル極と、アルカリ電解液とを備えたニツケ
ル−亜鉛蓄電池の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to an improvement of a nickel-zinc storage battery equipped with a zinc electrode as a negative electrode, a nickel electrode as a positive electrode, and an alkaline electrolyte.

(ロ) 従来技術 負極活物質としての亜鉛は単位重量あたりのエ
ネルギー密度が大きく且つ安価である利点を有す
る反面、放電時に亜鉛がアルカリ電解液に溶出し
て亜鉛酸イオンとなり、充電時にこの亜鉛酸イオ
ンが亜鉛極表面に樹枝状或いは海綿状に電析する
ため充放電を繰り返すと電析亜鉛がセパレータを
貫通して対極に到達して内部短絡を惹起すのでサ
イクル寿命が短かい欠点がある。
(b) Prior art While zinc as a negative electrode active material has the advantage of having a high energy density per unit weight and being inexpensive, zinc dissolves into the alkaline electrolyte during discharge and becomes zincate ions, and during charging, this zincate Since ions are deposited on the surface of the zinc electrode in a dendritic or spongy form, when charging and discharging are repeated, the deposited zinc penetrates the separator and reaches the counter electrode, causing an internal short circuit, resulting in a short cycle life.

このサイクル寿命を改善するため亜鉛極及び電
解液へ各種添加剤を含有させることが検討されて
いる。このうち、亜鉛極の添加剤としては特公昭
51−32365号公報に注目すべき提案である。この
提案は亜鉛極の添加剤としてビスマス、カドミウ
ム、タリウム、スズ、セレン、テルル、インジウ
ム、鉛もしくはこれら金属の酸化物の中から少な
くとも一種を用い、活物質とフツ素樹脂と共に成
型し焼結するというものである。しかしながら添
加剤は夫々一種のみ亜鉛極に添加したものが開示
されているに過ぎず、更に優れた特性を得るため
に各種添加剤の組み合わせによる相乗作用を種々
の実験により調べたところ、特願昭58−62633号
公報に提案したように亜鉛極の添加剤として特に
タリウムの酸化物または水酸化物、インジウムの
酸化物または水酸化物及び金属インジウムを用い
ることで、タリウムの酸化物または水酸化物の溶
解、逸散をインジウムの酸化物または水酸化物の
存在により防止できると共にこれら添加物によつ
て亜鉛極の水素過電圧を高めて亜鉛の樹枝状結晶
の成長を防止し、タリウムを単独で添加した場合
に比しサイクル寿命を更に向上させ、また加えて
金属インジウムと存在によりタリウム及びインジ
ウムの酸化物または水酸化物の不良導電体として
の欠点を解消することができより優れた特性が得
られることがわかつた。
In order to improve this cycle life, it is being considered to incorporate various additives into the zinc electrode and electrolyte. Of these, Tokuko Sho is the most popular additive for zinc electrodes.
Publication No. 51-32365 is a noteworthy proposal. This proposal uses at least one of bismuth, cadmium, thallium, tin, selenium, tellurium, indium, lead, or oxides of these metals as an additive for the zinc electrode, and molds and sinters them together with the active material and fluororesin. That is what it means. However, only one type of each additive has been disclosed in the zinc electrode, and in order to obtain even better properties, various experiments were conducted to investigate the synergistic effects of combinations of various additives. As proposed in Publication No. 58-62633, thallium oxide or hydroxide, indium oxide or hydroxide, and metallic indium can be used as additives for zinc electrodes. The dissolution and dissipation of indium can be prevented by the presence of indium oxide or hydroxide, and these additives increase the hydrogen overvoltage of the zinc electrode and prevent the growth of zinc dendrites, and thallium alone can be added. In addition, the presence of metallic indium eliminates the drawbacks of thallium and indium oxides or hydroxides as poor conductors, resulting in better properties. I found out.

また、電解液の液添加剤としては特公昭48−
5185号公報に於いて、アルカリ電解液にインジウ
ム酸イオンを溶解することで、亜鉛の電析を均一
に行なうことが提案されている。この方法は特に
亜鉛極にインジウムを添加している場合に有効で
あり、亜鉛極の表面近傍のインジウムが溶出によ
つて不均一に分布することを抑制し蓄電池の劣化
を防止することができる。
In addition, as a liquid additive for electrolyte solution,
Publication No. 5185 proposes uniform electrodeposition of zinc by dissolving indate ions in an alkaline electrolyte. This method is particularly effective when indium is added to the zinc electrode, and can suppress uneven distribution of indium near the surface of the zinc electrode due to elution and prevent deterioration of the storage battery.

