JPH0687417B2 - Alkaline zinc storage battery - Google Patents

Alkaline zinc storage battery

Info

Publication number
JPH0687417B2
JPH0687417B2 JP57060145A JP6014582A JPH0687417B2 JP H0687417 B2 JPH0687417 B2 JP H0687417B2 JP 57060145 A JP57060145 A JP 57060145A JP 6014582 A JP6014582 A JP 6014582A JP H0687417 B2 JPH0687417 B2 JP H0687417B2
Authority
JP
Japan
Prior art keywords
zinc
oxide
storage battery
tin
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57060145A
Other languages
Japanese (ja)
Other versions
JPS58176870A (en
Inventor
修弘 古川
修三 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP57060145A priority Critical patent/JPH0687417B2/en
Publication of JPS58176870A publication Critical patent/JPS58176870A/en
Publication of JPH0687417B2 publication Critical patent/JPH0687417B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 本発明は、ニッケル−亜鉛蓄電池、銀−亜鉛蓄電池など
のように負極活物質として亜鉛を用いるアルカリ亜鉛蓄
電池に関するものである。
Description: TECHNICAL FIELD The present invention relates to an alkaline zinc storage battery using zinc as a negative electrode active material such as a nickel-zinc storage battery and a silver-zinc storage battery.

負極活物質としての亜鉛は単位重量当りのエネルギー密
度が大きく且安価である利点を有する反面、放電時に亜
鉛がアルカリ電解液に溶出して亜鉛酸イオンとなり、充
電時にその亜鉛酸イオンが亜鉛極表面に樹枝状或いは海
綿状に電析するため、充放電を繰返すと、電析亜鉛がセ
パレータを貫通して対極に接して内部短絡を惹起するた
めサイクル寿命が短い欠点がある。
Zinc as a negative electrode active material has the advantages that it has a large energy density per unit weight and is inexpensive, but on the other hand, zinc is eluted into the alkaline electrolyte during discharge to become zincate ions, and during charging, the zincate ions form the zinc electrode surface. In addition, since it is electrodeposited in the form of dendritic or sponge-like, when charging and discharging are repeated, the electrodeposited zinc penetrates the separator to come into contact with the counter electrode and causes an internal short circuit, which causes a short cycle life.

このサイクル寿命を改善するため、各種の金属あるいは
酸化物を活物質中あるいは電解液中に添加することが提
案されている。その1つに錫がある。錫は水素過電圧が
高く、且亜鉛の酸化還元電位より貴であるため、亜鉛の
樹枝状結晶の発生を抑制するだけでなく、導電材として
働き、さらに公害の虞れがないため、添加剤として有望
である。
In order to improve the cycle life, it has been proposed to add various metals or oxides to the active material or the electrolytic solution. One of them is tin. Since tin has a high hydrogen overvoltage and is nobler than the oxidation-reduction potential of zinc, it not only suppresses the formation of dendrites of zinc, but also acts as a conductive material and there is no fear of pollution. Promising.

しかしながら長期にわたる充放電サイクルの結果、亜鉛
活物質だけでなく、錫も充放電反応に関与し、高密度化
して電析されるようになる。その結果亜鉛極の多孔度が
減少し、次第に亜鉛極の有効面積が減少すると共に電極
内部への電解液の拡散が困難になり、アルカリ亜鉛蓄電
池の放電容量を大巾に低下させていた。
However, as a result of a long-term charging / discharging cycle, not only the zinc active material but also tin participates in the charging / discharging reaction and becomes highly densified and electrodeposited. As a result, the porosity of the zinc electrode was reduced, the effective area of the zinc electrode was gradually reduced, and it became difficult to diffuse the electrolytic solution into the electrode, which significantly reduced the discharge capacity of the alkaline zinc storage battery.

本発明はかかる点に鑑み発明されたものにして、亜鉛及
び酸化亜鉛を主成分とする亜鉛極であって、錫の酸化物
又は水酸化物に加えてインジウムの酸化物又は水酸化物
を添加することにより、添加剤としての錫の欠点を少な
くし、且亜鉛極における添加剤の最適割合を見出し、ア
ルカリ亜鉛蓄電池のサイクル寿命を長くせんとするもの
である。
The present invention has been made in view of the above points, and is a zinc electrode containing zinc and zinc oxide as main components, and indium oxide or hydroxide is added in addition to tin oxide or hydroxide. By doing so, the defects of tin as an additive can be reduced, and the optimum ratio of the additive in the zinc electrode can be found to prolong the cycle life of the alkaline zinc storage battery.