しかしながら、これら添加剤を用いた場合に於
いても十分にニツケル−亜鉛蓄電池の充放電効率
の低下を抑制することはできず、エネルギー密度
が小さくなるという欠点があつた。
However, even when these additives are used, it is not possible to sufficiently suppress the decrease in charge/discharge efficiency of the nickel-zinc storage battery, resulting in a drawback that the energy density becomes low.

(ハ) 発明の目的 本発明はかかる点に鑑みエネルギー密度を高く
維持し、長期にわたるサイクル寿命を耐え得るニ
ツケル−亜鉛蓄電地を提供せんとするものであ
る。
(c) Purpose of the Invention In view of the above, the present invention aims to provide a nickel-zinc power storage battery that maintains a high energy density and can withstand a long cycle life.

(ニ) 発明の構成 本発明のニツケル−亜鉛蓄電地は、亜鉛及び酸
化亜鉛の少なくとも一種を主成分とし、金属イン
ジウム、インジウムの酸化物または水酸化物、及
びタリウムの酸化物または水酸化物を含有する亜
鉛極と、ニツケル極と、インジウムイオン及びリ
チウムイオンを含有するアルカリ電解液とを備え
るものである。
(d) Structure of the invention The nickel-zinc energy storage battery of the present invention contains at least one of zinc and zinc oxide as a main component, and metal indium, an oxide or hydroxide of indium, and an oxide or hydroxide of thallium. This includes a zinc electrode, a nickel electrode, and an alkaline electrolyte containing indium ions and lithium ions.

尚、インジウムイオンとはインジウムの酸化物
または水酸化物やインジウムの塩、たとえば硝酸
塩、塩酸塩等を電解液中に溶解させたインジウム
の形態を意味し、またリチウムイオンとはリチウ
ムの酸化物、水酸化物またはその他の化合物を電
解液中に溶解させたリチウムの形態を意味する。
In addition, indium ion refers to the form of indium obtained by dissolving indium oxide or hydroxide or indium salt such as nitrate, hydrochloride, etc. in an electrolyte, and lithium ion refers to lithium oxide, indium salt, etc. Refers to the form of lithium in which hydroxide or other compounds are dissolved in an electrolyte.

(ホ) 実施例 以下に本発明の一実施例を示し説明する。(e) Examples An embodiment of the present invention will be shown and explained below.

実施例 酸化亜鉛粉末75重量%、亜鉛粉末10重量%、添
加剤として酸化インジウム2.5重量%、金属イン
ジウム2.5重量%、酸化タリウム5重量%、及び
結着剤としてのフツ素樹脂粉末5重量%からなる
混合粉末に水を加えて混練した後ローラによりシ
ート状に形成したものを鋼等よりなる集電体に付
着し、しかる後に加圧成型し乾燥して亜鉛極を作
製する。
Example From 75% by weight of zinc oxide powder, 10% by weight of zinc powder, 2.5% by weight of indium oxide, 2.5% by weight of metallic indium, 5% by weight of thallium oxide as additives, and 5% by weight of fluororesin powder as a binder. Water is added to the mixed powder, kneaded, and then formed into a sheet using rollers, which is then adhered to a current collector made of steel or the like, followed by pressure molding and drying to produce a zinc electrode.

このようにして得た亜鉛極と公知の焼結式ニツ
ケル極と組み合わせ、電解液に30%濃度の水酸化
カリウム溶液に水酸化インジウム10-4モル/溶
解し、更に水酸化リチウム1モル/溶解したも
の用いてニツケル−亜鉛蓄電池Aを作製した。第
1図はこの蓄電池の断面図であり、図面に於い
て、1は亜鉛極、2はニツケル極、3はセパレー
タ、4は保液層、5は電槽、6は電槽蓋、7,8
は正負極端子である。
The zinc electrode thus obtained was combined with a known sintered nickel electrode, and 10 -4 moles of indium hydroxide was dissolved in a 30% potassium hydroxide solution, and 1 mole of lithium hydroxide was dissolved in the electrolyte. Nickel-zinc storage battery A was prepared using the same. FIG. 1 is a sectional view of this storage battery, and in the drawing, 1 is a zinc electrode, 2 is a nickel electrode, 3 is a separator, 4 is a liquid retaining layer, 5 is a container, 6 is a container lid, 7, 8
are the positive and negative terminals.

比較例 1 前記実施例に於いて、電解液に水酸化コバルト
を溶解添加せず、その他の条件は同一で比較電池
Bを作製した。
Comparative Example 1 Comparative battery B was prepared under the same conditions as in the above example, except that cobalt hydroxide was not dissolved and added to the electrolytic solution.

比較例 2 前記実施例に於いて、電解液に水酸化インジウ
ム溶解添加せず、その他の条件は同一で比較電池
Cを作製した。
Comparative Example 2 Comparative battery C was prepared under the same conditions as in the above example, except that indium hydroxide was not dissolved and added to the electrolytic solution.

第2図は本発明電池Aと比較電池Bを150mA
の電流で放電したときの放電特性図であり、この
図から明らかなように本発明電地Aは、電解液に
リチウムイオンを含有しない比較電池Bに比し放
電電圧が高く容量も向上し単位重量あたりのエネ
ルギー密度が改善されていることがわかる。これ
は電解液中のリチウムイオンが正極活物質である
水酸化ニツケルの結晶中に侵入してニツケル活物
質をより活性化することにより、亜鉛極へのイン
ジウム添加により低下する放電電圧を高めている
からと考えられる。すなわち、サイクル寿命を向
上させるために添加したインジウムによつて低く
なつた放電電圧をリチウムにより回復していると
思われる。また、ニツケル活物質が活性化したこ
とにより電池容量も向上している。
Figure 2 shows the battery A of the present invention and the comparative battery B at 150 mA.
This is a discharge characteristic diagram when discharging with a current of It can be seen that the energy density per weight has been improved. This is because lithium ions in the electrolyte penetrate into the crystals of nickel hydroxide, which is the positive electrode active material, and further activate the nickel active material, thereby increasing the discharge voltage, which is lowered by the addition of indium to the zinc electrode. It is thought to be from That is, it seems that lithium restores the discharge voltage that was lowered due to indium added to improve cycle life. Furthermore, the battery capacity has also improved due to the activation of the nickel active material.

第3図は本発明電池Aと比較電池B及びCのサ
イクル特性であり、150mAで5時間充電した後
150mAで放電し、電池電圧が1.2Vに達する時点
で放電停止するサイクル条件で測定し、電池Bの
初期容量を100として示している。第3図から明
らかなように、電解液にリチウムイオンのみ添加
した電池Bでは容量の向上はみられるがサイクル
寿命が短く、また電解液にインジウムイオンのみ
添加した電池Cでは電池容量の向上がみられな
い。これに対して本発明電池Aが電池容量も大き
くサイクル寿命も長いのは、電解液に添加したリ
チウムイオンが電池容量の向上に効力を発揮し、
タリウム及びインジウムがサイクル寿命の向上に
大きな効力を発揮していると考えられ、更にイン
ジウムイオンとリチウムイオンの共存による相乗
作用によつて、より充放電サイクル寿命が向上し
たものと考えられる。
Figure 3 shows the cycle characteristics of invention battery A and comparison batteries B and C, after being charged at 150mA for 5 hours.
Measurements were made under cycle conditions in which the battery was discharged at 150 mA and the discharge was stopped when the battery voltage reached 1.2 V, and the initial capacity of battery B is shown as 100. As is clear from Figure 3, battery B, in which only lithium ions were added to the electrolyte, showed an improvement in capacity, but had a short cycle life, and battery C, in which only indium ions were added to the electrolyte, showed no improvement in battery capacity. I can't. On the other hand, the reason why the battery A of the present invention has a large battery capacity and a long cycle life is that the lithium ions added to the electrolyte are effective in improving the battery capacity.
It is thought that thallium and indium are highly effective in improving the cycle life, and furthermore, it is thought that the synergistic effect of the coexistence of indium ions and lithium ions further improves the charge/discharge cycle life.