そこで本発明者は次の態様で多数の試作電池(ア)乃至
(ク)を作成した。即ち、 酸化亜鉛粉末X重量%、亜鉛粉末10重量%、添加剤とし
て酸化錫Y重量%及び酸化インジウムZ重量%、結着剤
としてフッ素樹脂粉末5重量%よりなる混合粉末に水を
加え、混練した後、ローラによりシート状にしたもの
を、銅等よりなる集電体の両面に付着し、加圧成型し乾
燥して亜鉛極を作成する。
Therefore, the present inventor created a large number of prototype batteries (a) to (h) in the following manner. That is, water was added to a mixed powder of zinc oxide powder X% by weight, zinc powder 10% by weight, tin oxide Y% by weight and indium oxide Z% by weight as an additive, and fluororesin powder 5% by weight as a binder, and kneading. After that, the sheet-shaped ones made by rollers are attached to both sides of a current collector made of copper or the like, pressure-molded and dried to form a zinc electrode.

このように作成した亜鉛極と公知の焼結式ニッケル極と
を組合せてニッケル−亜鉛蓄電池(A)を組立てた。こ
の蓄電池の断面図を第1図に示す。この図面において、
(1)は亜鉛極、(2)はニッケル極、(3)はセパレ
ータ、(4)は保液層、(5)は電槽、(6)は電槽
蓋、(7)(8)は正負極端子である。
A nickel-zinc storage battery (A) was assembled by combining the zinc electrode thus prepared and a known sintered nickel electrode. A cross-sectional view of this storage battery is shown in FIG. In this drawing,
(1) is a zinc electrode, (2) is a nickel electrode, (3) is a separator, (4) is a liquid retaining layer, (5) is a battery case, (6) is a battery case lid, and (7) and (8) are Positive and negative terminals.

而して酸化亜鉛粉末X重量%、添加剤としての酸化錫Y
重量%及び酸化インジウムZ重量%の総量の具体的割合
を、試作電池(ア)乃至(ク)毎に第1表に示す値にし
た。また第1表には添加剤として酸化錫5重量%のみ添
加した比較電池をも示す。
Thus, zinc oxide powder X% by weight, tin oxide Y as an additive
The specific proportions of the total weight% and indium oxide Z weight% were set to the values shown in Table 1 for each of the prototype batteries (A) to (K). Table 1 also shows a comparative battery in which only 5% by weight of tin oxide was added as an additive.

これらの試作電池(ア)乃至(ク)及び比較電池(ヒ)
を夫々5個づつ作成し、各電池のサイクル特性を実験
し、各電池の平均値を第2図に示す。この図面におい
て、横軸は添加剤である酸化錫及び酸化インジウムの重
量%であり、縦軸はサイクル数である。第2図から明ら
かな如く、亜鉛極の添加剤として酸化錫に加えて酸化イ
ンジウムを添加した試作電池(ア)乃至(ク)はいずれ
も比較電池(ヒ)のサイクル特性よりも向上している。
特に酸化錫と酸化インジウムの総量として2乃至15重量
%の試作電池(イ)乃至(キ)のサイクル特性がよい。
尚第1表の各試作電置は、酸化インジウムに対する酸化
錫の配合比を4としたものである。またサイクル条件
は、150mAで6時間充電した後、150mAで放電し電池電圧
が1.0Vに達する時点で放電を停止し、放電容量が初期容
量の50%になる時点でサイクルテストを停止した。
These prototype batteries (a) to (h) and comparative battery (h)
5 were prepared for each of them, the cycle characteristics of each battery were tested, and the average value of each battery is shown in FIG. In this drawing, the horizontal axis is the weight% of tin oxide and indium oxide as additives, and the vertical axis is the number of cycles. As is clear from FIG. 2, all the prototype batteries (A) to (K) in which indium oxide was added in addition to tin oxide as an additive for the zinc electrode were improved in cycle characteristics of the comparative battery (H). .
In particular, the cycle characteristics of the prototype batteries (A) to (K) in which the total amount of tin oxide and indium oxide is 2 to 15% by weight are good.
In each of the trial electric devices shown in Table 1, the compounding ratio of tin oxide to indium oxide was set to 4. Regarding cycle conditions, after charging at 150 mA for 6 hours, discharging was stopped at 150 mA and the discharge was stopped when the battery voltage reached 1.0 V, and the cycle test was stopped when the discharge capacity reached 50% of the initial capacity.