(ヘ) 発明の効果 本発明のニツケル−亜鉛蓄電池は、亜鉛及び酸
化亜鉛の少なくとも一種を主成分とし、金属イン
ジウム、インジウムの酸化物または水酸化物、及
びタリウムの酸化物または水酸化物を含有する亜
鉛極と、ニツケル極と、インジウムイオン及びリ
チウムイオンを含有するアルカリ電解液を備える
ものであるから、ニツケル−亜鉛蓄電池の放電電
圧を高め、大巾にエネルギー密度を向上でき、更
により長期にわたるサイクル寿命を得ることがで
きる。
(F) Effects of the Invention The nickel-zinc storage battery of the present invention has at least one of zinc and zinc oxide as a main component, and contains metallic indium, an oxide or hydroxide of indium, and an oxide or hydroxide of thallium. Since it is equipped with a zinc electrode, a nickel electrode, and an alkaline electrolyte containing indium ions and lithium ions, the discharge voltage of the nickel-zinc storage battery can be increased, the energy density can be greatly improved, and the battery can last for a longer period of time. Cycle life can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるニツケル−亜鉛蓄電池の
断面図、第2図及び第3図は本発明電池と比較電
池の放電特性図及びサイクル特性図である。 1……亜鉛極、2……ニツケル極、3……セパ
レータ、4……保液層、5……電槽、6……電槽
蓋、7,8……正、負極端子。
FIG. 1 is a sectional view of a nickel-zinc storage battery according to the present invention, and FIGS. 2 and 3 are discharge characteristic diagrams and cycle characteristic diagrams of the battery of the present invention and a comparative battery. DESCRIPTION OF SYMBOLS 1... Zinc electrode, 2... Nickel electrode, 3... Separator, 4... Liquid retaining layer, 5... Battery container, 6... Battery container lid, 7, 8... Positive and negative electrode terminals.

Claims (1)

【特許請求の範囲】[Claims] 1 亜鉛及び酸化亜鉛の少なくとも一種を主成分
とし、金属インジウム、インジウムの酸化物また
は水酸化物、及びタリウムの酸化物または水酸化
物を含有する亜鉛極と、ニツケル極と、インジウ
ムイオン及びリチウムを含有するアルカリ電解液
とを備えてなるニツケル−亜鉛蓄電池。
1. A zinc electrode containing at least one of zinc and zinc oxide as a main component and containing metallic indium, an oxide or hydroxide of indium, and an oxide or hydroxide of thallium, a nickel electrode, and indium ions and lithium. A nickel-zinc storage battery comprising an alkaline electrolyte containing.
JP59039925A 1984-03-01 1984-03-01 Nickel-zinc storage battery Granted JPS60185372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59039925A JPS60185372A (en) 1984-03-01 1984-03-01 Nickel-zinc storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59039925A JPS60185372A (en) 1984-03-01 1984-03-01 Nickel-zinc storage battery

Publications (2)

Publication Number Publication Date
JPS60185372A JPS60185372A (en) 1985-09-20
JPH0568073B2 true JPH0568073B2 (en) 1993-09-28

Family

ID=12566508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59039925A Granted JPS60185372A (en) 1984-03-01 1984-03-01 Nickel-zinc storage battery

Country Status (1)

Country Link
JP (1) JPS60185372A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102539660B1 (en) 2020-08-20 2023-06-02 가천대학교 산학협력단 Zn anode with β-Polyvinylidene fluoride coating and aqueous Zn-ion batterie including the same
KR20220031386A (en) 2020-09-04 2022-03-11 고려대학교 세종산학협력단 Nickel sulfide nanocrystal catalysts for electrochemical and photoelectrochemical hydrogen production and method for manufacturing the same

Also Published As

Publication number Publication date
JPS60185372A (en) 1985-09-20

Similar Documents

Publication Publication Date Title
JPH0568073B2 (en)
JP3788485B2 (en) Alkaline storage battery
JPH0582023B2 (en)
JPS58163162A (en) Alkaline zinc storage battery
JPH073793B2 (en) Alkaline zinc storage battery
JPH0576743B2 (en)
JP2931316B2 (en) Manufacturing method of alkaline zinc storage battery
JPH0544142B2 (en)
JPS62108467A (en) Alkaline zinc storage battery
JP2578633B2 (en) Zinc electrode for alkaline storage batteries
JP2562669B2 (en) Alkaline storage battery
JPS60185373A (en) Nickel-zinc storage battery
JPH0584027B2 (en)
JPH077677B2 (en) Nickel zinc battery
JPS58137963A (en) Alkaline zinc storage battery
JPH0685321B2 (en) Alkaline zinc storage battery
JPH0252386B2 (en)
JPH079804B2 (en) Zinc pole
JPS60225372A (en) Alkaline zinc storage battery
JPH0687417B2 (en) Alkaline zinc storage battery
JPH0685322B2 (en) Alkaline zinc storage battery
JPH0782846B2 (en) Alkaline zinc storage battery
JPH079807B2 (en) Zinc electrode for alkaline storage battery
JPH0410709B2 (en)
JPS61104564A (en) Alkaline zinc storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term