試作電池(ア)乃至(ク)は、いずれも酸化インジウム
に対する酸化錫の配合比を4にしたものであるが、亜鉛
極における酸化亜鉛粉末X=80重量%とし、添加剤とし
ての酸化錫と酸化インジウムの総重量%を5%とし、そ
の配合比を第2表に示す如く変えた場合の試作電池
(ケ)乃至(ツ)を作成した。
In each of the prototype batteries (a) to (h), the compounding ratio of tin oxide to indium oxide was 4, but the zinc oxide powder X in the zinc electrode was 80% by weight, and tin oxide was used as an additive. Prototype batteries (X) to (X) were prepared in which the total weight% of indium oxide was 5% and the compounding ratio was changed as shown in Table 2.

これらの試作電池(ケ)乃至(ツ)を夫々5個づつ作成
し、各電池のサイクル特性(サイクル条件は前述と同
じ)を、実験し、その各電池の平均値を第3図に示す。
この図面において横軸は酸化インジウムの重量%に対す
る酸化錫の重量%の配合比(Y/Z)を示し、縦軸はサイ
クル数を示す。この図面から明らかなように、配合比が
9倍から1/6倍迄の配合比でサイクル特性の向上が見ら
れるが、この範囲を外ずれると、サイクル特性が好まし
くない。
Five prototype batteries (K) to (T) were prepared, and the cycle characteristics of each battery (the cycle conditions were the same as those described above) were tested. The average value of each battery is shown in FIG.
In this figure, the horizontal axis represents the compounding ratio (Y / Z) of the weight% of tin oxide to the weight% of indium oxide, and the vertical axis represents the number of cycles. As is clear from this drawing, the cycle characteristics are improved when the compounding ratio is from 9 times to 1/6 times, but if it deviates from this range, the cycle characteristics are not preferable.

この理由を考察すると、酸化インジウムは電解液に対す
る濡れがよいため、電解液が亜鉛極中に均一に保持され
ることにより、亜鉛の電析を均一化すると共に亜鉛の有
効表面積を増大させ、又充電時における錫の高密度化を
抑制するためと考えられる。インジウムが少量即ち配合
比が9より大きいと、これらの効果が得られないと考え
られる。またインジウムが多量即ち配合比が1/4より小
さいと、インジウムの導電性が悪いため、充放電効率が
減少してサイクル特性を低下させると共に錫の添加量の
減少により錫の添加効果が十分に発揮していないためと
考えられる。
Considering the reason for this, since indium oxide has a good wettability with the electrolytic solution, the electrolytic solution is uniformly held in the zinc electrode, which makes the electrodeposition of zinc uniform and increases the effective surface area of zinc. It is considered that this is for suppressing the densification of tin during charging. It is considered that these effects cannot be obtained when the amount of indium is small, that is, when the compounding ratio is larger than 9. Further, when the amount of indium is large, that is, when the compounding ratio is less than 1/4, the conductivity of indium is poor, so that the charge / discharge efficiency is reduced and the cycle characteristics are deteriorated, and the tin addition amount is sufficiently reduced to sufficiently improve the tin addition effect. It is thought that it is not exerting.

尚以上の試作電池では錫とインジウムの酸化物を用いた
が酸化物に代って水酸化物を用いても同じである。
In the above prototype battery, oxides of tin and indium were used, but hydroxides may be used instead of oxides.

以上の如く本発明は、亜鉛及び酸化亜鉛を主成分とする
亜鉛極であって、錫及びインジウムの酸化物又は水酸化
物よりなる添加剤を2乃至15重量%含有する亜鉛極を備
えるものであるから、添加剤の添加効果を高め、アルカ
リ亜鉛蓄電池のサイクル特性を従来の比較電池に比し向
上することができ、その工業的価値大なるものである。
As described above, the present invention provides a zinc electrode containing zinc and zinc oxide as main components, the zinc electrode containing 2 to 15% by weight of an additive made of an oxide or hydroxide of tin and indium. Therefore, the additive effect of the additive can be enhanced and the cycle characteristics of the alkaline zinc storage battery can be improved as compared with the conventional comparative battery, which is of great industrial value.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明によるアルカリ亜鉛蓄電池の断面図、第
2図は亜鉛極における酸化錫及び酸化インジウムの総重
量%を変えた場合のアルカリ亜鉛蓄電池のサイクル特性
比較図、第3図は酸化錫と酸化インジウムの配合比を異
にする場合のアルカリ亜鉛蓄電池のサイクル特性比較図
である。 (1)……亜鉛極。
FIG. 1 is a sectional view of an alkaline zinc storage battery according to the present invention, FIG. 2 is a cycle characteristic comparison diagram of alkaline zinc storage batteries when the total weight% of tin oxide and indium oxide in the zinc electrode is changed, and FIG. 3 is tin oxide. FIG. 4 is a comparison diagram of cycle characteristics of alkaline zinc storage batteries in which the compounding ratios of In and In are different. (1) …… Zinc pole.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】亜鉛及び酸化亜鉛を主成分とする亜鉛極で
あって、錫及びインジウムの酸化物又は水酸化物よりな
る添加剤を2乃至15重量%含有する亜鉛極を備えたアル
カリ亜鉛蓄電池。
1. An alkaline zinc storage battery comprising a zinc electrode containing zinc and zinc oxide as main components, the zinc electrode containing 2 to 15% by weight of an additive composed of an oxide or hydroxide of tin and indium. .
【請求項2】インジウムの酸化物又は水酸化物に対する
錫の酸化物又は水酸化物の配合比を1/6乃至10にしたこ
とを特徴とする特許請求の範囲第1項記載のアルカリ亜
鉛蓄電池。
2. The alkaline zinc storage battery according to claim 1, wherein the compounding ratio of tin oxide or hydroxide to indium oxide or hydroxide is 1/6 to 10. .
JP57060145A 1982-04-09 1982-04-09 Alkaline zinc storage battery Expired - Lifetime JPH0687417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57060145A JPH0687417B2 (en) 1982-04-09 1982-04-09 Alkaline zinc storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57060145A JPH0687417B2 (en) 1982-04-09 1982-04-09 Alkaline zinc storage battery

Publications (2)

Publication Number Publication Date
JPS58176870A JPS58176870A (en) 1983-10-17
JPH0687417B2 true JPH0687417B2 (en) 1994-11-02

Family

ID=13133679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57060145A Expired - Lifetime JPH0687417B2 (en) 1982-04-09 1982-04-09 Alkaline zinc storage battery

Country Status (1)

Country Link
JP (1) JPH0687417B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61281460A (en) * 1985-04-24 1986-12-11 Sanyo Electric Co Ltd Alkaline zinc storage battery

Also Published As

Publication number Publication date
JPS58176870A (en) 1983-10-17

Similar Documents

Publication Publication Date Title
JPH0687417B2 (en) Alkaline zinc storage battery
JPH0582023B2 (en)
JPH06101331B2 (en) Alkaline zinc storage battery
JPS58163162A (en) Alkaline zinc storage battery
JPS5966060A (en) Zinc electrode for alkaline zinc storage battery
JPS6084768A (en) Alkaline zinc storage battery
JPS62108467A (en) Alkaline zinc storage battery
JPS58163172A (en) Alkaline zinc storage battery
JPH0544142B2 (en)
JPH0410709B2 (en)
JPH073793B2 (en) Alkaline zinc storage battery
JPH0765854A (en) Alkaline zinc storage battery
JPS60185372A (en) Nickel-zinc storage battery
JPH01134862A (en) Alkaline zinc storage battery
JPH0522343B2 (en)
JPH0252386B2 (en)
JPH079804B2 (en) Zinc pole
JPH0527226B2 (en)
JPH0685321B2 (en) Alkaline zinc storage battery
JPS61104564A (en) Alkaline zinc storage battery
JPH0685322B2 (en) Alkaline zinc storage battery
JPH0584027B2 (en)
JPS58163161A (en) Alkaline zinc storage battery
JPS59167970A (en) Nickel-zinc battery
JPS58158875A (en) Alkaline zinc storage battery